Flash-память Преимущества и недостатки. Введение Современный человек не в состоянии жить без информации


Введение Современный человек не в состоянии жить без информации. Но информация имеет такую особенность ее надо где–то хранить. Систем хранения информации сейчас довольно много. Ее можно хранить на магнитных носителях, можно хранить на оптических и магнитооптических носителях. Но перед человеком в наше время также стоит довольно важная проблема перенос информации из одного места в другое, а также не менее важная проблема хранения информации, и как следствие, надежность носителей. Именно поэтому так быстро развивались технологии, связанные с хранением информации. Но именно здесь встает несколько проблем. Первая это энергопотребление. Современной техника, такая как карманные компьютеры или MP3-плееры, обладает довольно ограниченными энергетическими ресурсами. Память, обычно используемая в ОЗУ компьютеров, требует постоянной подачи напряжения. Дисковые накопители могут сохранять информацию и без непрерывной подачи электричества, зато при записи и считывании данных тратят его за троих. Поэтому требовался носитель, который будет энергонезависимым при хранении и малопотребляющим энергию при записи и считывании информации. И тут хорошим выходом стала флэш–память. Носители на ее основе называются твердотельными, поскольку не имеют движущихся частей. И это еще одно преимущество данного типа памяти. Так что же такое Flash память, каковы ее преимущества и недостатки?


Что такое flash-память? Флэш-память - особый вид энергонезависимой перезаписываемой полупроводниковой памяти. Энергонезависимая - не требующая дополнительной энергии для хранения данных (энергия требуется только для записи). Перезаписываемая - допускающая изменение (перезапись) хранимых в ней данных. Полупроводниковая (твердотельная) - не содержащая механически движущихся частей (как обычные жёсткие диски или CD), построенная на основе интегральных микросхем (IC-Chip). В отличие от многих других типов полупроводниковой памяти, ячейка флэш-памяти не содержит конденсаторов – типичная ячейка флэш- памяти состоит всего-навсего из одного транзистора особой архитектуры. Ячейка флэш-памяти прекрасно масштабируется, что достигается не только благодаря успехам в миниатюризации размеров транзисторов, но и благодаря конструктивным находкам, позволяющим в одной ячейке флэш-памяти хранить несколько бит информации.


Появилась же flash-память благодаря усилиям японских ученых. В 1984 г. компания Toshiba объявила о создании нового типа запоминающих устройств, а годом позже начала производство микросхем емкостью 256 Кbit. Правда, событие это, вероятно в силу малой востребованности в то время подобной памяти, не всколыхнуло мировую общественность. Второе рождение flash-микросхем произошло уже под брэндом Intel в 1988 г., когда мировой гигант радиоэлектронной промышленности разработал собственный вариант flash- памяти. Однако в течение почти целого десятилетия новинка оставалась вещью, широко известной лишь в узких кругах инженеров-компьютерщиков. И только появление малогабаритных цифровых устройств, требовавших для своей работы значительных объемов памяти, стало началом роста популярности flash-устройств. Начиная с 1997 г. flash- накопители стали использоваться в цифровых фотоаппаратах, потом ареал обитания твердотельной памяти с возможностью хранения и многократной перезаписи данных стал охватывать MP3-плейеры, наладонные компьютеры, цифровые видеокамеры и прочие миниатюрные игрушки для взрослых любителей цифрового мира.


."Что в имени тебе моем?" Кстати сказать, как до сих пор идут споры о том, какой же все-таки год, 1984 или 1988-й, нужно считать временем появления настоящей flash-памяти, точно так же споры вызывает и происхождение самого термина flash, применяемого для обозначения этого класса устройств. Если обратиться к толковому словарю, то выяснится многозначность слова flash. Оно может обозначать короткий кадр фильма, вспышку, мелькание или отжиг стекла. Согласно основной версии, термин flash появился в лабораториях компании Toshiba как характеристика скорости стирания и записи микросхемы флэш-памяти in a flash, то есть в мгновение ока. С другой стороны, причиной появления термина может быть слово, используемое для обозначения процесса прожигания памяти ПЗУ, который достался новинке в наследство от предшественников. В английском языке засвечивание или прожигание микросхемы постоянного запоминающего устройства обозначается словом flashing. По третьей версии слово flash отражает особенность процесса записи данных в микросхемах этого типа. Дело в том, что, в отличие от прежнего ПЗУ, запись и стирание данных во flash-памяти производится блоками-кадрами, а термин flash как раз и имеет в качестве одного из значений – короткий кадр фильма.


Организация flash-памяти Ячейки флэш-памяти бывают как на одном, так и на двух транзисторах. В простейшем случае каждая ячейка хранит один бит информации и состоит из одного полевого транзистора со специальной электрически изолированной областью ("плавающим" затвором - floating gate), способной хранить заряд многие годы. Наличие или отсутствие заряда кодирует один бит информации. При записи заряд помещается на плавающий затвор одним из двух способов (зависит от типа ячейки): методом инжекции "горячих" электронов или методом туннелирования электронов. Стирание содержимого ячейки (снятие заряда с "плавающего" затвора) производится методом тунеллирования.записитуннелирования Стирание Как правило, наличие заряда на транзисторе понимается как логический "0", а его отсутствие - как логическая "1".


Общий принцип работы ячейки флэш-памяти. Рассмотрим простейшую ячейку флэш-памяти на одном n-p-n транзисторе. При чтении, в отсутствие заряда на "плавающем" затворе, под воздействием положительного поля на управляющем затворе, образуется n-канал в подложке между истоком и стоком, и возникает ток. Наличие заряда на "плавающем" затворе меняет вольт-амперные характеристики транзистора таким образом, что при обычном для чтения напряжении канал не появляется, и тока между истоком и стоком не возникает. При программировании на сток и управляющий затвор подаётся высокое напряжение (причём на управляющий затвор напряжение подаётся приблизительно в два раза выше). "Горячие" электроны из канала инжектируются на плавающий затвор и изменяют вольт-амперные характеристики транзистора. Такие электроны называют "горячими" за то, что обладают высокой энергией, достаточной для преодоления потенциального барьера, создаваемого тонкой плёнкой диэлектрика.


История 1955 память на магнитных ядрах имеет тот же принцип чтения записи, что и MRAM 1989 учёные IBM сделали ряд ключевых открытий о «гигантском магниторезистивном эффекте» в тонкоплёночных структурах IBM и Infeneon установили общую программу развития MRAM NVE объявляет о Технологическом Обмене с Cypress Semiconductor кбит чип MRAM был представлен, изготовленный по 0,18 микрометров технологии Июнь Infeneon анонсирует 16-Мбит опытный образец, основанный на 0,18 микрометров технологии Сентябрь MRAM становится стандартным продуктом в Freescale, которая начала испытывать MRAM. Октябрь Тайваньские разработчики MRAM печатают 1 Мбит элементы на TSMC.TSMC Октябрь Micron бросает MRAM, обдумывает другие памяти.Micron Декабрь TSMC, NEC, Toshiba описывают новые ячейки MRAM.TSMCNECToshiba Декабрь Renesas Technology разрабатывают Высокоскоростную, Высоконадёжную Технологию MRAM Январь Cypress испытывает MRAM, использует NVE IP. Март Cypress продаёт дочернюю компанию MRAM. Июнь Honeywell сообщает таблицу данных для 1-Мбит радиационно-устойчивой MRAM, используя 0,15 микрометров технологию. Август рекорд MRAM: Ячейка памяти работает на 2ГГц. Ноябрь Renesas Technology и Grandis сотрудничают в Разработке 65 нм MRAM, применяя Вращательно Крутящее Перемещение. Декабрь Sony представляет первую лабораторию производящую вращательно-крутящее-перемещение MRAM, которая использует вращательно-поляризованный ток через туннельный магниторезистивный слой записать данные. Этот метод потребляет меньше энергии и более расширяемый чем обыкновенная MRAM. C дальнейшими преимуществами в материалах, этот процесс должен позволять для плотностей больших чем те возможные в DRAM. Декабрь Freescale Semiconductor Inc. анонсирует MRAM, которая использует магниевый оксид, лучше, чем алюминиевый оксид, позволяющий делать тоньше изолирующий туннельный барьер и улучшенное битовое сопротивление в течение цикла записи, таким образом, уменьшая требуемый ток записи Февраль Toshiba и NEC анонсировали 16 Мбит чип MRAM с новой «энерго-разветвляющейся» конструкцией. Они добились частоты перемещения в 200 МБ/с, с временем цикла 34 нс лучшая производительность любого чипа MRAM. Они также гордятся наименьшим физическим размером в своём классе 78,5 квадратных миллиметров и низким требованием энергии 1,8 вольт. Июль 10 Июля, Austin Texas Freescale Semiconductor начинают торговать 4-Mbit чипами MRAM, которые продаются приблизительно за $25.00 за чип.


Вместо заключения Подводя итог всему вышесказанному, нужно признать непреложный факт: flash-память – штука удобная и чрезвычайно полезная. Объединяя в себе черты, присущие одновременно и постоянной и оперативной памяти, флэшки способны восполнить нехватку мозгов у малогабаритных цифровых устройств, обеспечивая их владельцев практически неограниченными возможностями по хранению необходимых данных, объем которых ограничен лишь количеством имеющихся в наличии flash- накопителей. Одно плохо – не обошлось и тут без недостатков. Во-первых, форматов flash-устройств много, что накладно для владельца разнородных гаджетов, а во-вторых, все-таки ограничение на количество циклов перезаписи – свойство вполне реальное. Однако ж недостатки, как известно, существуют лишь для того, чтобы подчеркнуть достоинства, а их у flash-устройств много

Флэш-память - особый вид энергонезависимой перезаписываемой полупроводниковой памяти .

  • Энергонезависимая - не требующая дополнительной энергии для хранения данных (энергия требуется только для записи).
  • Перезаписываемая - допускающая изменение (перезапись) хранимых в ней данных.
  • Полупроводниковая (твердотельная) - не содержащая механически движущихся частей (как обычные жёсткие диски или CD), построенная на основе интегральных микросхем (IC-Chip ).

В отличие от многих других типов полупроводниковой памяти, ячейка флэш-памяти не содержит конденсаторов – типичная ячейка флэш-памяти состоит всего-навсего из одного транзистора особой архитектуры. Ячейка флэш-памяти прекрасно масштабируется, что достигается не только благодаря успехам в миниатюризации размеров транзисторов, но и благодаря конструктивным находкам, позволяющим в одной ячейке флэш-памяти хранить несколько бит информации.

Флэш-память исторически происходит от ROM (Read Only Memory ) памяти, и функционирует подобно RAM (Random Access Memory ). Данные флэш хранит в ячейках памяти, похожих на ячейки в DRAM. В отличие от DRAM, при отключении питания данные из флэш-памяти не пропадают.

Замены памяти SRAM и DRAM флэш-памятью не происходит из-за двух особенностей флэш-памяти: флэш работает существенно медленнее и имеет ограничение по количеству циклов перезаписи (от 10.000 до 1.000.000 для разных типов).

Надёжность/долговечность : информация, записанная на флэш-память, может храниться очень длительное время (от 20 до 100 лет), и способна выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных жёстких дисков).

Основное преимущество флэш-памяти перед жёсткими дисками и носителями CD-ROM состоит в том, что флэш-память потребляет значительно (примерно в 10-20 и более раз) меньше энергии во время работы. В устройствах CD-ROM, жёстких дисках, кассетах и других механических носителях информации, бо льшая часть энергии уходит на приведение в движение механики этих устройств. Кроме того, флэш-память компактнее большинства других механических носителей.

Итак, благодаря низкому энергопотреблению, компактности, долговечности и относительно высокому быстродействию, флэш-память идеально подходит для использования в качестве накопителя в таких портативных устройствах, как: цифровые фото- и видео камеры, сотовые телефоны, портативные компьютеры, MP3-плееры, цифровые диктофоны, и т.п.

Примечание: Мы рассматриваем только "чистую" флэш-память с числом циклов чтения/записи более 10000. Кроме "чистого" flash существуют OTP (One Time Programmable ) - память с единственным циклом записи, и MTP (Multiple Time Programmable ) - до 10000 циклов. Кроме количества допустимых циклов записи/стирания принципиальной разницы между MTP и Flash нет. OTP существенно отличается от этих типов архитектурно.

История создания

Флэш-память исторически произошла от полупроводникового ROM , однако ROM-памятью не является, а всего лишь имеет похожую на ROM организацию. Множество источников (как отечественных, так и зарубежных) зачастую ошибочно относят флэш-память к ROM. Флэш никак не может быть ROM хотя бы потому, что ROM (Read Only Memory ) переводится как "память только для чтения" . Ни о какой возможности перезаписи в ROM речи быть не может!

Небольшая, по началу, неточность не обращала на себя внимания, однако с развитием технологий, когда флэш-память стала выдерживать до 1 миллиона циклов перезаписи, и стала использоваться как накопитель общего назначения, этот недочет в классификации начал бросаться в глаза.

Среди полупроводниковой памяти только два типа относятся к "чистому" ROM – это Nask - ROM и PROM . В отличие от них EPROM , EEPROM и Flash относятся к классу энергонезависимой перезаписываемой памяти (английский эквивалент - nonvolatile read-write memory или NVRWM ).

Примечание: всё, правда, встает на свои места, если, как утверждают сейчас некоторые специалисты, не считать RAM и ROM акронимами. Тогда RAM будет эквивалентом "энергозависимой памяти", а ROM - "энергонезависимой памяти".

  • ROM (Read Only Memory ) - память только для чтения . Русский эквивалент - ПЗУ (Постоянно Запоминающее Устройство). Если быть совсем точным, данный вид памяти называется Mask-ROM (Масочные ПЗУ). Память устроена в виде адресуемого массива ячеек (матрицы), каждая ячейка которого может кодировать единицу информации. Данные на ROM записывались во время производства путём нанесения по маске (отсюда и название) алюминиевых соединительных дорожек литографическим способом. Наличие или отсутствие в соответствующем месте такой дорожки кодировало "0" или "1". Mask-ROM отличается сложностью модификации содержимого (только путем изготовления новых микросхем), а также длительностью производственного цикла (4-8 недель). Поэтому, а также в связи с тем, что современное программное обеспечение зачастую имеет много недоработок и часто требует обновления, данный тип памяти не получил широкого распространения.

    Преимущества:
    1. Низкая стоимость готовой запрограммированной микросхемы (при больших объёмах производства).
    2. Высокая скорость доступа к ячейке памяти.
    3. Высокая надёжность готовой микросхемы и устойчивость к электромагнитным полям.

    Недостатки:

    1. Невозможность записывать и модифицировать данные после изготовления.
    2. Сложный производственный цикл.
  • PROM - (Programmable ROM), или однократно Программируемые ПЗУ. В качестве ячеек памяти в данном типе памяти использовались плавкие перемычки. В отличие от Mask - ROM , в PROM появилась возможность кодировать ("пережигать") ячейки при наличии специального устройства для записи (программатора). Программирование ячейки в PROM осуществляется разрушением ("прожигом ") плавкой перемычки путём подачи тока высокого напряжения. Возможность самостоятельной записи информации в них сделало их пригодными для штучного и мелкосерийного производства. PROM практически полностью вышел из употребления в конце 80-х годов.

    Преимущества:
    1. Высокая надёжность готовой микросхемы и устойчивость к электромагнитным полям.
    2. Возможность программировать готовую микросхему, что удобно для штучного и мелкосерийного производства.
    3. Высокая скорость доступа к ячейке памяти.

    Недостатки:
    1. Невозможность перезаписи
    2. Большой процент брака
    3. Необходимость специальной длительной термической тренировки, без которой надежность хранения данных была невысокой

  • EPROM
    Различные источники по-разному расшифровывают аббревиатуру EPROM - как Erasable Programmable ROM или как Electrically Programmable ROM (стираемые программируемые ПЗУ или электрически программируемые ПЗУ). В EPROM перед записью необходимо произвести стирание (соответственно появилась возможность перезаписывать содержимое памяти). Стирание ячеек EPROM выполняется сразу для всей микросхемы посредством облучения чипа ультрафиолетовыми или рентгеновскими лучами в течение нескольких минут. Микросхемы, стирание которых производится путем засвечивания ультрафиолетом, были разработаны Intel в 1971 году, и носят название UV-EPROM (приставка UV (Ultraviolet ) - ультрафиолет). Они содержат окошки из кварцевого стекла, которые по окончании процесса стирания заклеивают.

    EPROM от Intel была основана на МОП-транзисторах с лавинной инжекцией заряда (FAMOS - Floating Gate Avalanche injection Metal Oxide Semiconductor , русский эквивалент - ЛИЗМОП). В первом приближении такой транзистор представляет собой конденсатор с очень малой утечкой заряда. Позднее, в 1973 году, компания Toshiba разработала ячейки на основе SAMOS (Stacked gate Avalanche injection MOS, по другой версии - Silicon and Aluminum MOS) для EPROM памяти, а в 1977 году Intel разработала свой вариант SAMOS.

    В EPROM стирание приводит все биты стираемой области в одно состояние (обычно во все единицы, реже - во все нули). Запись на EPROM, как и в PROM, также осуществляется на программаторах (однако отличающихся от программаторов для PROM). В настоящее время EPROM практически полностью вытеснена с рынка EEPROM и Flash .

    Преимущества: Возможность перезаписывать содержимое микросхемы
    Недостатки:
    1. Небольшое количество циклов перезаписи.
    2. Невозможность модификации части хранимых данных.
    3. Высокая вероятность "недотереть " (что в конечном итоге приведет к сбоям) или передержать микросхему под УФ-светом (т.н. overerase - эффект избыточного удаления, "пережигание"), что может уменьшить срок службы микросхемы и даже привести к её полной негодности.

  • EEPROM (Electronically EPROM) - электрически стираемые ППЗУ были разработаны в 1979 году в той же Intel . В 1983 году вышел первый 16Кбит образец, изготовленный на основе FLOTOX-транзисторов (Floating Gate Tunnel-OXide - "плавающий" затвор с туннелированием в окисле).

    Главной отличительной особенностью EEPROM (в т.ч.

    Flash ) от ранее рассмотренных нами типов энергонезависимой памяти является возможность перепрограммирования при подключении к стандартной системной шине микропроцессорного устройства. В EEPROM появилась возможность производить стирание отдельной ячейки при помощи электрического тока. Для EEPROM стирание каждой ячейки выполняется автоматически при записи в нее новой информации, т.е. можно изменить данные в любой ячейке, не затрагивая остальные. Процедура стирания обычно существенно длительнее процедуры записи.

    Преимущества EEPROM по сравнению с EPROM:
    1. Увеличенный ресурс работы.
    2. Проще в обращении.

    Недостаток: Высокая стоимость

  • Flash (полное историческое название Flash Erase EEPROM): Изобретение флэш-памяти зачастую незаслуженно приписывают Intel , называя при этом 1988 год. На самом деле память впервые была разработана компанией Toshiba в 1984 году, и уже на следующий год было начато производство 256Кбит микросхем flash-памяти в промышленных масштабах. В 1988 году Intel разработала собственный вариант флэш-памяти.

    Во флэш-памяти используется несколько отличный от

    EEPROM тип ячейки-транзистора. Технологически флэш-память родственна как EPROM , так и EEPROM . Основное отличие флэш-памяти от EEPROM заключается в том, что стирание содержимого ячеек выполняется либо для всей микросхемы, либо для определённого блока (кластера, кадра или страницы). Обычный размер такого блока составляет 256 или 512 байт, однако в некоторых видах флэш-памяти объём блока может достигать 256КБ. Следует заметить, что существуют микросхемы, позволяющие работать с блоками разных размеров (для оптимизации быстродействия). Стирать можно как блок, так и содержимое всей микросхемы сразу. Таким образом, в общем случае, для того, чтобы изменить один байт, сначала в буфер считывается весь блок, где содержится подлежащий изменению байт, стирается содержимое блока, изменяется значение байта в буфере, после чего производится запись измененного в буфере блока. Такая схема существенно снижает скорость записи небольших объёмов данных в произвольные области памяти, однако значительно увеличивает быстродействие при последовательной записи данных большими порциями.

    Преимущества флэш-памяти по сравнению с

    EEPROM :
    1. Более высокая скорость записи при последовательном доступе за счёт того, что стирание информации во флэш производится блоками.
    2. Себестоимость производства флэш-памяти ниже за счёт более простой организации.

    Недостаток: Медленная запись в произвольные участки памяти.

Почему Flash ?

Если мы посмотрим в англо-русский словарь, то среди прочих увидим следующие переводы слова flash : короткий кадр (фильма), вспышка, пронестись, мигание, мелькание, отжиг (стекла).

Флэш-память получила свое название благодаря тому, как производится стирание и запись данного вида памяти.

Основное объяснение:

  • Название было дано компанией Toshiba во время разработки первых микросхем флэш-памяти (в начале 1980– х ) как характеристика скорости стирания микросхемы флэш-памяти " in a flash " - в мгновение ока.

Два других (менее правдоподобных) объяснения:

  • Процесс записи на флэш-память по-английски называется flashing (засвечивание, прожигание) - такое название осталось в наследство от предшественников флэш-памяти.

В отличие от EEPROM , запись/стирание данных во флэш-памяти производится блоками-кадрами (flash - короткий кадр [фильма])

Флэш-память представляет собой тип долговечной памяти для компьютеров, у которой содержимое можно перепрограммировать или удалить электрическим методом. В сравнении с Electrically Erasable Programmable Read Only Memory действия над ней можно выполнять в блоках, которые находятся в разных местах. Флэш-память стоит намного меньше, чем EEPROM, поэтому она и стала доминирующей технологией. В особенности в ситуациях, когда необходимо устойчивое и длительное сохранение данных. Ее применение допускается в самых разнообразных случаях: в цифровых аудиоплеерах, фото- и видеокамерах, мобильных телефонах и смартфонах, где существуют специальные андроид-приложения на карту памяти. Кроме того, используется она и в USB-флешках, традиционно применяемых для сохранения информации и ее передачи между компьютерами. Она получила определенную известность в мире геймеров, где ее часто задействуют в промах для хранения данных по прогрессу игры.

Общее описание

Флэш-память представляет собой такой тип, который способен сохранять информацию на своей плате длительное время, не используя питания. В дополнение можно отметить высочайшую скорость доступа к данным, а также лучшее сопротивление к кинетическому шоку в сравнении с винчестерами. Именно благодаря таким характеристикам она стала настольно популярной для приборов, питающихся от батареек и аккумуляторов. Еще одно неоспоримое преимущество состоит в том, что когда флэш-память сжата в сплошную карту, ее практически невозможно разрушить какими-то стандартными физическими способами, поэтому она выдерживает кипящую воду и высокое давление.

Низкоуровневый доступ к данным

Способ доступа к данным, находящимся во флэш-памяти, сильно отличается от того, что применяется для обычных видов. Низкоуровневый доступ осуществляется посредством драйвера. Обычная RAM сразу же отвечает на призывы чтения информации и ее записи, возвращая результаты таких операций, а устройство флеш-памяти таково, что потребуется время на размышления.

Устройство и принцип работы

На данный момент распространена флэш-память, которая создана на однотранзисторных элементах, имеющих «плавающий» затвор. Благодаря этому удается обеспечить большую плотность хранения данных в сравнении с динамической ОЗУ, для которой требуется пара транзисторов и конденсаторный элемент. На данный момент рынок изобилует разнообразными технологиями построения базовых элементов для такого типа носителей, которые разработаны лидирующими производителями. Отличает их количество слоев, методы записи и стирания информации, а также организация структуры, которая обычно указывается в названии.

На текущий момент существует пара типов микросхем, которые распространены больше всего: NOR и NAND. В обоих подключение запоминающих транзисторов производится к разрядным шинам - параллельно и последовательно соответственно. У первого типа размеры ячеек довольно велики, и имеется возможность для быстрого произвольного доступа, что позволяет выполнять программы прямо из памяти. Второй характеризуется меньшими размерами ячеек, а также быстрым последовательным доступом, что намного удобнее при необходимости построения устройств блочного типа, где будет храниться информация большого объема.

В большинстве портативных устройств твердотельный накопитель использует тип памяти NOR. Однако сейчас все популярнее становятся приспособления с интерфейсом USB. В них применяется память типа NAND. Постепенно она вытесняет первую.

Главная проблема — недолговечность

Первые образцы флешек серийного производства не радовали пользователей большими скоростями. Однако теперь скорость записи и считывания информации находится на таком уровне, что можно просматривать полноформатный фильм либо запускать на компьютере операционную систему. Ряд производителей уже продемонстрировал машины, где винчестер заменен флеш-памятью. Но у этой технологии имеется весьма существенный недостаток, который становится препятствием для замены данным носителем существующих магнитных дисков. Из-за особенностей устройства флеш-памяти она позволяет производить стирание и запись информации ограниченное число циклов, которое является достижимым даже для малых и портативных устройств, не говоря о том, как часто это делается на компьютерах. Если использовать этот тип носителя как твердотельный накопитель на ПК, то очень быстро настанет критическая ситуация.

Связано это с тем, что такой накопитель построен на свойстве полевых транзисторов сохранять в «плавающем» затворе отсутствие или наличие которого в транзисторе рассматривается в качестве логической единицы или ноля в двоичной Запись и стирание данных в NAND-памяти производятся посредством туннелированных электронов методом Фаулера-Нордхейма при участии диэлектрика. Для этого не требуется что позволяет делать ячейки минимальных размеров. Но именно данный процесс приводит к ячеек, так как электрический ток в таком случае заставляет электроны проникать в затвор, преодолевая диэлектрический барьер. Однако гарантированный срок хранения подобной памяти составляет десять лет. Износ микросхемы происходит не из-за чтения информации, а из-за операций по ее стиранию и записи, поскольку чтение не требует изменения структуры ячеек, а только пропускает электрический ток.

Естественно, производители памяти ведут активные работы в направлении увеличения срока службы твердотельных накопителей данного типа: они устремлены к обеспечению равномерности процессов записи/стирания по ячейкам массива, чтобы одни не изнашивались больше других. Для равномерного распределения нагрузки преимущественно используются программные пути. К примеру, для устранения подобного явления применяется технология «выравнивания износа». При этом данные, часто подвергаемые изменениям, перемещаются в адресное пространство флеш-памяти, потому запись осуществляется по разным физическим адресам. Каждый контроллер оснащается собственным алгоритмом выравнивания, поэтому весьма затруднительно сравнивать эффективность тех или иных моделей, так как не разглашаются подробности реализации. Поскольку с каждым годом объемы флешек становятся все больше, необходимо применять все более эффективные алгоритмы работы, позволяющие гарантировать стабильность функционирования устройств.

Устранение проблем

Одним из весьма эффективных путей борьбы с указанным явлением стало резервирование определенного объема памяти, за счет которого обеспечивается равномерность нагрузки и коррекция ошибок посредством особых алгоритмов логической переадресации для подмены физических блоков, возникающих при интенсивной работе с флешкой. А для предотвращения утраты информации ячейки, вышедшие из строя, блокируются или заменяются на резервные. Такое программное распределение блоков дает возможность обеспечения равномерности нагрузки, увеличив количество циклов в 3-5 раз, однако и этого мало.

И другие виды подобных накопителей характеризуются тем, что в их служебную область заносится таблица с файловой системой. Она предотвращает сбои чтения информации на логическом уровне, например, при некорректном отключении либо при внезапном прекращении подачи электрической энергии. А так как при использовании сменных устройств системой не предусмотрено кэширование, то частая перезапись оказывает самое губительное воздействие на таблицу размещения файлов и оглавление каталогов. И даже специальные программы для карт памяти не способны помочь в данной ситуации. К примеру, при однократном обращении пользователь переписал тысячу файлов. И, казалось бы, только по одному разу применил для записи блоки, где они размещены. Но служебные области переписывались при каждом из обновлений любого файла, то есть таблицы размещения прошли эту процедуру тысячу раз. По указанной причине в первую очередь выйдут из строя блоки, занимаемые именно этими данными. Технология «выравнивания износа» работает и с такими блоками, но эффективность ее весьма ограничена. И тут не важно, какой вы используете компьютер, флешка выйдет из строя ровно тогда, когда это предусмотрено создателем.

Стоит отметить, что увеличение емкости микросхем подобных устройств привело лишь к тому, что общее количество циклов записи сократилось, так как ячейки становятся все меньше, поэтому требуется все меньше и напряжения для рассеивания оксидных перегородок, которые изолируют «плавающий затвор». И тут ситуация складывается так, что с увеличением емкости используемых приспособлений проблема их надежности стала усугубляться все сильнее, а class карты памяти теперь зависит от многих факторов. Надежность работы подобного решения определяется его техническими особенностями, а также ситуацией на рынке, сложившейся на данный момент. Из-за жесткой конкуренции производители вынуждены снижать себестоимость продукции любым путем. В том числе и благодаря упрощению конструкции, использованию комплектующих из более дешевого набора, ослаблению контроля за изготовлением и иными способами. К примеру, карта памяти "Самсунг" будет стоить дороже менее известных аналогов, но ее надежность вызывает гораздо меньше вопросов. Но и здесь сложно говорить о полном отсутствии проблем, а уж от устройств совсем неизвестных производителей сложно ожидать чего-то большего.

Перспективы развития

При наличии очевидных достоинств имеется целый ряд недостатков, которыми характеризуется SD-карта памяти, препятствующих дальнейшему расширению ее области применения. Именно поэтому ведутся постоянные поиски альтернативных решений в данной области. Конечно, в первую очередь стараются совершенствовать уже существующие типы флеш-памяти, что не приведет к каким-то принципиальным изменениям в имеющемся процессе производства. Поэтому не стоит сомневаться только в одном: фирмы, занятые изготовлением этих видов накопителей, будут стараться использовать весь свой потенциал, перед тем как перейти на иной тип, продолжая совершенствовать традиционную технологию. К примеру, карта памяти Sony выпускается на данный момент в широком диапазоне объемов, поэтому предполагается, что она и будет продолжать активно распродаваться.

Однако на сегодняшний день на пороге промышленной реализации находится целый комплекс технологий альтернативного хранения данных, часть из которых можно внедрить сразу же при наступлении благоприятной рыночной ситуации.

Ferroelectric RAM (FRAM)

Технология ферроэлектрического принципа хранения информации (Ferroelectric RAM, FRAM) предлагается с целью наращивания потенциала энергонезависимой памяти. Принято считать, что механизм работы имеющихся технологий, заключающийся в перезаписи данных в процессе считываниям при всех видоизменениях базовых компонентов, приводит к определенному сдерживанию скоростного потенциала устройств. А FRAM - это память, характеризующаяся простотой, высокой надежностью и скоростью в эксплуатации. Эти свойства сейчас характерны для DRAM - энергонезависимой оперативной памяти, существующей на данный момент. Но тут добавится еще и возможность длительного хранения данных, которой характеризуется Среди достоинств подобной технологии можно выделить стойкость к разным видам проникающих излучений, что может оказаться востребованным в специальных приборах, которые используются для работы в условиях повышенной радиоактивности либо в исследованиях космоса. Механизм хранения информации здесь реализуется за счет применения сегнетоэлектрического эффекта. Он подразумевает, что материал способен сохранять поляризацию в условиях отсутствия внешнего электрического поля. Каждая ячейка памяти FRAM формируется за счет размещения сверхтонкой пленки из сегнетоэлектрического материала в виде кристаллов между парой плоских металлических электродов, формирующих конденсатор. Данные в этом случае хранятся внутри кристаллической структуры. А это предотвращает эффект утечки заряда, который становится причиной утраты информации. Данные в FRAM-памяти сохраняются даже при отключении напряжения питания.

Magnetic RAM (MRAM)

Еще одним типом памяти, который на сегодняшний день считается весьма перспективным, является MRAM. Он характеризуется довольно высокими скоростными показателями и энергонезависимостью. в данном случае служит тонкая магнитная пленка, размещенная на кремниевой подложке. MRAM представляет собой статическую память. Она не нуждается в периодической перезаписи, а информация не будет утрачена при выключении питания. На данный момент большинство специалистов сходится во мнении, что этот тип памяти можно назвать технологией следующего поколения, так как существующий прототип демонстрирует довольно высокие скоростные показатели. Еще одним достоинством подобного решения является невысокая стоимость чипов. Флэш-память изготавливается в соответствии со специализированным КМОП-процессом. А микросхемы MRAM могут производиться по стандартному технологическому процессу. Причем материалами могут послужить те, что используются в обычных магнитных носителях. Производить крупные партии подобных микросхем гораздо дешевле, чем всех остальных. Важное свойство MRAM-памяти состоит в возможности мгновенного включения. А это особенно ценно для мобильных устройств. Ведь в этом типе значение ячейки определяется магнитным зарядом, а не электрическим, как в традиционной флеш-памяти.

Ovonic Unified Memory (OUM)

Еще один тип памяти, над которым активно работают многие компании, - это твердотельный накопитель на базе аморфных полупроводников. В его основу заложена технология фазового перехода, которая аналогична принципу записи на обычные диски. Тут фазовое состояние вещества в электрическом поле меняется с кристаллического на аморфное. И это изменение сохраняется и при отсутствии напряжения. От традиционных оптических дисков такие устройства отличаются тем, что нагрев происходит за счет действия электрического тока, а не лазера. Считывание в данном случае осуществляется за счет разницы в отражающей способности вещества в различных состояниях, которая воспринимается датчиком дисковода. Теоретически подобное решение обладает высокой плотностью хранения данных и максимальной надежностью, а также повышенным быстродействием. Высок здесь показатель максимального числа циклов перезаписи, для чего используется компьютер, флешка в этом случае отстает на несколько порядков.

Chalcogenide RAM (CRAM) и Phase Change Memory (PRAM)

Эта технология тоже базируется на основе фазовых переходов, когда в одной фазе вещество, используемое в носителе, выступает в качестве непроводящего аморфного материала, а во второй служит кристаллическим проводником. Переход запоминающей ячейки из одного состояния в другое осуществляется за счет электрических полей и нагрева. Такие чипы характеризуются устойчивостью к ионизирующему излучению.

Information-Multilayered Imprinted CArd (Info-MICA)

Работа устройств, построенных на базе такой технологии, осуществляется по принципу тонкопленочной голографии. Информация записывается так: сначала формируется двумерный образ, передаваемый в голограмму по технологии CGH. Считывание данных происходит за счет фиксации луча лазера на краю одного из записываемых слоев, служащих оптическими волноводами. Свет распространяется вдоль оси, которая размещена параллельно плоскости слоя, формируя на выходе изображение, соответствующее информации, записанной ранее. Начальные данные могут быть получены в любой момент благодаря алгоритму обратного кодирования.

Этот тип памяти выгодно отличается от полупроводниковой за счет того, что обеспечивает высокую плотность записи, малое энергопотребление, а также низкую стоимость носителя, экологическую безопасность и защищенность от несанкционированного использования. Но перезаписи информации такая карта памяти не допускает, поэтому может служить только в качестве долговременного хранилища, замены бумажного носителя либо альтернативы оптическим дискам для распространения мультимедийного контента.

Флеш-память - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти (ПППЗУ).

Все существующие сегодня виды флэш-носителей можно условно разделить на два класса: флэш-карты, куда входят Compact Flash Card, MultiMedia Card и SD Card, и флэш-модули Flash USB Drive (USB Pen Drive). Для непосредственной работы с флэш-картами, а именно - для считывания информации с них, необходимо специальное устройство, называемое карт-ридером (cardreader), который состоит из контроллера и разъема USB. Флэш-модуль, который еще называют флэш-носителем с USB-интерфейсом, в отличие от флэш-карты, уже имеет встроенный контроллер и может быть подключен к компьютеру через USB.

Она может быть прочитана сколько угодно раз (в пределах срока хранения данных, типично - 10-100 лет), но писать в такую память можно лишь ограниченное число раз (максимально - около миллиона циклов). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи - намного больше, чем способна выдержать дискета или CD-RW.

Преимущества:

Для хранения данных не требуется дополнительной энергии, то есть flash-память является энергонезависимым устройством. По сравнению с компакт-дисками или дискетами затраты энергии при работе с flash-устройством минимальны. Поэтому flash-память является очень экономной с точки зрения энергозатрат. При записи данных на flash-микросхему требуется в 10-20 раз меньше энергии, чем при аналогичных действиях с компакт-диском или дискетой.

Флешки имеют достаточно большую плотность записи, емкость современных флешек довольно велика и может существенно превосходит емкость DVD-дисков.

Flash-микросхема позволяет многократно (но не бесконечно) перезаписывать данные. То есть flash-память - перезаписываемое устройство хранения данных.

При этом работают бесшумно. Накопитель на основе flash-микросхемы не содержит в себе никаких движущихся механических узлов и устройств, поскольку это твердотельная память. А раз так, то flash-устройства отличаются устойчивостью к механическим воздействиям: нет механики - нечему и ломаться.

К примеру, flash-накопитель способен выдержать удары в 10-20 раз более сильные, чем компьютерный винчестер. Причем не только выдержать, но и работать в условиях тряски.

Компактность - еще одно преимущество накопителей на flash-памяти, которое и предопределило использование flash-устройств в разнообразных малогабаритных гаджетах и “ручных" устройствах.

Наконец, информация, записанная на флэш-память, может храниться очень длительное время (порядка 10, а по некоторым данным, и до 100 лет). То есть flash-микросхема является устройством для долговременного хранения данных.



Благодаря своей компактности, дешевизне и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах - фото - и видеокамерах, диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрут изаторах, мини-АТС, принтерах, сканерах, модемax), различных контроллерах.

Широкое распространение получили USB флеш-накопители ("флешка" , USB-драйв, USB-диск), практически вытеснившие не только дискеты, но и CD.

Как и прочие устройства с интерфейсом USB, устройства с flash-памятыо не требуют отдельной настройки со стороны BIOS и автоматически определяются в Windows 2003/ XP/Vista.

Такие накопители имеют отличные перспективы развития, поскольку в их конструкции нет механических узлов. Производители постоянно наращивают объемы и скорость работы чипов flash-памяти, а массовое производство всегда в конечном итоге приводит к значительному снижению цен.

Недостатки:

Flash-память работает существенно медленнее, чем оперативная память на основе микросхем SRAM и DRAM. И даже по сравнению с жестким диском flash-накопитель является аутсайдером. К примеру, средняя скорость считывания данных с flash-накопителя составляет 5 Mb/s, а записи - 3 Mb/s. В то же время жесткий диск может обмениваться данными со скоростью около 30 Mb/s.

Наконец, еще один серьезнейший недостаток - flash-память имеет ограничение по количеству циклов перезаписи. Предел колеблется от 10 000 до 1 000 000 циклов для разных типов микросхем. И хотя миллион операций записи/стирания - это совсем немало, однако наличие физического предела использования микросхемы памяти можно считать серьезным недостатком flash-устройств.



Еще один недостаток - это чувствительность к электростатическому разряду и радиации, поэтому нужно очень тщательно соблюдать технику безопасности при работе с данным внешним носителем.

накопитель носитель информация диск

Кроме того, изъятие флешки без остановки устройства может также привести к ее скорой порче. Со временем у нее может уменьшаться скорость записи, которая сильно зависит от пропускной способности usb-порта, что также является недостатком флешек.

Таким образом, флешки на сегодняшний день имеют ряд достоинств и недостатков. Однако их достоинства значительно перекрывают немногочисленные недостатки, делая этот продукт компьютерной индустрии очень востребованным и конкурентоспособным.

Способы подключения периферийных устройств к персональному компьютеру

Мониторы можно подключать через следующие интерфейсы VGA, DVI, HDMI и DisplayPоrt. В данное время на персональных компьютерах широко используются VGA и DVI интерфейсы, также существуют различные переходники, если в мониторе или в материнской плате не предусмотрены данные интерфейсы.

Клавиатуры можно подключать по интерфейсу Ps/2,USB. Существуют также переходники, которые позволяют подключить USB клавиатуру в порт PS/2 и наоборот.

Способы подключения мыши такие же, как и у клавиатуры: USB и PS/2. В настоящее время появились беспроводные мыши. Как и с клавиатурами USB мышки определяются с включенным компьютером.

В первую очередь они различаются по технологии печати. Бывают лазерные (светодиодный принтер), струйные, матричные и другие принтеры (твердочернильный, сублимационный).

Принтеры подключаются к компьютеру через интерфейс USB или LPT (старые модели), а также с помощью технологии Wi-Fi.

Сканеры подключаются через USB.

МФУ подключаются через USB и Ethernet (по сети).
Акустические колонки. Это устройства для воспроизведения звука.

Подключать их необходимо в двух местах: к источнику сигнала – зеленый круглый разъем на материнской плате или дискретной звуковой карте; а также к источнику питания, чаще в обычную розетку, но бывают версии питающиеся от USB.

Отличительные особенности интерфейсов ESATA и SATA. Назначение и способы подключения.

SATA - это специализированный интерфейс. Он нашел широкое применение для того, чтобы подключать самые разнообразные накопители информации. Скажем, при помощи SATA кабелей можно подключить жесткие диски, SSD накопители и прочие устройства, которые служат для того, чтобы хранить информацию.

SATA-кабель – это красный шлейф, ширина которого составляет примерно 1 сантиметр. Этим он и хорош, прежде всего. Ведь с такими данными его никак не спутаешь с другими интерфейсами. В частности с ATA (IDE). Этот интерфейс тоже вполне применим для того, чтобы подключать жесткие диски. И он хорош с этим справлялся, но до тех пор, пока не появился интерфейс SATA.

В отличие от SATA интерфейс ATA – это параллельный интерфейс. ATA (IDE) шлейф состоит из 40 проводников. Несколько таких широких шлейфов в системном блоке влияли на эффективность охлаждения. Эта проблема была присуща ATA интерфейсу, чего не скажешь про SATA. У него свои плюсы. И один из них – скорость передачи информации. Скажем, SATA 2.0 может передавать данные со скоростью 300 МБайт/с, а SATA 3.0 – целых 600 Мбайт/с.

По сравнению со старым интерфейсом ATA (IDE) его преимущество и в том, что у него большая универсальность. При помощи SATA интерфейса есть возможность подключить внешние устройства.

Чтобы упростить подключение внешних устройств, разработали специальную версию интерфейса – eSATA (External SATA).

eSATA (External SATA) - интерфейс для подключения внешних устройств, который поддерживает режим «горячей замены» (англ. Hot-plug). Был создан несколько позже, в середине 2004 года. У него более надежные разъемы и увеличенная длина кабеля. За счет этого интерфейс eSATA удобен для подключения различных внешних устройств.

Для питания подключаемых eSATA устройств необходимо использовать отдельный кабель. На сегодня есть смелые прогнозы о том, что в будущих версиях интерфейса возможно будет внедрить питание прямо в eSATA кабель.

У eSATA есть свои особенности. Средняя практическая скорость передачи данных выше, чем у USB 2.0 или IEEE 1394. Сигнально SATA и eSATA совместимы. Однако им необходимы разные уровни сигнала.

Ему необходимы для подключения также два провода: шину данных и кабель питания. В будущем планируется отказаться от отдельного кабеля питания для выносных eSATA-устройств. Разъёмы у него менее хрупкие. Конструктивно они рассчитаны на большее число подключений, чем SATA. Однако физически они несовместимы с обычными SATA. Плюс экранирование разъема.

Длина кабеля доведена до двух метров. У SATA длина всего 1 метр. Чтобы компенсировать компенсации потери, в нем изменили уровни сигналов. Повышен уровень передачи и понижен уровень порога приемника.

Особенности подключения и работы накопителей информации с интерфейсом Serial ATA.

SATA (англ. Serial ATA ) - последовательный интерфейс обмена данными с накопителями информации. SATA является развитием параллельного интерфейса ATA (IDE), который после появления SATA был переименован в PATA (Parallel ATA).

SATA использует 7-контактный разъём вместо 40-контактного разъёма у PATA. SATA-кабель имеет меньшую площадь, за счёт чего уменьшается сопротивление воздуху, обдувающему комплектующие компьютера, упрощается разводка проводов внутри системного блока.

SATA-кабель за счёт своей формы более устойчив к многократному подключению. Питающий шнур SATA также разработан с учётом многократных подключений. Разъём питания SATA подаёт 3 напряжения питания: +12 В, +5 В и +3,3 В; однако современные устройства могут работать без напряжения +3,3 В, что даёт возможность использовать пассивный переходник со стандартного разъёма питания IDE на SATA. Ряд SATA-устройств поставляется с двумя разъёмами питания: SATA и Molex.

Стандарт SATA отказался от традиционного для PATA подключения по два устройства на шлейф; каждому устройству полагается отдельный кабель, что снимает проблему невозможности одновременной работы устройств, находящихся на одном кабеле (и возникавших отсюда задержек), уменьшает возможные проблемы при сборке (проблема конфликта Slave/Master устройств для SATA отсутствует), устраняет возможность ошибок при использовании нетерминированных PATA-шлейфов.

Стандарт SATA поддерживает функцию очереди команд (NCQ, начиная с SATA Revision 1.0a).

В отличие от PATA, стандарт SATA предусматривает горячую замену активного устройства (используемого операционной системой) (начиная с SATA Revision 1.0)

SATA Revision 1.0 (до 1,5 Гбит/с)

Спецификация SATA Revision 1.0 была представлена 7 января 2003 года. Первоначально стандарт SATA предусматривал работу шины на частоте 1,5 ГГц, обеспечивающей пропускную способность приблизительно в 1,2 Гбит/с (150 Мбайт/с). (20%-я потеря производительности объясняется использованием системы кодирования 8b/10b, при которой на каждые 8 бит полезной информации приходится 2 служебных бита). Пропускная способность SATA/150 незначительно выше пропускной способности шины Ultra ATA (UDMA/133). Главным преимуществом SATA перед PATA является использование последовательной шины вместо параллельной. Несмотря на то, что последовательный способ обмена принципиально медленнее параллельного, в данном случае это компенсируется возможностью работы на более высоких частотах за счёт отсутствия необходимости синхронизации каналов и большей помехоустойчивостью кабеля. Это достигается применением принципиально иного способа передачи данных (см. LVDS).


SATA Revision 2.0 (до 3 Гбит/с)

Спецификация SATA Revision 2.0 (SATA II или SATA 2.0 , SATA/300) работает на частоте 3 ГГц, обеспечивает пропускную способность до 3 Гбит/с (300 Мбайт/с для данных с учётом 8b/10b кодирования). Впервые был реализован в контроллере чипсета nForce 4 фирмы «NVIDIA». Теоретически устройства SATA/150 и SATA/300 должны быть совместимы (как контроллер SATA/300 с устройством SATA/150, так и контроллер SATA/150 с устройством SATA/300) за счёт поддержки согласования скоростей (в меньшую сторону), однако для некоторых устройств и контроллеров требуется ручное выставление режима работы (например, на жёстких дисках фирмы Seagate, поддерживающих SATA/300, для принудительного включения режима SATA/150 предусмотрен специальный джампер).

SATA Revision 3.0 (до 6 Гбит/с)

Спецификация SATA Revision 3.0 (SATA III или SATA 3.0 ) представлена в июле 2008 и предусматривает пропускную способность до 6 Гбит/с (750 Мбайт/с для данных с учётом 8b/10b кодирования). В числе улучшений SATA Revision 3.0, по сравнению с предыдущей версией спецификации, помимо более высокой скорости, можно отметить улучшенное управление питанием. Также сохранена совместимость, как на уровне разъёмов и кабелей SATA, так и на уровне протоколов обмена Bob lox.

Универсальность

Аббревиатура USB означает, что для подключения этих устройств не требуются специальные «дисководы» или адаптеры, кроме имеющегося в каждом современном компьютере или ноутбуке USB порта. Это является одной из причин того, что с самого начала своего возникновения флеш-накопители завоевали большую популярность среди пользователей. Практически все операционные системы, установленные на вашем оборудовании, автоматически распознают флеш-накопитель как дополнительный съемный диск.

Компактность

Стандартный размер USB Flash-drive 70 х 20 х 10 мм (некоторые модели больше, некоторые намного меньше). При этом вес флешки не превышает 20-30 грамм.

Надежность

Внутри устройств отсутствуют механические движущиеся части, что делает их более устойчивыми к механическим воздействиям (вибрациям и ударам) по сравнению с другими носителями информации и во много раз снижает энергопотребление. Кроме того корпуса флеш-накопителей изготавливаются из разных удароустойчивых материалов (пластик, кожа, металл, резина).

Скорость передачи данных

  • Интерфейс USB 1.1 - до 12 Мбит/с.
  • Интерфейс USB 2.0 - до 480 Мбит/с.
  • Анонсированный в 2008 году (но пока не запущенный в использование) Интерфейс USB 3.0 - до 4,8 Гбит/с.

Объем и плотность записи

Объемы памяти современных флеш-накопителей начинаются от 256 Мб. Самые распространенные емкости на сегодняшний день - 2-4 Гб. Максимальная емкость - 128 Гб. Другими словами - объемы памяти флешек на любой вкус и для любых задач, от использования их в качестве «ключей» для входа в базы данных, до хранения разнообразных фильмов в формате DivX.

При этом у всех флеш-накопителей высокая плотность записи информации (значительно выше чем у CD или DVD).

Защита данных

Защита данных, хранящихся на флешке, может производиться как с помощью механического воздействия, так и на программном уровне. В первом случае - некоторые флеш-карты имеют специальный механический переключатель защиты от записи (он обозначается двумя пиктограммами: открытым и закрытым замочком). Во втором случае, с помощью специального программного обеспечения, часть или все данные закрываются паролем и обратиться к этой области флеш-карты или отформатировать ее можно только зная пароль доступа.

Функция загрузочного диска

Как и у CD дисков, у большинства USB flash drive предусмотрена возможность использования их в качестве загрузочного устройства наподобие системного диска. Некоторые производители предлагают вместе с флеш-накопителем специальное программное обеспечение, которое позволяет сделать флешку «загрузочной».

Работоспособность в специальных условиях

Флеш-накопители способны безотказно работать в широком диапазоне температур (от -40 до +70 0С) и относительной влажности (5% - 90 %).

Дизайн и дополнительные функции

Внешний вид флеш-накопителей - очень разнообразный и многогранный. Это различные материалы корпуса и широкая цветовая гамма, элементы ювелирной отделки и флешки с прозрачным корпусом, наполненным разноцветной жидкостью, в форме корпоративного логотипа или муляжа любой продукции…

Заслуживают внимание и дополнительные функции нестандартных флеш-накопителей: фонарик, лазерная указка, флешка-шариковая ручка, флешка-силиконовый браслет и многое другое.

Недостатки флешек

Цикличность записи-стирания

Флеш-накопители имеют ограниченное число циклов записи-стирания перед выходом из строя. Приблизительное количество циклов - 100 тысяч. То есть, если вы 10 раз в день на 1 Гб флешку будете записывать и стирать информацию объемом 1 Гб - она выйдет из строя через 25-26 лет.

Скорость передачи данных

Существует мнение, что скорость записи/чтения информации с флешки уменьшается со временем. Возможно это и так, однако официального подтверждения этой информации пока не существует.

Внешний вид

Большинство стандартных флеш-накопителей имеют колпачок, закрывающий USB разъем и предотвращающий его повреждение. Недостатком этого элемента флешки является то, что он постоянно теряется или забывается. Иногда производитель изготавливает вместо колпачка специальный механизм скрытия разъема - колпачок уже потерять нельзя (так как его нет), однако механическая конструкция больше подвержена износу.

Учитывая все вышеизложенные преимущества и недостатки флеш-накопителей можно прийти к следующему выводу - данный вид накопителей являются одними из самых оптимальных устройств для хранения и переноса данных.

Мы предлагаем флешки только с оригинальными комплектующими от заводов производителей. На всю продукцию даётся гарантия 1 год. На это следует обратить особое внимание, по причине массового появления на Российском рынке некачественных флешек. Наши флешки выгодно отличаются высокой работоспособностью и отсутствием дефектов. Они поддержат Вашу репутацию и закрепят долгосрочность Ваших отношений с Партнёрами.

Мы предлагаем множество решений для придания изделиям неповторимости Вашего фирменного стиля!
Наш девиз: качество, индивидуальность и практичность!

Мы делаем Ваш Бизнес узнаваемым!!



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: