Мультиметры, такие одинаковые и при этом такие разные. Погрешность, точность и разрешение

Мультиметр, также известный как тестер – современный измерительный прибор, использующийся для замера всех основных характеристик электронных схем. Он измеряет сопротивление, силу тока, напряжение, емкость и другие параметры. Большинство моделей из представленных на рынке умеют работать как с постоянным, так и с переменным, то есть синусоидальным, током. Рассмотрим, какие у данных приборов имеются основные характеристики и насколько точны показания и в зависимости от разновидности устройства.

Точность измерений и разрядность

Основных характеристик у мультиметра ровно две: точность измерения и разрядность индикатора. Самые простые и доступные модели отличаются невысокой точностью – погрешность показаний составляет порядка 10%, а также разрядностью 2,5. С ростом класса прибора и его цены точность существенно возрастает, равно как и разрядность. Стоит сразу отметить, что погрешность всех тестеров так же сильно зависит от типа проводимых измерений и диапазона, в котором проводится проверка. В лучшем случае погрешность составляет порядка 0,01%.

Следует отметить и такой параметр, как входное сопротивление мультиметра. Схема тестера такова, что и сам прибор обладает неким сопротивлением, которое принято записывать в технических документах в килоомах на вольт (кОм/В). Ранее использовались приборы с 10 или 20 кОм/В, причем последние обладали чуть большей точностью. Однако современные приборы обладают в сотни раз более высоким сопротивлением, что полностью нивелирует его влияние на точность показания прибора. В большинстве случаев подобный параметр даже не указывается в инструкции на тестер.

Основные знаки на панели

Чтобы правильно провести измерения, необходимо разобраться в обозначениях на панели мультиметра. Ручка прибора может находиться в положении «выключено» – OFF. Она также может указывать на один из диапазонов.

Режим измерения напряжения постоянного тока обозначается как DCV, а переменногоACV (встречается также V~). Зона измерения силы постоянного тока – DCA. Сопротивление традиционно обозначают греческой буквой «омега» – Ω. Разъем для черного провода щупа имеет обозначение COM. Обычно слева присутствует разъем для проверки транзисторов.

Это основные обозначения, но у каждой модели могут быть свои особенности и возможности.

Разновидности

Среди всего ассортимента моделей на рынке, можно выделить две основные разновидности мультиметров: цифровые и аналоговые. Сегодня чаще всего встречаются именно первые, но и классические тестеры также не торопятся уходить в прошлое – они до сих пор востребованы профессионалами.

Причин подобной популярности несколько. Прежде всего, точность цифровых приоров зависит от внешних условий. Она может значительно падать, если приходится работать в условиях сильного электромагнитного поля или радиопомех. Кроме того, они требуют дополнительного источника питания, и по мере выхода его из строя показания все сильнее отклоняются от точных.

Аналоговые

Главными достоинствами классических моделей является надежность и невысокая цена. К сожалению, их точность несколько ниже, а разброс показателей при измерении, напротив, выше. Погрешность среднестатистического аналогового мультиметра составляет порядка 2% от предела измерений по шкале прибора.

Цифровые

Главным отличием является то, что в цифровых моделях все показания отображаются на жидкокристаллическом дисплее. Данные приборы в отличие от аналоговых могут похвастаться большей точностью измерений, вплоть до 0,5% от фактического значения. Кроме того, цифровые модели отличаются большим разрешением измерительной системы. Таким образом, они обеспечивают большую точность измерений с большим количеством знаков после запятой.

Индикация

Дополнительные возможности

Помимо само собой разумеющихся силы тока, напряжения и сопротивления, современные модели также могут производить и прочие измерения. В их числе индуктивность, емкость, а при помощи специального датчика или термопары они могут измерять еще и температуру. Принцип продвинутой модели позволяет справляться с измерением длительности импульсов, интервалов между ними, частоты.

Практически все модели могут производить прозвонку схемы, то есть проверку ее целостности. В случае если ее сопротивление падает ниже заданной величины, прибор издает звуковой сигнал.

Разновидности по уровням

Сегодня в продаже представлены мультиметры, которые можно условно разбить на несколько уровней, в том числе – и по параметру цены. Прежде, чем остановить свой выбор на какой-то определенной модели, следует определить, какие параметры и с какой точностью мультиметр должен будет измерять.

Также немаловажно обратить внимание на элемент питания прибора – рекомендуются мультиметры на пальчиковых батарейках, так как элементы питания типа крона найти сложнее, а стоят они дороже.

В общей массе приборы по характеристикам и цене можно разделить на три уровня:

  • начальный. Тестеры ценой до 1000 рублей. Наиболее простые приборы малоизвестных брендов. Нередко встречаются курьезы, когда одна и та же модель продается под разрывными производителями;
  • средний. В пределах 3000 рублей. Представлены продукцией Uni Trend, Mastech, Victor, CEM и подобных;
  • профессиональные. Наиболее дорогие. Тестеры подобного уровня выпускают APPA, Uni Trend, Fluke, CEM.

Рассмотрим характеристики и возможности мультиметров более пристально.

Тестеры начального уровня

Мультиметр начального уровня чаще всего приобретается для домашнего использования. Такие модели не могут похвастаться собым качеством щупов, экрана или даже корпуса. Со временем у тестеров начального уровня трескаются и ломаются кабели.

При продаже у таких устройств достаточно редко указывается погрешность, так как она в любом случае достаточно высока. Но точности мультиметра вполне достаточно для домашнего использования. Подобными устройствами может быть прозвонена принципиальная электрическая схема, проверено наличие тока в розетке, измерено напряжение и т.п. Учитывая области использования, требования, предъявляемые к подобным устройствам, минимальны.

Тестеры среднего уровня

Модели среднего уровня изготавливаются из более качественных материалов, а некоторые дополнительно облачены в противоударный чехол. Провода к измерительным щупам куда длиннее и крепче. В руководстве к мультиметрам среднего уровня часто указана схема, а также диапазоны и погрешность измерений. Данные модели мультиметров не внесены в Госреестр, так что для предприятий и работающих по лицензии они будут непригодны. Аудитория покупателей – радиолюбители, мелкие организации и энтузиасты-ремонтники.

Уровень измерений в данных мультиметрах порядка 1000 В и до 20 А. Из дополнительных возможностей следует выделить автоматический выбор диапазона, защиту от перегрузки, бесконтактный индикатор напряжения. Средняя погрешность – порядка 0,5%.

Профессиональные модели

Мультиметры обладают самым качественным корпусом, чаще всего противоударным, экран отличается максимальной информативностью. Измерительные провода мягкие и удобные, со временем сохраняют свою прочность. Инструкция указывает все параметры приборов, погрешность измерения минимальна, вплоть до 0,025%.

Данные мультиметры востребованы на предприятиях, при производстве электроники. Практически все внесены в государственный реестр. Гарантия на профессиональные устройства достигает 3 лет.

Из дополнительных возможностей: связь с ПК через USB, режим относительного измерения, линейная шкала, пониженное электропотребление, до 5 разрядов индикации, широкий диапазон работы.

Госреестр

Отдельные модели мультиметров внесены в государственный реестр. Госреестр – это специальный список, составленный Росстандартом, в котором приводятся средства измерений. Каждый из подобных приборов в обязательном порядке проходит проверку в центре метрологии или подобной лаборатории. Строгий контроль используется для приборов, подпадающих под закон о единстве измерений. Только такие мультиметры могут использоваться на военных и медицинских предприятиях.

Для того чтобы подобрать тестер для себя, вовсе не обязательно досконально знать устройство мультиметра. Достаточно определить, какие именно задачи должен будет выполнять прибор, а также какая точность от него требуется. Это позволит выбрать оптимальный вариант, не переплачивая за лишнюю в данной ситуации точность и дополнительные опции.

Если вы сталкиваетесь по работе или дома с ремонтом бытовой, автомобильной, промышленной и прочей электроники, занимаетесь электропроводкой и пр., то для поиска неисправностей вам необходим универсальный измерительный прибор – мультиметр . Он способен измерять все основные электрические параметры – вольты, амперы, омы, выполнять прозвонку цепей и p-n переходов, замерять емкости и коэффициент усиления транзисторов. Для многих прикладных задач вполне достаточно такого прибора, чтобы сделать заключение об исправности/неисправности и найти поломку.

Разновидности мультиметров

Все мультиметры принято делить на стрелочные и электронные. По внешнему виду они отличаются способом отображения результатов измерений. Первые оснащаются стрелочным индикатором, на котором имеется множество шкал для разных замеров: своя шкала для измерения сопротивлений, разных пределов напряжений, токов и пр.

Электронный мультиметр оснащается цифровым жидкокристаллическим экраном, на котором обычными арабскими цифрами отображаются измеренные значения. В работе он однозначно удобнее стрелочного. У стрелочного прибора велика вероятность неправильного считывания данных в зависимости от угла зрения или неточной калибровки шкалы. В электронных этот момент исключен, так как вам не требуется сопоставлять положение стрелки со шкалой – на экране отображается измеренное значение. Кроме того, электронные мультиметры «прощают» пользователю некоторые ошибки во время работы. В зависимости от сложности прибора, в электронных приборах допускается неправильный выбор полюсов измерительных щупов, неверная установка пределов измерения и пр.

В основном в магазинах продаются электронные мультиметры, так как аналоговые капризнее и неудобнее в эксплуатации. Они, в свою очередь, подразделяются на:

  • мультиметры , используемые для измерения большинства электрических величин;
  • клещи , в основном применяемые для измерения токов бесконтактным способом, а также других электрических характеристик;
  • детекторы , позволяющие определять места, где проходит скрытая проводка;
  • компактные тестеры для оперативного контроля электрических цепей.

Выбор мультиметра по характеристикам

Для начала стоит посмотреть, что умеет измерять мультиметр. Обычно такой прибор измеряет:

  • напряжение в нескольких диапазонах (пределах), начиная от мВ и заканчивая сотнями вольт;
  • ток – также в нескольких диапазонах;
  • постоянное и переменное напряжение , а также постоянный и переменный ток ;
  • сопротивление – в нескольких пределах, обычно от единиц Ом до МОм;
  • выполняет прозвонку цепей с подачей звукового сигнала;
  • позволяет оценить коэффициент усиления транзистора .

Хорошо, если мультиметр выполняет оценку работоспособности p-n переходов (позволяет прозванивать диоды и транзисторы и делать оценку их исправности), а также оценивать значения емкости и индуктивности. Эти функции увеличивают стоимость прибора, но значительно расширяют спектр его использования. При этом необходимо отметить, что измерение емкости и индуктивности в универсальных мультиметрах выполняется с высокой погрешностью и пригодно только для оценочных измерений. Если вам требуется точно измерять эти электрические параметры – необходимо использовать специализированные приборы.

Смотрим на погрешность

Любое измерение – в том числе и электрических величин выполняется с погрешностью. Она является такой же характеристикой прибора, как и его пределы измерений. Понятно, что чем точнее прибор измеряет, тем дороже он стоит, так как для достижения высокой точности требуется устанавливать элементы с точными характеристиками. Мультиметры обеспечивают погрешность измерений с точностью от 0,025 до 3%. При этом погрешность измерений в разных пределах и для различных величин также различается и указывается в инструкции по эксплуатации и паспорте на прибор.

Для бытового использования, когда вам требуется выполнить такие операции как:

  • замерить напряжение аккумулятора, батарейки или сетевого напряжения;
  • выполнить прозвонку проводки или цепей;
  • другие несложные электрические измерения,
вполне достаточно мультиметров с погрешностью 2-3% .

Для точных измерений, когда мультиметр используется для ремонта электронной техники, такая погрешность оказывается велика. Есть правило, что измерительный прибор следует выбирать так, чтобы его погрешность была в три раза меньше пределов изменений контролируемой величины. Например, вам требуется измерить напряжение 3,3 В плюс-минус 0,1 В. В этом случае нужно использовать мультиметр, измеряющий напряжение с погрешностью 1 % или лучше, так как пределы изменения контролируемого параметра - 3%.

Диапазоны измерения

Следующий важный момент – измерительные диапазоны. Они показывают в каких пределах, для измерения каких величин можно использовать прибор. Причем обращать внимание нужно как на верхний предел измерения, так и на нижний. Особенно важно точно соблюдать требования по верхнему пределу измерений. Если указано, что прибор не может измерять напряжение величиной более 500 В , не стоит забиться с ним в старый телевизор для замера параметров на электродах кинескопа. Это небезопасно как для прибора, так и для вас. Прибор в лучшем случае уйдет в ограничение, если у него есть встроенная защита, а в худшем – сгорит.

Аналогичное справедливо и для измерения токов и других параметров. Обратите внимание на то, что для цепей постоянного и переменного тока пределы измерений бывают разными. Не стоит использовать мультиметр и для измерения величин, которые находятся ниже его предела. Если прибор, например, не способен замерить точно миллиомы или милливольты, то не стоит и пытаться, так как мультиметр будет что-то показывать, но верить его показаниям за установленными производителем пределами измерений нельзя.

Диапазон измерений электрических величин обычно разбивается производителями на несколько пределов, например, от 1 до 10 В, от 10 до 100 В и от 100 до 500 В и т.д. Это делается из-за того, что обеспечить необходимую погрешность измерений во всем диапазоне невозможно. Поэтому при переключении пределов производится выбор измерительной схемы, обеспечивающей нужную точность в указанном диапазоне. Современные мультиметры нередко «прощают» владельцам ошибки при выборе пределов измерений, автоматически выбирая нужный и сообщая об этом индикацией на экране. Но не стоит путать измерение разных электрических величин – особенно напряжения и тока, так как это приведет к плачевным результатам из-за короткого замыкания. если включить режим амперметра вместо вольтметра.

Дисплей, эргономика прибора и щупы

Обязательно обратите внимание на удобство использования мультиметра. Экран должен быть ярким и информативным. В зависимости от типа и цены прибора, результаты измерения демонстрируются с точностью до сотых и тысячных долей после запятой. Но при этом следует понимать, что смысл в возможности демонстрации точных значений есть только тогда, когда мультиметр обладает низкой погрешностью измерений.

Посмотрите на переключатель режимов работы. Он должен быть удобным, четко переключаться и при этом быть хорошо закрепленным. Если это не так, то со временем переключатель разболтается и выбирать нужный режим станет неудобно и сложно.

Посмотрите на входы для подключения измерительных щупов. Они должны обеспечивать надежный контакт с щупом, но при этом исключать возможный контакт человека с токопроводящими цепями в месте соединения. Это, во-первых, обеспечивает безопасность, а во-вторых, исключает влияние на измеряемые параметры. Сам мультиметр должен быть эргономичным и удобно помещаться на столе или в руке, чтобы замеры выполнялись точно и быстро.

Обязательно следует оценить качество щупов. Они должны плотно входить в предназначенные для них разъемы на приборе, контакты не должны люфтить и болтаться, обеспечивая постоянный и надежный контакт. Провода щупов должны быть прочными и надежными, выдерживать изгибы, а изоляция – не перетираться. Электроды на концах щупов, с помощью которых выполняются измерения, должны быть острыми и удобными для того, чтобы добраться в труднодоступное место.

Дополнительные функции

Кроме измерения электрических величин, мультиметры оснащаются дополнительными функциями. Очень полезно, например, наличие функции прозвонки. Вы присоединяете электроды к двум отрезкам цепи. Если контакт есть, раздается звуковой сигнал, а на экране обычно одновременно демонстрируется сопротивление цепи. Режим используется для проверки целостности электрических цепей в приборах, проводке и пр. Стоит отметить, что это один из наиболее часто используемых режимов работы мультиметра. Вместо него можно использовать режим измерения сопротивления, но прозвонка удобна тем, что при ее использовании выдается звуковой сигнал и не надо отвлекаться на экран.

Нередко в устройства включается режим проверки коэффициента усиления транзисторов. Результат получается с высокой погрешностью, но этого достаточно для того, чтобы проверить исправность транзистора, для чего эта функция и нужна. В некоторых устройствах есть функция проверки исправности p-n перехода . Его можно прозвонить омметром – оценивая величину омического сопротивления в прямом и обратном направлении, а можно, подавая небольшое напряжение. В этом случае, при прямом включении падение напряжения на p-n переходе составляет 0,4-0,6 В. Такая функция удобна тем, что позволяет делать оценку исправности переходов, не выпаивая элементы из плат, что с помощью омметра не всегда возможно. Конечно, эта функция, является оценочной, но в поиске неисправностей здорово помогает.

Полезно наличие измерения значений емкостей и индуктивностей. Универсальные мультиметры выполняют эти измерения не очень точно, но для оценки исправности и проверки деталей этого часто бывает достаточно. Кроме того, дополнительно производитель может встроить в прибор термометр. С его помощью можно, например, замерить температуру элементов схемы и оценить – не перегреваются ли силовые элементы в источники питания и пр.

Питание мультиметров обычно осуществляется от батареек. Также используются аккумуляторы. Количество и тип зависит от прибора. Обычно используются элементы питания типа АА или ААА.

По цене мультиметры делятся на:

  • недорогие бытовые приборы, стоимостью до 1000 рублей . Такие мультиметры способны выполнять измерения большинства электрических величин;
  • приборы среднего класса, стоимостью от 1000 до 10000 рублей . Могут не только измерять напряжение, ток и сопротивление, но и емкости, индуктивности. Ряд приборов измеряют частоту, оснащаются функцией запоминания результатов измерений и пр.;
  • приборы профессионального класса, стоимостью от 10000 рублей . Используются профессионалами для энергетических, а также точных электрических и радиотехнических измерений.

Омметр + амперметр + вольтметр = мультиметр. Аналоговые и цифровые мультиметры. Методы проверки электронных компонентов.

Статья посвящается всем новичкам и просто тем, для кого принципы измерения электрических характеристик различных компонентов, до сих пор остаются загадкой…

Мультиметр - универсальный прибор для измерений.

Измерение напряжения, тока, сопротивления и даже обычная проверка провода на обрыв не обходится без использования измерительных инструментов. Куда же без них. Даже пригодность батарейки не измерить, а тем более узнать хоть, что-то о состоянии какой-нибудь электронной схемы без измерений просто невозможно.

Напряжение измеряют вольтметром, амперметром меряют силу тока, омметром соответственно сопротивление, но речь в этой статье пойдет о мультиметре, который является универсальным прибором для измерений напряжений, тока и сопротивления.

В продаже можно встретить два основных типа мультиметров: .

В аналоговом мультиметре результаты измерений наблюдается по движению стрелки (как на часах) по измерительной шкале, на которой подписаны значения: напряжение, ток, сопротивление. На многих (особенно азиатских производителей) мультиметрах шкала реализована не совсем удобно и для того, кто первый раз взял такой прибор в руку, измерение может доставить некоторые проблемы. Популярность аналоговых мультиметров объясняется их доступностью и ценой (2-3$), а основным недостатком является некоторая погрешность в результатах измерений. Для более точной подстройки в аналоговых мультиметрах имеется специальный построечный резистор, манипулируя которым можно добиться немного большей точности. Тем не менее, в случаях когда желательны более точные измерения, лучшим будет использование цифрового мультиметра.

Главный отличием от аналогового является то, что результаты измерения отображаются на специальном экране (в старых моделях на светодиодах, в новых на жидкокристаллическом дисплее). К тому же цифровые мультиметры обладают более высокой точностью и отличаются простотой использования, так как не приходится разбираться во всех тонкостях градуирования измерительной шкалы, как в стрелочных вариантах.

Немного подробней о том, что за что отвечает..

Любой мультиметр имеет два вывода, черный и красный, и от двух до четырех гнезд (на старых российских еще больше). Черный вывод является общим (масса). Красный называют потенциальным выводом и применяют для измерений. Гнездо для общего вывода помечается как com или просто (-) т.е. минус, а сам вывод на конце часто имеет так называемый "крокодильчик", для того, чтобы при измерении можно было зацепить его за массу электронной схемы. Красный вывод вставляется в гнездо помеченное символами сопротивления или вольты (ft, V или +), если гнезд больше чем два, то остальные обычно предназначаются для красного вывода при измерениях тока. Помечены как A (ампер), mA (миллиампер), 10A или 20A соответственно..

Переключатель мультиметра позволяет выбрать один нескольких пределов для измерений. Например, простейший китайский стрелочный тестер:

    Постоянное (DCV) и переменное (ACV) напряжение: 10В, 50В, 250В, 1000В.

    Ток (mA): 0.5мА, 50мА, 500мА.

    Сопротивление (обозначается значком, немного похожим на наушники): X1K, X100, X10, что означает умножение на определенное значение, в цифровых мультиметрах обычно указывается стандартно: 200Ом, 2кОм, 20кОм, 200кОм, 2МОм.

На цифровых мультиметрах пределов измерений обычно больше, к тому же часто добавлены дополнительные функции, такие как звуковая "прозвонка" диодов, проверка переходов транзисторов, частотометр, измерение емкости конденсаторов и датчик температуры.

Для того, чтобы мультиметр не вышел из строя при измерениях напряжения или тока, особенно если их значение неизвестно, переключатель желательно установить на максимально возможный предел измерений, и только если показание при этом слишком мало, для получения более точного результата, переключайте мультиметр на предел ниже текущего.

Начинаем измерения

Проверка напряжения, сопротивления, тока

Измерить напряжение проще некуда, если постоянное ставим dcv, если переменное acv, подключаем шупы и смотрим результат, если на экране ничего нет, нет и напряжения. С сопротивлением так же просто, прикасаемся щупами к двум концам того, чье сопротивление нужно узнать, таким же способом в режиме омметра прозваниваются провода и дорожки на обрыв. Измерение силы тока отличаются тем, что должны быть врезаны в цепь, как будто это один из компонентов этой самой цепи.

Проверка резисторов

Резистор должен быть выпаян из электрической цепи хотя бы одним концом, чтобы быть уверенным в том, что никакие другие компоненты схемы не повлияют на результат. Подключаем щупы к двум концам резистора и сравниваем показания омметра со значением которое указано на самом резисторе. Стоит учитывать и величину допуска (возможных отклонений от нормы), т.е. если по маркировке резистор на 200кОм и допуском ± 15%, его действительное сопротивление может быть в пределах 170-230кОм. При более серьезных отклонениях резистор считается неисправным.

Проверяя переменные резисторы, измеряем сперва сопротивление между крайними выводами (должно соответствовать номиналу резистора), а затем подключив щуп мультиметра к среднему выводу, поочередно с каждым из крайних. При вращении оси переменного резистора, сопротивление должно изменяться плавно, от нуля до его максимального значения, в этом случае удобней использовать аналоговый мультиметр наблюдая за движением стрелки, чем за быстро меняющимися цифрами на жидкокристалическом экране.

Проверка диодов

Если имеется функция проверки диодов, то все просто, подключаем щупы, в одну сторону диод звониться, а в другую нет. Если данной функции нет, устанавливаем переключатель на 1кОм в режиме измерения сопротивления и проверяем диод. При подключении красного вывода мультиметра к аноду диода, а черного к катоду, вы увидите его прямое сопротивление, при обратном подключении сопротивление будет настолько высоко, что на данном пределе измерения вы не увидите ничего. Если диод пробит, его сопротивление в любую сторону будет равно нулю, если оборван, то в любую сторону сопротивление будет бесконечно большим.

Проверка конденсаторов

Для проверки конденсаторов лучше всего использовать специальные приборы, но и обычный аналоговый мультиметр может помочь. Пробой конденсатора легко обнаруживается путем проверки сопротивления между его выводами, в этом случае оно будет равно нулю, сложнее с повышенной утечкой конденсатора.

При подключении в режиме омметра к выводам электролитического конденсатора соблюдая полярность (плюс к плюсы, мунус к минусу), внутренние цепи прибора заряжают конденсатор, при этом стрелка медленно ползет вверх, показывая увеличение сопротивления. Чем выше номинал конденсатора, тем медленнее движется стрелка. Когда она практически остановится, меняем полярность и наблюдаем как стрелка возвращается в нулевое положение. Если что-то не так, скорее всего есть утечка и к дальнейшему использованию конденсатор не пригоден. Стоит потренироваться, так как, лишь при определенной практике можно не ошибиться.

Проверка транзисторов

И еще пару советов напоследок

При использовании стрелочного мультиметра, положите его на горизонтальную поверхность, так как в других положения точность показаний может заметно ухудщится. Не забывайте откалибровать прибор, для этого просто сомкните щупы между собой и переменным резистором (потенциометром) добейтесь, чтобы стрелка смотрела точно на ноль. Не следует оставлять мультиметр включенным, даже если на аналоговом приборе на переключателе нет положения - выкл. не оставляйте его в режиме омметра, так как в этом режиме постоянно теряется заряд батареи, лучше поставить переключатель на измерение напряжения.

Вообщем пока это все, что хотелось сказать, думаю, у новичков отпадет много вопросов по этому поводу, а вообще в этом деле тонкостей настолько много, что рассказать обо всем просто невозможно. По большей части такому даже не учат. Оно приходит само собой. И только с практикой. Так, что практикуйтесь, измеряйте, тестируйте и с каждым разом ваши знания будут все сильнее, а пользу от этого вы увидите уже при следующей неполадке. Только не забывайте про технику безопасности, как никак большие токи и высокие напряжения могут доставить и неприятностей!

, амперметра и омметра . Иногда выполняется мультиметр в виде токоизмерительных клещей . Существуют цифровые и аналоговые мультиметры.

Мультиметр может быть как лёгким переносным устройством, используемым для базовых измерений и поиска неисправностей, так и сложным стационарным прибором со множеством возможностей.

Энциклопедичный YouTube

    1 / 3

    ✪ RM409b Digital MULTIMETER Обзор нового мультиметра RICHMETERS

    ✪ RM109 MULTIMETER TRUE RMS Лучший МУЛЬТИМЕТР из Китая

    ✪ Мультиметр RM403B. Самый необычный Multimeter - АВТОМАТ

    Субтитры

Цифровые мультиметры

Наиболее простые цифровые мультиметры имеют портативное исполнение. Их разрядность 2,5 цифровых разряда (точность обычно около 10 %). Наиболее распространены приборы с разрядностью 3,5 (точность обычно около 1,0 %). Выпускаются также чуть более дорогие приборы с разрядностью 4,5 (точность обычно около 0,1 %) и существенно более дорогие приборы с разрядностью 5 разрядов и выше (так, прецизионный мультиметр 3458A производства Keysight Technologies (до 3 ноября 2014 г. Agilent Technologies) имеет 8,5 разрядов). Среди таких мультиметров встречаются как портативные устройства, питающиеся от гальванических элементов, так и стационарные приборы, работающие от сети переменного тока. Точность мультиметров с разрядностью более 5 сильно зависит от диапазона измерения и вида измеряемой величины, поэтому оговаривается отдельно для каждого поддиапазона. В общем случае точность таких приборов может превышать 0,01 % (даже у портативных моделей).

Многие цифровые вольтметры (например В7-22А, В7-40, В7-78/1 и т. д.) по сути также являются мультиметрами, поскольку способны измерять кроме напряжения постоянного и переменного тока также сопротивление, силу постоянного и переменного тока, а у ряда моделей также предусмотрено измерение ёмкости, частоты, периода и т. д.). Также к разновидности мультиметров можно отнести скопметры (осциллографы-мультиметры), совмещающие в одном корпусе цифровой (обычно двухканальный) осциллограф и достаточно точный мультиметр. Типичные представители скопметров - АКИП-4113, АКИП-4125, ручные осциллографы серии U1600 фирмы Keysight Technologies и т. д.).

Разрядность цифрового измерительного прибора, например, «3,5» означает, что дисплей прибора показывает 3 полноценных разряда, с диапазоном от 0 до 9, и 1 разряд - с ограниченным диапазоном. Так, прибор типа «3,5 разряда» может, например, давать показания в пределах от 0,000 до 1,999 , при выходе измеряемой величины за эти пределы требуется переключение на другой диапазон (ручное или автоматическое).

Индикаторы цифровых мультиметров (а также вольтметров и скопметров) изготавливаются на основе жидких кристаллов (как монохромных, так и цветных) - APPA-62, В7-78/2, АКИП-4113, U1600 и т. д., светодиодных индикаторов - В7-40, газоразрядных индикаторов - В7-22А, электролюминисцентных дисплеев (ELD) - 3458A, а также вакуумно-люминесцентных индикаторов (VFD) (в том числе и цветных) - В7-78/1.

Типичная погрешность цифровых мультиметров при измерении сопротивлений, постоянного напряжения и тока менее ±(0,2 % +1 единица младшего разряда). При измерении переменного напряжения и тока в диапазоне частот 20 Гц…5 кГц погрешность измерения ±(0,3 %+1 единица младшего разряда). В диапазоне высоких частот до 20 кГц при измерении в диапазоне от 0,1 предела измерения и выше погрешность намного возрастает, до 2,5 % от измеряемой величины, на частоте 50 кГц уже 10 %. С повышением частоты повышается погрешность измерения.

Входное сопротивление цифрового вольтметра порядка 11 МОм (не зависит от предела измерения, в отличие от аналоговых вольтметров), ёмкость - 100 пФ, падение напряжения при измерении тока не более 0,2 В. Питание портативных мультиметров обычно осуществляется от батареи напряжением 9В. Потребляемый ток не превышает 2 мА при измерении постоянных напряжений и токов, и 7 мА при измерении сопротивлений и переменных напряжений и токов. Мультиметр обычно работоспособен при разряде батареи до напряжения 7,5 В .

Количество разрядов не определяет точность прибора. Точность измерений зависит от точности АЦП , от точности, термо- и временной стабильности применённых радиоэлементов, от качества защиты от внешних наводок, от качества проведённой калибровки .

Типичные диапазоны измерений, например для распространённого мультиметра M832:

  • постоянное напряжение: 0..200 мВ, 2 В, 20 В, 200 В, 1000 В
  • переменное напряжение: 0..200 В, 750 В
  • постоянный ток: 0..2 мА, 20 мА, 200 мА, 10 А (обычно через отдельный вход)
  • переменный ток: нет
  • сопротивления: 0..200 Ом, 2 кОм, 20 кОм, 200 кОм, 2 МОм.

Аналоговые мультиметры

Устройство

Аналоговый мультиметр состоит из стрелочного магнитоэлектрического измерительного прибора (микроамперметра), набора добавочных резисторов для измерения напряжения и набора шунтов для измерения тока. В режиме измерения переменных напряжений и токов микроамперметр подключается к резисторам через выпрямительные диоды . Измерение сопротивления производится с использованием встроенного источника питания, а измерение сопротивлений более 1..10 МОм - от внешнего источника.

Особенности и недостатки

  • Недостаточно высокое входное сопротивление в режиме вольтметра.
Технические характеристики аналогового мультиметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем выше чувствительность (меньше ток полного отклонения) микроамперметра, тем более высокоомные добавочные резисторы и более низкоомные шунты можно применить. А значит, входное сопротивление прибора в режиме измерения напряжений будет более высоким, падение напряжения в режиме измерения токов будет более низким, что уменьшает влияние прибора на измеряемую электрическую цепь. Тем не менее, даже при использовании в мультиметре микроамперметра с током полного отклонения 50 мкА , входное сопротивление мультиметра в режиме вольтметра составляет всего 20 кОм/В . Это приводит к большим погрешностям измерения напряжения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения. В свою очередь, мультиметр с недостаточно низкоомными шунтами вносит большую погрешность измерения тока в низковольтных цепях.
  • Нелинейная шкала в некоторых режимах.
Аналоговые мультиметры имеют нелинейную шкалу в режиме измерения сопротивлений. Кроме того, она является обратной (нулевому значению сопротивления соответствует крайнее правое положение стрелки прибора). Перед началом измерения сопротивления необходимо выполнить установку нуля специальным регулятором на предней панели при замкнутых входных клеммах прибора, так как точность измерения сопротивления зависит от напряжения внутреннего источника питания. Шкала на малых пределах измерения переменного напряжения и тока также может быть нелинейной.
  • Требуется правильная полярность подключения.
Аналоговые мультиметры, в отличие от цифровых, не имеют автоматического определения полярности напряжения, что ограничивает удобство их использования и область применения: они требуют правильной полярности подключения в режиме измерения постоянных напряжений/токов, и практически непригодны для измерения знакопеременных напряжений/токов .

Основные режимы измерений

  • ACV (англ. alternating current voltage - напряжение переменного тока) - измерение переменного напряжения.
  • DCV (англ. direct current voltage - напряжение постоянного тока) - измерение постоянного напряжения.
  • DCA (англ. direct current amperage - сила постоянного тока) - измерение постоянного тока.
  • Ω - измерение электрического сопротивления.

Дополнительные функции

В некоторых мультиметрах доступны также функции:

  • Измерение силы переменного тока.
  • Прозво́нка - измерение электрического сопротивления со звуковой (иногда и световой) сигнализацией низкого сопротивления цепи (обычно менее 50

Измеряемые величины не могут быть определены абсолютно достоверно. Измерительные инструменты и системы всегда имеют некоторое допустимое отклонение и помехи, которые выражаются степенью неточности. К тому же, необходимо учитывать и особенности конкретных приборов.

В отношении неточности измерений часто используются следующие термины:

  • Погрешность - ошибка между истинным и измеренным значением
  • Точность — случайный разброс измеренных значений вокруг их среднего
  • Разрешение — наименьшая различаемая величина измеренного значения

Часто эти термины путаются. Поэтому здесь я хотел бы подробно рассмотреть вышеуказанные понятия.

Неточность измерения

Неточности измерения могут быть разделены на систематические и случайные измерительные ошибки. Систематические ошибки вызваны отклонениями при усилении и настройкой «нуля» измерительного оборудования. Случайные ошибки вызваны шумом и и/или токами.

Часто понятия погрешность и точность рассматриваются как синонимы. Однако, эти термины имеют совершенно различные значения. Погрешность показывает, насколько близко измеренное значение к его реальной величине, то есть отклонение между измеренным и фактическим значением. Точность относится к случайному разбросу измеряемых величин.

Когда мы проводим некоторое число измерений до момента стабилизации напряжения или же какого-то другого параметра, то в измеренных значениях будет наблюдаться некоторая вариация. Это вызвано тепловым шумом в измерительной цепи измерительного оборудования и измерительной установки. Ниже, на левом графике показаны эти изменения.

Определения неопределенностей. Слева — серия измерений. Справа — значения в виде гистограммы.

Гистограмма

Измеренные значения могут быть изображены в виде гистограммы, как показано справа на рисунке. Гистограмма показывает, как часто наблюдается измеренное значение. Самая высокая точка на гистограмме, это чаще всего наблюдаемое измеренное значение, в случае симметричного распределения равно среднему значению (изображено синей линии на обоих графиках). Черная линия представляет истинное значение параметра. Разница между средним измеренной величины и истинным значением и является погрешностью. Ширина гистограммы показывает разброс отдельных измерений. Этот разброс измерений называется точностью.

Используйте правильные термины

Погрешность и точность, таким образом, имеют различные значения. Поэтому вполне возможно, что измерение является очень точным, но имеющим погрешность. Или наоборот, с малой погрешностью, но не точное. В общем, измерение считается достоверным, если оно точное, и с малой погрешностью.

Погрешность

Погрешность является индикатором корректности измерения. Из-за того, что в одном измерении точность оказывает влияние на погрешность, то учитывается среднее серии измерений.

Погрешность измерительного прибора обычно задается двумя значениями: погрешностью показания и погрешностью по всей шкале. Эти две характеристики вместе определяют общую погрешность измерения. Эти значения погрешности измерения указываются в процентах или в ppm (parts per million , частей на миллион) относительно действуюшего национального стандарта. 1% соответствует 10000 ppm .

Погрешность приводится для указанных температурных диапазонов и для определенного периода времени после калибровки. Обратите внимание, что в разных диапазонах, возможны, и различные погрешности.

Погрешность показаний

Указание процентного отклонения без дополнительной спецификации также относится к показанию. Допустимые отклонения делителей напряжения, точность усиления и абсолютные отклонения при считывании и оцифровке являются причинами этой погрешности.

Неточность показаний в 5% для значения 70 В

Вольтметр, который показывает 70.00 В и имеет спецификацию «± 5% от показаний», будет обладать погрешностью в ±3.5 В (5% от 70 В). Фактическое напряжение будет лежать между 66.5 и 73.5 вольтами.

Погрешность по всей шкале

Этот тип погрешности обусловлен ошибками смещения и ошибками линейности усилителей. Для приборов, которые оцифровывают сигналы, присутствует нелинейность преобразования и погрешности АЦП. Эта характеристика относится ко всему используемому диапазону измерений.

Вольтметр может иметь характеристику «3% шкалы». Если во время измерения выбран диапазон 100 В (равный полной шкале), то погрешность составляет 3% от 100 В = 3 В независимо от измеренного напряжения. Если показание в этом диапазоне 70 В, то реальное напряжение лежит между 67 и 73 вольтами.

Погрешность 3% шкалы в диапазоне 100 В

Из приведенного выше рисунка ясно, что этот тип допустимых отклонений не зависит от показаний. При показании 0 В реальное напряжение лежит между -3 и 3 вольтами.

Погрешность шкалы в цифрах

Часто для цифровых мультиметров приводится погрешность шкалы в разрядах вместо процентного значения.

У цифрового мультиметра с 3½ разрядным дисплеем (диапазон от -1999 до 1999), в спецификации может быть указано «+ 2 цифры». Это означает, что погрешность показания 2 единицы. Например: если выбирается диапазон 20 вольт (± 19.99), то погрешность шкалы составляет ±0.02 В. На дисплее отображается значение 10.00, а фактическое значение будет между 9.98 и 10.02 вольтами.

Вычисление погрешности измерения

Спецификации допустимых отклонений показания и шкалы вместе определяют полную погрешность измерения прибора. Ниже при расчете используются те же значения, что и в приведенных выше примерах:

Точность: ±5% показания (3% шкалы)

Диапазон: 100 В

Показание: 70 В

Полная погрешность измерения вычисляется следующим образом:

В этом случае, полная погрешность ±6.5В. Истинное значение лежит между 63.5 и 76.5 вольтами. На рисунке ниже это показано графически.

Полная неточность для неточностей показания 5% и 3% шкалы для диапазона 100 В и показания 70 В

Процентная погрешность - это отношение погрешности к показанию. Для нашего случая:

Цифры

Цифровые мультиметры могут иметь спецификацию «± 2.0% показания, + 4 цифры». Это означает, что 4 цифры должны быть добавлены к 2% погрешности показания. В качестве примера снова рассмотрим 3½ разрядный цифровой индикатор. Он показывает 5.00 В для выбранного диапазона 20 В. 2% показания будет означать погрешность в 0,1 В. Добавьте к этому численную погрешность (= 0,04 В). Общая погрешность, следовательно, 0,14 В. Истинное значение должно быть в диапазоне между 4.86 и 5,14 вольтами.

Суммарная погрешность

Зачастую в расчет принимается только погрешность измерительного прибора. Но также, дополнительно следует принимать во внимание погрешности измерительных инструментов, в том случае, если они используются. Вот несколько примеров:

Увеличение погрешности при использовании пробника 1:10

Если в процессе измерений используется щуп 1:10, то необходимо учитывать не только измерительную погрешность прибора. На погрешность также влияет входной импеданс используемого прибора и сопротивление щупа, которые вместе составляют делитель напряжения.

На рисунке выше схематически показан с подключенным к нему пробником 1:1. Если мы рассмотрим этот пробник как идеальный (нет сопротивления соединения), то приложенное напряжение передается прямо на вход осциллографа. Погрешность измерения теперь определяется только допустимыми отклонениями аттенюатора, усилителя и цепями, принимающими участие в дальнейшей обработке сигнала и задается производителем прибора. (На погрешность также влияет сопротивление соединения, которое формирует внутреннее сопротивление . Оно включается в заданные допустимые отклонения).

На рисунке ниже показан тот же самый осциллограф, но теперь ко входу подключен щуп 1:10. Этот пробник имеет внутреннее сопротивление соединения и вместе со входным сопротивлением осциллографа образует делитель напряжения. Допустимое отклонение резисторов в делителе напряжения является причиной его собственной погрешности.

Пробник 1:10, подключенный к осциллографу, вносит дополнительную погрешность

Допустимое отклонение входного сопротивления осциллографа может быть найдено в его спецификации. Допустимое отклонение сопротивления соединения щупа не всегда дано. Тем не менее, погрешность системы заявляется производителем определенного осциллографического пробника для конкретного типа осциллографа. Если щуп используется с другим типом осциллографа, нежели рекомендуемый, то измерительная погрешность становится неопределенной. Этого нужно всегда стараться избегать.

Предположим, что осциллограф имеет допустимое отклонение 1.5% и используется щуп 1:10 с погрешностью в системе 2.5%. Эти две характеристики можно перемножить для получения полной погрешности показания прибора:

Здесь — полная погрешность измерительной системы, — погрешность показания прибора, — погрешность щупа, подключенного к осциллографу, подходящего типа.

Измерения с шунтирующим резистором

Часто при измерениях токов используют внешний шунтирующий резистор. Шунт имеет некоторое допустимое отклонение, которое влияет на измерение.

Заданное допустимое отклонение шунтирующего резистора влияет на погрешность показания. Для нахождения полной погрешности, допустимое отклонение шунта и погрешность показаний измерительного прибора перемножаются:

В этом примере, полная погрешность показания равна 3.53%.

Сопротивление шунта зависит от температуры. Значение сопротивления определяется для данной температуры. Температурную зависимость часто выражают в .

Для примера вычислим значение сопротивления для температуры окружающей среды . Шунт имеет характеристики: Ом (соответственно и ) и температурную зависимость .

Ток, протекающий через шунт является причиной рассеяния энергии на шунте, что приводит к росту температуры и, следовательно, к изменению значения сопротивления. Изменение значения сопротивления при протекании тока зависит от нескольких факторов. Для проведения очень точного измерения, необходимо откалибровать шунт на дрейф сопротивления и условия окружающей среды при которых проводятся измерения.

Точность

Термин точность используется для выражения случайности измерительной ошибки. Случайная природа отклонений измеряемых значений в большинстве случае имеет тепловую природу. Из-за случайной природы этого шума не возможно получить абсолютную ошибку. Точность дается только вероятностью того, что измеряемая величина лежит в некоторых пределах.

Распределение Гаусса

Тепловой шум имеет гауссово, или, как еще говорят, нормальное распределение . Оно описывается следующим выражением:

Здесь — среднее значение, показывает дисперсию и соответствует шумового сигнала. Функция дает кривую распределения вероятностей, как показано на рисунке ниже, где среднее значение и эффективная амплитуда шума .

и

В таблице указаны шансы получения значений в заданных пределах.

Как видно, вероятность того, что измеренное значение лежит в диапазоне ± равна .

Повышение точности

Точность может быть улучшена передискретизацией (изменением частоты дискретизации) или фильтрацией. Отдельные измерения усредняются, поэтому шум значительно снижается. Также снижается разброс измеренных значений. Используя передискретизацию или фильтрацию необходимо учитывать, что это может привести к снижению пропускной способности.

Разрешение

Разрешением, или, как еще говорят, разрешающей способностью измерительной системы является наименьшая различимая измеряемая величина. Определение разрешения прибора не относится к точности измерения.

Цифровые измерительные системы

Цифровая система преобразует аналоговый сигнал в цифровой эквивалент посредством аналого-цифрового преобразователя. Разница между двумя значениями, то есть разрешение, всегда равно одному биту. Или, в случае с цифровым мультиметром, это одна цифра.

Возможно также выразить разрешение через другие единицы, а не биты. В качестве примера рассмотрим , имеющий 8-битный АЦП. Чувствительность по вертикали установлена в 100 мВ/дел и число делений равно 8, полный диапазон, таким образом, равен 800 мВ . 8 бит представляются 2 8 =256 различными значениями. Разрешение в вольтах тогда равно 800 мВ / 256 = 3125 мВ .

Аналоговые измерительные системы

В случае аналогового прибора, где измеряемая величина отображается механическим способом, как в стрелочном приборе, сложно получить точное число для разрешения. Во-первых, разрешение ограничено механическим гистерезисом, причиной которого является трение механизма стрелки. С другой стороны, разрешение определяется наблюдателем, делающем свою субъективную оценку.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: