Флеш память для ос выгоды. Основные достоинства и недостатки flash-памяти


Введение Современный человек не в состоянии жить без информации. Но информация имеет такую особенность ее надо где–то хранить. Систем хранения информации сейчас довольно много. Ее можно хранить на магнитных носителях, можно хранить на оптических и магнитооптических носителях. Но перед человеком в наше время также стоит довольно важная проблема перенос информации из одного места в другое, а также не менее важная проблема хранения информации, и как следствие, надежность носителей. Именно поэтому так быстро развивались технологии, связанные с хранением информации. Но именно здесь встает несколько проблем. Первая это энергопотребление. Современной техника, такая как карманные компьютеры или MP3-плееры, обладает довольно ограниченными энергетическими ресурсами. Память, обычно используемая в ОЗУ компьютеров, требует постоянной подачи напряжения. Дисковые накопители могут сохранять информацию и без непрерывной подачи электричества, зато при записи и считывании данных тратят его за троих. Поэтому требовался носитель, который будет энергонезависимым при хранении и малопотребляющим энергию при записи и считывании информации. И тут хорошим выходом стала флэш–память. Носители на ее основе называются твердотельными, поскольку не имеют движущихся частей. И это еще одно преимущество данного типа памяти. Так что же такое Flash память, каковы ее преимущества и недостатки?


Что такое flash-память? Флэш-память - особый вид энергонезависимой перезаписываемой полупроводниковой памяти. Энергонезависимая - не требующая дополнительной энергии для хранения данных (энергия требуется только для записи). Перезаписываемая - допускающая изменение (перезапись) хранимых в ней данных. Полупроводниковая (твердотельная) - не содержащая механически движущихся частей (как обычные жёсткие диски или CD), построенная на основе интегральных микросхем (IC-Chip). В отличие от многих других типов полупроводниковой памяти, ячейка флэш-памяти не содержит конденсаторов – типичная ячейка флэш- памяти состоит всего-навсего из одного транзистора особой архитектуры. Ячейка флэш-памяти прекрасно масштабируется, что достигается не только благодаря успехам в миниатюризации размеров транзисторов, но и благодаря конструктивным находкам, позволяющим в одной ячейке флэш-памяти хранить несколько бит информации.


Появилась же flash-память благодаря усилиям японских ученых. В 1984 г. компания Toshiba объявила о создании нового типа запоминающих устройств, а годом позже начала производство микросхем емкостью 256 Кbit. Правда, событие это, вероятно в силу малой востребованности в то время подобной памяти, не всколыхнуло мировую общественность. Второе рождение flash-микросхем произошло уже под брэндом Intel в 1988 г., когда мировой гигант радиоэлектронной промышленности разработал собственный вариант flash- памяти. Однако в течение почти целого десятилетия новинка оставалась вещью, широко известной лишь в узких кругах инженеров-компьютерщиков. И только появление малогабаритных цифровых устройств, требовавших для своей работы значительных объемов памяти, стало началом роста популярности flash-устройств. Начиная с 1997 г. flash- накопители стали использоваться в цифровых фотоаппаратах, потом ареал обитания твердотельной памяти с возможностью хранения и многократной перезаписи данных стал охватывать MP3-плейеры, наладонные компьютеры, цифровые видеокамеры и прочие миниатюрные игрушки для взрослых любителей цифрового мира.


."Что в имени тебе моем?" Кстати сказать, как до сих пор идут споры о том, какой же все-таки год, 1984 или 1988-й, нужно считать временем появления настоящей flash-памяти, точно так же споры вызывает и происхождение самого термина flash, применяемого для обозначения этого класса устройств. Если обратиться к толковому словарю, то выяснится многозначность слова flash. Оно может обозначать короткий кадр фильма, вспышку, мелькание или отжиг стекла. Согласно основной версии, термин flash появился в лабораториях компании Toshiba как характеристика скорости стирания и записи микросхемы флэш-памяти in a flash, то есть в мгновение ока. С другой стороны, причиной появления термина может быть слово, используемое для обозначения процесса прожигания памяти ПЗУ, который достался новинке в наследство от предшественников. В английском языке засвечивание или прожигание микросхемы постоянного запоминающего устройства обозначается словом flashing. По третьей версии слово flash отражает особенность процесса записи данных в микросхемах этого типа. Дело в том, что, в отличие от прежнего ПЗУ, запись и стирание данных во flash-памяти производится блоками-кадрами, а термин flash как раз и имеет в качестве одного из значений – короткий кадр фильма.


Организация flash-памяти Ячейки флэш-памяти бывают как на одном, так и на двух транзисторах. В простейшем случае каждая ячейка хранит один бит информации и состоит из одного полевого транзистора со специальной электрически изолированной областью ("плавающим" затвором - floating gate), способной хранить заряд многие годы. Наличие или отсутствие заряда кодирует один бит информации. При записи заряд помещается на плавающий затвор одним из двух способов (зависит от типа ячейки): методом инжекции "горячих" электронов или методом туннелирования электронов. Стирание содержимого ячейки (снятие заряда с "плавающего" затвора) производится методом тунеллирования.записитуннелирования Стирание Как правило, наличие заряда на транзисторе понимается как логический "0", а его отсутствие - как логическая "1".


Общий принцип работы ячейки флэш-памяти. Рассмотрим простейшую ячейку флэш-памяти на одном n-p-n транзисторе. При чтении, в отсутствие заряда на "плавающем" затворе, под воздействием положительного поля на управляющем затворе, образуется n-канал в подложке между истоком и стоком, и возникает ток. Наличие заряда на "плавающем" затворе меняет вольт-амперные характеристики транзистора таким образом, что при обычном для чтения напряжении канал не появляется, и тока между истоком и стоком не возникает. При программировании на сток и управляющий затвор подаётся высокое напряжение (причём на управляющий затвор напряжение подаётся приблизительно в два раза выше). "Горячие" электроны из канала инжектируются на плавающий затвор и изменяют вольт-амперные характеристики транзистора. Такие электроны называют "горячими" за то, что обладают высокой энергией, достаточной для преодоления потенциального барьера, создаваемого тонкой плёнкой диэлектрика.


История 1955 память на магнитных ядрах имеет тот же принцип чтения записи, что и MRAM 1989 учёные IBM сделали ряд ключевых открытий о «гигантском магниторезистивном эффекте» в тонкоплёночных структурах IBM и Infeneon установили общую программу развития MRAM NVE объявляет о Технологическом Обмене с Cypress Semiconductor кбит чип MRAM был представлен, изготовленный по 0,18 микрометров технологии Июнь Infeneon анонсирует 16-Мбит опытный образец, основанный на 0,18 микрометров технологии Сентябрь MRAM становится стандартным продуктом в Freescale, которая начала испытывать MRAM. Октябрь Тайваньские разработчики MRAM печатают 1 Мбит элементы на TSMC.TSMC Октябрь Micron бросает MRAM, обдумывает другие памяти.Micron Декабрь TSMC, NEC, Toshiba описывают новые ячейки MRAM.TSMCNECToshiba Декабрь Renesas Technology разрабатывают Высокоскоростную, Высоконадёжную Технологию MRAM Январь Cypress испытывает MRAM, использует NVE IP. Март Cypress продаёт дочернюю компанию MRAM. Июнь Honeywell сообщает таблицу данных для 1-Мбит радиационно-устойчивой MRAM, используя 0,15 микрометров технологию. Август рекорд MRAM: Ячейка памяти работает на 2ГГц. Ноябрь Renesas Technology и Grandis сотрудничают в Разработке 65 нм MRAM, применяя Вращательно Крутящее Перемещение. Декабрь Sony представляет первую лабораторию производящую вращательно-крутящее-перемещение MRAM, которая использует вращательно-поляризованный ток через туннельный магниторезистивный слой записать данные. Этот метод потребляет меньше энергии и более расширяемый чем обыкновенная MRAM. C дальнейшими преимуществами в материалах, этот процесс должен позволять для плотностей больших чем те возможные в DRAM. Декабрь Freescale Semiconductor Inc. анонсирует MRAM, которая использует магниевый оксид, лучше, чем алюминиевый оксид, позволяющий делать тоньше изолирующий туннельный барьер и улучшенное битовое сопротивление в течение цикла записи, таким образом, уменьшая требуемый ток записи Февраль Toshiba и NEC анонсировали 16 Мбит чип MRAM с новой «энерго-разветвляющейся» конструкцией. Они добились частоты перемещения в 200 МБ/с, с временем цикла 34 нс лучшая производительность любого чипа MRAM. Они также гордятся наименьшим физическим размером в своём классе 78,5 квадратных миллиметров и низким требованием энергии 1,8 вольт. Июль 10 Июля, Austin Texas Freescale Semiconductor начинают торговать 4-Mbit чипами MRAM, которые продаются приблизительно за $25.00 за чип.


Вместо заключения Подводя итог всему вышесказанному, нужно признать непреложный факт: flash-память – штука удобная и чрезвычайно полезная. Объединяя в себе черты, присущие одновременно и постоянной и оперативной памяти, флэшки способны восполнить нехватку мозгов у малогабаритных цифровых устройств, обеспечивая их владельцев практически неограниченными возможностями по хранению необходимых данных, объем которых ограничен лишь количеством имеющихся в наличии flash- накопителей. Одно плохо – не обошлось и тут без недостатков. Во-первых, форматов flash-устройств много, что накладно для владельца разнородных гаджетов, а во-вторых, все-таки ограничение на количество циклов перезаписи – свойство вполне реальное. Однако ж недостатки, как известно, существуют лишь для того, чтобы подчеркнуть достоинства, а их у flash-устройств много

Флеш-память - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти (ПППЗУ).

Все существующие сегодня виды флэш-носителей можно условно разделить на два класса: флэш-карты, куда входят Compact Flash Card, MultiMedia Card и SD Card, и флэш-модули Flash USB Drive (USB Pen Drive). Для непосредственной работы с флэш-картами, а именно - для считывания информации с них, необходимо специальное устройство, называемое карт-ридером (cardreader), который состоит из контроллера и разъема USB. Флэш-модуль, который еще называют флэш-носителем с USB-интерфейсом, в отличие от флэш-карты, уже имеет встроенный контроллер и может быть подключен к компьютеру через USB.

Она может быть прочитана сколько угодно раз (в пределах срока хранения данных, типично - 10-100 лет), но писать в такую память можно лишь ограниченное число раз (максимально - около миллиона циклов). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи - намного больше, чем способна выдержать дискета или CD-RW.

Преимущества:

Для хранения данных не требуется дополнительной энергии, то есть flash-память является энергонезависимым устройством. По сравнению с компакт-дисками или дискетами затраты энергии при работе с flash-устройством минимальны. Поэтому flash-память является очень экономной с точки зрения энергозатрат. При записи данных на flash-микросхему требуется в 10-20 раз меньше энергии, чем при аналогичных действиях с компакт-диском или дискетой.

Флешки имеют достаточно большую плотность записи, емкость современных флешек довольно велика и может существенно превосходит емкость DVD-дисков.

Flash-микросхема позволяет многократно (но не бесконечно) перезаписывать данные. То есть flash-память - перезаписываемое устройство хранения данных.

При этом работают бесшумно. Накопитель на основе flash-микросхемы не содержит в себе никаких движущихся механических узлов и устройств, поскольку это твердотельная память. А раз так, то flash-устройства отличаются устойчивостью к механическим воздействиям: нет механики - нечему и ломаться.

К примеру, flash-накопитель способен выдержать удары в 10-20 раз более сильные, чем компьютерный винчестер. Причем не только выдержать, но и работать в условиях тряски.

Компактность - еще одно преимущество накопителей на flash-памяти, которое и предопределило использование flash-устройств в разнообразных малогабаритных гаджетах и “ручных" устройствах.

Наконец, информация, записанная на флэш-память, может храниться очень длительное время (порядка 10, а по некоторым данным, и до 100 лет). То есть flash-микросхема является устройством для долговременного хранения данных.



Благодаря своей компактности, дешевизне и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах - фото - и видеокамерах, диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрут изаторах, мини-АТС, принтерах, сканерах, модемax), различных контроллерах.

Широкое распространение получили USB флеш-накопители ("флешка" , USB-драйв, USB-диск), практически вытеснившие не только дискеты, но и CD.

Как и прочие устройства с интерфейсом USB, устройства с flash-памятыо не требуют отдельной настройки со стороны BIOS и автоматически определяются в Windows 2003/ XP/Vista.

Такие накопители имеют отличные перспективы развития, поскольку в их конструкции нет механических узлов. Производители постоянно наращивают объемы и скорость работы чипов flash-памяти, а массовое производство всегда в конечном итоге приводит к значительному снижению цен.

Недостатки:

Flash-память работает существенно медленнее, чем оперативная память на основе микросхем SRAM и DRAM. И даже по сравнению с жестким диском flash-накопитель является аутсайдером. К примеру, средняя скорость считывания данных с flash-накопителя составляет 5 Mb/s, а записи - 3 Mb/s. В то же время жесткий диск может обмениваться данными со скоростью около 30 Mb/s.

Наконец, еще один серьезнейший недостаток - flash-память имеет ограничение по количеству циклов перезаписи. Предел колеблется от 10 000 до 1 000 000 циклов для разных типов микросхем. И хотя миллион операций записи/стирания - это совсем немало, однако наличие физического предела использования микросхемы памяти можно считать серьезным недостатком flash-устройств.



Еще один недостаток - это чувствительность к электростатическому разряду и радиации, поэтому нужно очень тщательно соблюдать технику безопасности при работе с данным внешним носителем.

накопитель носитель информация диск

Кроме того, изъятие флешки без остановки устройства может также привести к ее скорой порче. Со временем у нее может уменьшаться скорость записи, которая сильно зависит от пропускной способности usb-порта, что также является недостатком флешек.

Таким образом, флешки на сегодняшний день имеют ряд достоинств и недостатков. Однако их достоинства значительно перекрывают немногочисленные недостатки, делая этот продукт компьютерной индустрии очень востребованным и конкурентоспособным.

Способы подключения периферийных устройств к персональному компьютеру

Мониторы можно подключать через следующие интерфейсы VGA, DVI, HDMI и DisplayPоrt. В данное время на персональных компьютерах широко используются VGA и DVI интерфейсы, также существуют различные переходники, если в мониторе или в материнской плате не предусмотрены данные интерфейсы.

Клавиатуры можно подключать по интерфейсу Ps/2,USB. Существуют также переходники, которые позволяют подключить USB клавиатуру в порт PS/2 и наоборот.

Способы подключения мыши такие же, как и у клавиатуры: USB и PS/2. В настоящее время появились беспроводные мыши. Как и с клавиатурами USB мышки определяются с включенным компьютером.

В первую очередь они различаются по технологии печати. Бывают лазерные (светодиодный принтер), струйные, матричные и другие принтеры (твердочернильный, сублимационный).

Принтеры подключаются к компьютеру через интерфейс USB или LPT (старые модели), а также с помощью технологии Wi-Fi.

Сканеры подключаются через USB.

МФУ подключаются через USB и Ethernet (по сети).
Акустические колонки. Это устройства для воспроизведения звука.

Подключать их необходимо в двух местах: к источнику сигнала – зеленый круглый разъем на материнской плате или дискретной звуковой карте; а также к источнику питания, чаще в обычную розетку, но бывают версии питающиеся от USB.

Отличительные особенности интерфейсов ESATA и SATA. Назначение и способы подключения.

SATA - это специализированный интерфейс. Он нашел широкое применение для того, чтобы подключать самые разнообразные накопители информации. Скажем, при помощи SATA кабелей можно подключить жесткие диски, SSD накопители и прочие устройства, которые служат для того, чтобы хранить информацию.

SATA-кабель – это красный шлейф, ширина которого составляет примерно 1 сантиметр. Этим он и хорош, прежде всего. Ведь с такими данными его никак не спутаешь с другими интерфейсами. В частности с ATA (IDE). Этот интерфейс тоже вполне применим для того, чтобы подключать жесткие диски. И он хорош с этим справлялся, но до тех пор, пока не появился интерфейс SATA.

В отличие от SATA интерфейс ATA – это параллельный интерфейс. ATA (IDE) шлейф состоит из 40 проводников. Несколько таких широких шлейфов в системном блоке влияли на эффективность охлаждения. Эта проблема была присуща ATA интерфейсу, чего не скажешь про SATA. У него свои плюсы. И один из них – скорость передачи информации. Скажем, SATA 2.0 может передавать данные со скоростью 300 МБайт/с, а SATA 3.0 – целых 600 Мбайт/с.

По сравнению со старым интерфейсом ATA (IDE) его преимущество и в том, что у него большая универсальность. При помощи SATA интерфейса есть возможность подключить внешние устройства.

Чтобы упростить подключение внешних устройств, разработали специальную версию интерфейса – eSATA (External SATA).

eSATA (External SATA) - интерфейс для подключения внешних устройств, который поддерживает режим «горячей замены» (англ. Hot-plug). Был создан несколько позже, в середине 2004 года. У него более надежные разъемы и увеличенная длина кабеля. За счет этого интерфейс eSATA удобен для подключения различных внешних устройств.

Для питания подключаемых eSATA устройств необходимо использовать отдельный кабель. На сегодня есть смелые прогнозы о том, что в будущих версиях интерфейса возможно будет внедрить питание прямо в eSATA кабель.

У eSATA есть свои особенности. Средняя практическая скорость передачи данных выше, чем у USB 2.0 или IEEE 1394. Сигнально SATA и eSATA совместимы. Однако им необходимы разные уровни сигнала.

Ему необходимы для подключения также два провода: шину данных и кабель питания. В будущем планируется отказаться от отдельного кабеля питания для выносных eSATA-устройств. Разъёмы у него менее хрупкие. Конструктивно они рассчитаны на большее число подключений, чем SATA. Однако физически они несовместимы с обычными SATA. Плюс экранирование разъема.

Длина кабеля доведена до двух метров. У SATA длина всего 1 метр. Чтобы компенсировать компенсации потери, в нем изменили уровни сигналов. Повышен уровень передачи и понижен уровень порога приемника.

Особенности подключения и работы накопителей информации с интерфейсом Serial ATA.

SATA (англ. Serial ATA ) - последовательный интерфейс обмена данными с накопителями информации. SATA является развитием параллельного интерфейса ATA (IDE), который после появления SATA был переименован в PATA (Parallel ATA).

SATA использует 7-контактный разъём вместо 40-контактного разъёма у PATA. SATA-кабель имеет меньшую площадь, за счёт чего уменьшается сопротивление воздуху, обдувающему комплектующие компьютера, упрощается разводка проводов внутри системного блока.

SATA-кабель за счёт своей формы более устойчив к многократному подключению. Питающий шнур SATA также разработан с учётом многократных подключений. Разъём питания SATA подаёт 3 напряжения питания: +12 В, +5 В и +3,3 В; однако современные устройства могут работать без напряжения +3,3 В, что даёт возможность использовать пассивный переходник со стандартного разъёма питания IDE на SATA. Ряд SATA-устройств поставляется с двумя разъёмами питания: SATA и Molex.

Стандарт SATA отказался от традиционного для PATA подключения по два устройства на шлейф; каждому устройству полагается отдельный кабель, что снимает проблему невозможности одновременной работы устройств, находящихся на одном кабеле (и возникавших отсюда задержек), уменьшает возможные проблемы при сборке (проблема конфликта Slave/Master устройств для SATA отсутствует), устраняет возможность ошибок при использовании нетерминированных PATA-шлейфов.

Стандарт SATA поддерживает функцию очереди команд (NCQ, начиная с SATA Revision 1.0a).

В отличие от PATA, стандарт SATA предусматривает горячую замену активного устройства (используемого операционной системой) (начиная с SATA Revision 1.0)

SATA Revision 1.0 (до 1,5 Гбит/с)

Спецификация SATA Revision 1.0 была представлена 7 января 2003 года. Первоначально стандарт SATA предусматривал работу шины на частоте 1,5 ГГц, обеспечивающей пропускную способность приблизительно в 1,2 Гбит/с (150 Мбайт/с). (20%-я потеря производительности объясняется использованием системы кодирования 8b/10b, при которой на каждые 8 бит полезной информации приходится 2 служебных бита). Пропускная способность SATA/150 незначительно выше пропускной способности шины Ultra ATA (UDMA/133). Главным преимуществом SATA перед PATA является использование последовательной шины вместо параллельной. Несмотря на то, что последовательный способ обмена принципиально медленнее параллельного, в данном случае это компенсируется возможностью работы на более высоких частотах за счёт отсутствия необходимости синхронизации каналов и большей помехоустойчивостью кабеля. Это достигается применением принципиально иного способа передачи данных (см. LVDS).


SATA Revision 2.0 (до 3 Гбит/с)

Спецификация SATA Revision 2.0 (SATA II или SATA 2.0 , SATA/300) работает на частоте 3 ГГц, обеспечивает пропускную способность до 3 Гбит/с (300 Мбайт/с для данных с учётом 8b/10b кодирования). Впервые был реализован в контроллере чипсета nForce 4 фирмы «NVIDIA». Теоретически устройства SATA/150 и SATA/300 должны быть совместимы (как контроллер SATA/300 с устройством SATA/150, так и контроллер SATA/150 с устройством SATA/300) за счёт поддержки согласования скоростей (в меньшую сторону), однако для некоторых устройств и контроллеров требуется ручное выставление режима работы (например, на жёстких дисках фирмы Seagate, поддерживающих SATA/300, для принудительного включения режима SATA/150 предусмотрен специальный джампер).

SATA Revision 3.0 (до 6 Гбит/с)

Спецификация SATA Revision 3.0 (SATA III или SATA 3.0 ) представлена в июле 2008 и предусматривает пропускную способность до 6 Гбит/с (750 Мбайт/с для данных с учётом 8b/10b кодирования). В числе улучшений SATA Revision 3.0, по сравнению с предыдущей версией спецификации, помимо более высокой скорости, можно отметить улучшенное управление питанием. Также сохранена совместимость, как на уровне разъёмов и кабелей SATA, так и на уровне протоколов обмена Bob lox.

Страница 3 из 3

Форматы flash-памяти

И все же, несмотря на некоторые недостатки, flash-память находит все более широкое применение в цифровых устройствах. Причем косвенным подтверждением широты применения и популярности flash-накопителей может служить разнообразие стандартов flash-накопителей, существующее на сегодняшний день. Хотя, с точки зрения пользователя, разнобой стандартов - существенный недостаток. Ведь как, например, обстоит дело с компакт-дисками: пришел покупатель в магазин, купил болванку для записи компьютерного диска и не переживает о ее совместимости с установленным в вычислительной системе CD-рекордером. C flash-накопителем такой номер не пройдет. Дело в том, что устройства различных

производителей ориентированы на использование различных flash-накопителей, которые отнюдь не совместимы друг с другом. Вот и получается, что счастливому обладателю цифровой камеры, цифрового фотоаппарата и наладонного компьютера приходится приобретать три разные карты, хотя, по большому счету, можно было бы обойтись и одной. Что касается стандартов, то основными на сегодняшний день являются: PC-Card, Compact Flash, Memory Stick, Smart Media, Multimedia Card, SD Card, xD-Picture Card.

PC-Card (или на прежний манер PCMCIA - Personal Computer Memory Card International Association) - самый старый стандарт карт памяти, построенных на базе flash-устройств. Собственно и сам PCMCIA-слот когда-то создавался специально для обеспечения возможности подключения к компьютеру внешнего накопителя. Первый вариант стандарта появился в 1991 г. Всего существует 3 разновидности PCMCIA-устройств: Type I, II и III. Соответственно, и PC-Card выпускаются в трех различных форм-факторах, причем все три близки по своим габаритам к размерам пластиковой банковской карты, а отличаются лишь толщиной - самым “худым” является устройство Type I (толщина - 3,3 мм), а самым “упитанным” - PCMCIA-карта Type III (толщина - 10,5 мм).

Стандарт PC-card обеспечивает полную физическую и электрическую совместимость карт Type I, II и III сверху вниз. То есть в слот Type III можно вставить карты Type II и Type I, а вот наоборот не получится - размеры не позволяют. Большим удобством PCMCIA-устройств является и то, что благодаря “древности” этого вида накопителей, драйверы для работы с PC-Card по умолчанию устанавливаются при инсталляции MS Windows. Благодаря АТА-контроллеру, устройство работает в режиме эмуляции обычного жесткого диска, и операционная система “видит” карту flash-памяти стандарта PC-Card как обычный сменный накопитель. Правда, в настольную систему для работы с внешним PCMCIA-накопителем придется устанавливать специальный “картоприемник”. Такой считыватель карт подключается на старых машинах через PCI-слот, что не очень удобно. В более современных системах кард-ридер-адаптер подключается к USB-разъему - и это гораздо удобнее. Зато PCMCIA-разъемом по умолчанию оборудуются многие ноутбуки.

И все же, несмотря на то что PC-Card является надежной и хорошо отработанной технологией, популярность накопителей этого формата падает. Причина в немалых (по современным меркам, конечно) габаритах

PC-Card. В настоящее время PCMCIA-накопители применяются в ноутбуках и некоторых профессиональных моделях цифровых фотоаппаратов (вроде Nikon D3). Со специальным переходником PC-Card могут работать и с компьютерами семейства Pocket PC и Handheld PC, но это уже вчерашний день, поскольку flash-накопители более современных стандартов могут подключаться к указанным устройствам и без переходников, обозначаемых иногда термином jacket. Flash-карты стандарта Compact Flash впервые были представлены публике в 1994 г. компанией SanDisk, а в 1995 г. начала свою деятельность Compact Flash Association (CFA), которая занялась продвижением нового стандарта в жизнь. Учредителями ассоциации выступили такие столпы радиоэлектронной промышленности, как Hewlett Packard, Hitachi, IBM, Motorola, Canon, Eastman Kodak Company, SanDisk, Seiko Epson и ряд других компаний. Сейчас число членов CFA приближается к двум сотням, а карточки Compact Flash являются, очевидно, самым распространенным и недорогим типом сменной flash-памяти. На сегодня карты этого стандарта используются в фото- и видеотехнике Canon, Nikon, Minolta, Olympus, Pentax, Ricoh, Kodak, Agfa, Jenoptic, Casio и многих других изделиях менее известных производителей.

Основная задача, которая ставилась при разработке стандарта: сохранив преимущества карт с интерфейсом АТА (PC-Card), существенно уменьшить их размеры. И задача эта была успешно решена. Можно говорить о том, что именно с Compact Flash устройств началась эра портативных цифровых устройств, многие из которых и по сей день обладают слотами для подключения карт Compact Flash. Стандарт включает 2 типоразмера - Type I и II. Различия, как и в случае с PCMCIA-устройствами, в толщине карточек. В форм-факторе CF Type I выпускаются карты flash-памяти, а в форм-факторе CF Type II - разнообразная периферия для цифровой техники (модемы, миниатюрные винчестеры, приемники системы спутникового позиционирования GPS и так далее).

В карты CompactFlash встроен контроллер, который берет на себя функции по управлению flash-устройством, что не требует размещения дополнительных микросхем в самом портативном цифровом устройстве и упрощает конструкцию слота. Благодаря такому решению добавление CF-слота почти не сказывается на стоимости гаджета. Кстати, существуют и специальные переходники Compact Flash - PC-Сard, которые позволяют использовать карты Compact Flash в устройствах, оборудованных PCMCIA-разъемами.

Что касается энергопотребления, то, в соответствии со стандартом, существуют карты Compact Flash, рассчитанные на напряжение питание 5 В и 3,3 В. При этом CF-слот в состоянии корректно поддерживать устройства обоих типов, однако 5-вольтовые карты являются устаревшими и проигрывают своим низковольтным собратьям в энергосбережении, что важно для малогабаритных цифровых устройств.

Отдельного упоминания заслуживают устройства, продвигаемые под маркой Compact Flash IBM Microdrive (стандарт Compact Flash II). В отличие от своих собратьев, построенных на основе flash-микросхем, изделие IBM является самым настоящим микровинчестером, размещенным в стандартном корпусе устройства Compact Flash II. Несомненный плюс - большой объем накопителя, а безусловный минус - как и обычный винчестер, такая “память” боится тряски и ударов. Memory Stick - формат flash-карт памяти, разработанный в 1998 г. компанией Sony, которой принадлежат и все права на этот стандарт. Соответственно, карты памяти Memory Stick применяются в первую очередь в карманных компьютерах, MP3-плейерах, цифровых фотоаппаратах и видеокамерах производства именно этой японской компании. Продвигая свою продукцию, Sony неизменно отмечает малые габариты собственного детища и наличие особого переключателя, предотвращающего случайное стирание хранящейся на карте информации. Стандартные Memory Stick представляют собой 10-контактные карты с последовательным интерфейсом, очертаниями напоминающие пластинку жевательной резинки. Sony продвигает 3 типа карт: Memory Stick, Memory Stick Magic Gate (MG) и Memory Stick Duo.

Memory Stick Magic Gate (MG) - это карты с внедренной технологией защиты авторских прав MagicGate. Правда, насколько подобное нужно пользователям, как правило, приобретающим цифровые устройства для удовлетворения собственных нужд - не совсем понятно. Внешне карточки отличаются цветом: обычные карточки голубые, а Magic Gate - белые.

Что касается карт с приставкой Duo, то они отличаются меньшими размерами (1/3 от стандартной длины) и весом, а также могут иметь модификацию MG. Однако для использования карточек Duo в устройствах стандарта Memory Stick необходим специальный адаптер. На это надо обращать внимание при покупке карты памяти, например, для цифровой видеокамеры или фотоаппарата Sony. В остальном каких-то серьезных преимуществ перед другими стандартами карты Memory Stick не имеют, подчеркивая разве что оригинальность Sony, которая не стала пользоваться готовыми решениями и создала свой стандарт.

Стандарт SmartMedia является торговым наименованием устройств, обозначаемых так же, как SSFDC - Solid State Floppy Disk Card. То есть, говоря по-русски, SSFDC - это “твердотельная дискета”. Карточки указанного стандарта имеют габариты 37x45x0.76 мм и весят 2 г. При этом максимальный теоретический объем памяти карточки SmartMedia, определяемый спецификацией стандарта, составляет 8 Gb.

Стандарт был разработан в 1995 г. компанией Toshiba, а его продвижением занимается организация SSFDC Forum, в рядах которой немало известных компаний: кроме самой Toshiba, еще Fuji, Matsushita, Phison Electronics Corp и другие. В отличие от Compact Flash, в картах SmartMedia (SM) отсутствует встроенный контроллер, что, по замыслу создателей, должно снижать их стоимость (логично предположить, что пропорционально этому увеличивается стоимость устройств, способных работать с картами SmartMedia). Кстати, из-за отсутствия контроллера в самой карте для работы со SmartMedia невозможно применять пассивные переходники, а считыватели карт обойдутся покупателю по цене от $30 до $50.

Рабочие напряжения у SmartMedia такие же, как и у Compact Flash, то есть 5 В и 3,3 В. При этом следует обратить внимание на особенность: в отличие от Compact Flash, оборудование, предназначенное для работы со SmartMedia, не всегда может работать с картами обоих типов. Поэтому, чтобы сделать различие между картами наглядным, у SmartMedia-накопителей, работающих при напряжении 5 В, срезан левый верхний уголок, а у их “коллег”, функционирующих при напряжении питания 3,3 В, отсутствует правый верхний уголок. Правда “пожиратели энергии” на 5 В сейчас уже не выпускаются. До недавнего времени максимальная емкость карт составляла 128 Мb, однако на сегодняшний день в продаже уже есть устройства объемом в 256 Мb (в частности, изделия SanDisk и Viking).

Что касается практики применения, то SmartMedia-карты используются, как правило, в цифровых камерах и МРЗ-плейерах, редко встречаясь в прочих цифровых гаджетах. При этом надо помнить, что новые модули большой емкости не всегда могут быть установлены в старые модели цифровых устройств. Причина в том, что контроллер, управляющий работой карты, размещен “на борту” самого устройства, а не в корпусе карты, соответственно, поскольку на момент выпуска, например, фотоаппарата не существовало SM-карт емкостью 128 Мb, то и работать с такими “гигантами” контроллер не может. Это является серьезным недостатком устройств SmartMedia. Теперь о стандарте MultiMediaСard (ММС). Эти карты получили широкое распространение в качестве внешних устройств памяти именно для наладонных компьютеров и смартфонов. Впрочем, и цифровые фотоаппараты, и MP3-плейеры, и игровые устройства, и ноутбуки, и прочие цифровые устройства также являются потенциальными активными потребителями этого продукта. Продвигает стандарт MMC Association, в состав которой входят Hewlett Packard, Renesas Technology, Infineon Technologies Flash, Lexar Media, Micron Technology, Nokia Mobile Phones, Power Digital Card, Samsung Electronics, Sanyo Electric и прочие производители цифровой техники. Причем многие из них являются одновременно и членами Compact Flash Association… Сам стандарт впервые был представлен публике в ноябре 1997 г. и явился результатом совместных усилий SanDisk Corporation и Siemens AG/Infineon Technologies AG.

MMC-карта по ширине примерно вдвое меньше, чем накопитель CompactFlash, а габаритами близка к крупной почтовой марке (24х32х1,4 мм) с семью контактными площадками на нижней стороне корпуса. При этом, в отличие от CompactFlash, карты стандарта MMC снабжены защитой от случайного стирания записанной на них информации: на корпусе имеется механический переключатель блокировки записи (как у 3,5-дюймовых флоппи-дискет). В структуру MMC-карты, так же как и у CompactFlash, включен контроллер, управляющий работой карты, что упрощает работу с ней и обеспечивает ее совместимость со многими устройствами.

Вес карточек MMC составляет всего 1,5 г, поэтому их особенно охотно используют производители карманных компьютеров и сотовых телефонов. Еще одно преимущество ММС-карт перед “одноклассниками” - сниженное энергопотребление, что достигается за счет уменьшения питающего напряжения до 3,3 или 2,7 В. Да и объемом MMC-карты тоже могут похвастаться - сейчас серийно производятся устройства емкостью в 1 Gb.

Модификацией формата MultiMediaCard являются карты Secure Digital Card или SD-Card. Инициатива создания “безопасных” карт исходила от компаний Matsushita Electronic (торговая марка Panasonic), SanDisk и Toshiba. Новые карты были призваны решить две задачи: учесть веяния времени, связанные с защитой авторской информации - это во-первых. И во-вторых, увеличить доступный пользователям объем памяти.

Карты SD чуть толще карт MMC (на 0,7 мм) и отличаются двумя дополнительными контактами (9 контактов у SD против 7 у MMC). За счет модификации стандарта предельная теоретическая емкость карт возросла до 2 Gb, увеличилась также и скорость обмена данными. При этом “классические” MMC-карты полностью совместимы с устройствами, способными работать с SD-картами, а вот обратная совместимость наблюдается отнюдь не всегда, что нужно учитывать при покупке новомодных SD-карт. Кстати, в стандарте MMC- и SD-карт выпускаются не только внешние накопители, но и разного рода “примочки”, вроде GPS-приемников или FM-тюнеров, подключаемых к наладонным компьютерам через SD-разъем. Ну а возможность защиты авторских прав позволила продавцам выпустить в продажу книги и песни на SD-носителях.

И наконец, одним из самых последних внедренных в жизнь стандартов flash-устройств стал xD-Picture Card, о котором мир узнал 30 июля 2002 г., когда компании Olympus и FujiFilm объявили о выпуске миниатюрных карт flash-памяти нового формата. Префикс xD расшифровывается как extreme digital, и, по мнению компаний-разработчиков, должен подчеркнуть использование этого носителя для хранения аудио- и видеоданных. В Olympus и FujiFilm полагают, что носитель нового формата должен прийти на смену устаревшим картам SmartMedia.

При этом одной из причин создания новинки была названа тенденция к уменьшению размеров цифровых фотокамер. Габариты xD-Picture Card действительно очень невелики (20x25x1,7 мм), а теоретически достижимая емкость носителя составляет 8 Gb. Правда, первая линейка xD-Picture включала карты емкостью 16, 32, 64 и 128 Мb. К концу 2002 г. появилась 256-мегабайтная версия xD-Picture, а позже и 512-мегабайтная.

В соответствии со спецификациями стандарта максимальная скорость чтения данных с карт xD-Picture составляет 5 Мb/s, скорость записи - 3 Mb/s. Напряжение питания - 3,3 В; потребляемая при работе мощность - 25 мВт. Как и SmartMedia, карты xD-Picture не имеют в своем составе контроллера.

Интересная особенность - все новые фотоаппараты Fuji и Olympus, совместимые с картами xD-Picture, позволяют устанавливать и модули SmartMedia. Для этого применено оригинальное техническое решение: в слоте памяти аппарата контактные группы располагаются с разных сторон, что и обеспечивает совместимость техники с двумя разными стандартами flash-карт.

Кстати, для xD-Picture-карт существует специальный адаптер, выполненный в виде CompactFlash-карты, который после установки в него xD-Picture обеспечивает совместимость новинки со всеми устройствами, поддерживающими CompactFlash.

Вместо заключения

Подводя итог всему вышесказанному, нужно признать непреложный факт: flash-память - штука удобная и чрезвычайно полезная. Объединяя в себе черты, присущие одновременно и постоянной и оперативной памяти, “флэшки” способны восполнить нехватку “мозгов” у малогабаритных цифровых устройств, обеспечивая их владельцев практически неограниченными возможностями по хранению необходимых данных, объем которых ограничен лишь количеством имеющихся в наличии flash-накопителей. Одно плохо - не обошлось и тут без недостатков. Во-первых, форматов flash-устройств много, что накладно для владельца разнородных гаджетов, а во-вторых, все-таки ограничение на количество циклов перезаписи - свойство вполне реальное. Однако ж недостатки, как известно, существуют лишь для того, чтобы подчеркнуть достоинства, а их у flash-устройств много.

  • Вперёд >

Страница 2 из 3

Хорошее против плохого

Однако от филолого-исторических исследований пора переходить к некоторым техническим подробностям flash-устройств. Как и все в нашем несовершенном мире, flash-память обладает как преимуществами, так и недостатками. Если говорить кратко, то все плюсы и минусы flash-устройств можно свести к нижеследующим двум перечням.

Преимущества flash-памяти:

  • Для хранения данных не требуется дополнительной энергии, то есть flash-память является энергонезависимым устройством.
  • Энергия, правда, требуется для записи данных, совсем без затрат тут не обойтись, в конце концов, вечный двигатель, как известно, создать невозможно. Зато по сравнению с компакт-дисками или дискетами затраты энергии при работе с flash-устройством минимальны. Поэтому flash-память является очень экономной с точки зрения энергозатрат. Как подтверждение - при записи данных на flash-микросхему требуется в 10-20 раз меньше энергии, чем при аналогичных действиях с компакт-диском или дискетой.
  • Flash-микросхема позволяет многократно (но, увы, не бесконечно…) перезаписывать данные. То есть flash-память - перезаписываемое устройство хранения данных.
  • Накопитель на основе flash-микросхемы не содержит в себе никаких движущихся механических узлов и устройств, поскольку это твердотельная память. А раз так, то flash-устройства отличаются устойчивостью к механическим воздействиям: нет механики - нечему и ломаться. К примеру, flash-накопитель способен выдержать удары в 10-20 раз более сильные, чем те, что просто “убили” бы компьютерный винчестер. Причем не только выдержать, но и работать в условиях тряски и довольно-таки жесткого “избиения”.
  • Компактность - еще одно преимущество накопителей на flash-памяти, которое и предопределило использование flash-устройств в разнообразных малогабаритных
  • гаджетах и “ручных” устройствах.
  • Наконец, информация, записанная на флэш-память, может храниться очень длительное время (порядка 10, а по некоторым данным, и до 100 лет). То есть flash-микросхема является устройством для долговременного хранения данных.

Теперь оборотная сторона медали, то есть недостатки flash-памяти:

  • Для начала главный потребительский недостаток - flash-память стоит дороже, чем дискеты, компакт-диски и компьютерные винчестеры.
  • Flash-память работает существенно медленнее, чем оперативная память на основе микросхем SRAM и DRAM. И даже по сравнению с жестким диском flash-накопитель является аутсайдером. К примеру, средняя скорость считывания данных с flash-накопителя составляет 5 Mb/s, а записи - 3 Mb/s.
    В то же время жесткий диск может обмениваться данными со скоростью около 30 Mb/s.
  • Наконец, еще один серьезнейший недостаток, который уже упоминался выше - flash-память имеет ограничение по количеству циклов перезаписи. Предел колеблется от 10 000 до 1 000 000 циклов для разных типов микросхем. И хотя миллион операций записи/стирания - это совсем немало, однако наличие физического предела использования микросхемы памяти можно считать серьезным недостатком flash-устройств.

Преимущества и недостатки flash-памяти

Хорошее против плохого

Однако от филолого-исторических исследований пора переходить к некоторым техническим подробностям flash-устройств. Как и все в нашем несовершенном мире, flash-память обладает как преимуществами, так и недостатками. Если говорить кратко, то все плюсы и минусы flash-устройств можно свести к нижеследующим двум перечням.

Преимущества flash-памяти:

  • Для хранения данных не требуется дополнительной энергии, то есть flash-память является энергонезависимым устройством.
  • Энергия, правда, требуется для записи данных, совсем без затрат тут не обойтись, в конце концов, вечный двигатель, как известно, создать невозможно. Зато по сравнению с компакт-дисками или дискетами затраты энергии при работе с flash-устройством минимальны. Поэтому flash-память является очень экономной с точки зрения энергозатрат. Как подтверждение – при записи данных на flash-микросхему требуется в 10-20 раз меньше энергии, чем при аналогичных действиях с компакт-диском или дискетой.
  • Flash-микросхема позволяет многократно (но, увы, не бесконечно…) перезаписывать данные. То есть flash-память – перезаписываемое устройство хранения данных.
  • Накопитель на основе flash-микросхемы не содержит в себе никаких движущихся механических узлов и устройств, поскольку это твердотельная память. А раз так, то flash-устройства отличаются устойчивостью к механическим воздействиям: нет механики – нечему и ломаться. К примеру, flash-накопитель способен выдержать удары в 10-20 раз более сильные, чем те, что просто “убили” бы компьютерный винчестер. Причем не только выдержать, но и работать в условиях тряски и довольно-таки жесткого “избиения”.
  • Компактность – еще одно преимущество накопителей на flash-памяти, которое и предопределило использование flash-устройств в разнообразных малогабаритных
  • гаджетах и “ручных” устройствах.
  • Наконец, информация, записанная на флэш-память, может храниться очень длительное время (порядка 10, а по некоторым данным, и до 100 лет). То есть flash-микросхема является устройством для долговременного хранения данных.

Теперь оборотная сторона медали, то есть недостатки flash-памяти:

  • Для начала главный потребительский недостаток – flash-память стоит дороже, чем дискеты, компакт-диски и компьютерные винчестеры.
  • Flash-память работает существенно медленнее, чем оперативная память на основе микросхем SRAM и DRAM. И даже по сравнению с жестким диском flash-накопитель является аутсайдером. К примеру, средняя скорость считывания данных с flash-накопителя составляет 5 Mb/s, а записи – 3 Mb/s.
    В то же время жесткий диск может обмениваться данными со скоростью около 30 Mb/s.
  • Наконец, еще один серьезнейший недостаток, который уже упоминался выше – flash-память имеет ограничение по количеству циклов перезаписи. Предел колеблется от 10 000 до 1 000 000 циклов для разных типов микросхем. И хотя миллион операций записи/стирания – это совсем немало, однако наличие физического предела использования микросхемы памяти можно считать серьезным недостатком flash-устройств.


    Корпорация Toshiba сегодня сообщила о том, что ее инженерам удалось совершить прорыв в области новых технологий хранения данных на жестких дисках. Компания обещает уже в ближайшее время представить новое поколение жестких дисков, которые смогут вмещать в себя гораздо больше данных.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: