Трёхфазный ток. Преимущества при генерации и использовании

Преимущества трёхфазного тока очевидны только специалистам электрикам. Что такое трехфазный ток для обывателя представляется весьма смутно. Давайте развеем неопределенность.

Трехфазный переменный ток

Большинство людей, за исключением специалистов - электриков, имеют весьма смутное представление, что такое так называемый «трёхфазный» переменный ток, да и в понятиях, что такое сила тока, напряжение и электрический потенциал, а также мощность, - часто путаются.

Попытаемся простым языком дать начальные понятия об этом. Для этого обратимся к аналогиям. Начнём с простейшей - протекания постоянного тока в проводниках. Его можно сравнить с водным потоком в природе. Вода, как известно, всегда течёт от более высокой точки поверхности к более низкой. Всегда выбирает самый экономичный (наикратчайший) путь. Аналогия с протеканием тока - полнейшая. Причём количество воды протекающей в единицу времени через какое-то сечение потока будет аналогично силе тока в электрической цепи. Высота любой точки русла реки относительно нулевой точки - уровня моря - будет соответствовать электрическому потенциалу любой точки цепи. А разница в высоте любых двух точек реки будет соответствовать напряжению между двумя точками цепи.

Используя эту аналогию можно легко представить в уме законы протекания постоянного электрического тока в цепи. Чем выше напряжение - перепад высот, тем больше скорость потока, и, следовательно, количество воды протекающей по реке в единицу времени.

Водный поток, точно так же как электрический ток при своём движении испытывает сопротивление русла - по каменистому руслу вода будет протекать бурно, меняя направление, немного нагреваясь от этого (бурные потоки даже в сильные морозы не замерзают вследствие нагрева от сопротивления русла). В гладком канале или трубе вода потечёт быстро и в итоге в единицу времени канал пропустит гораздо больше воды, чем извилистое и каменистое русло. Сопротивление потоку воды полностью аналогично электрическому сопротивлению в цепи.

Теперь представим закрытую бутылку, в которой налито немного воды. Если мы начнём эту бутылку вращать вокруг поперечной оси, то вода в ней будет перетекать попеременно от горлышка к донышку и наоборот. Это представление - аналогия переменному току. Казалось бы, одна и та же вода перетекает туда-сюда и что? Тем не менее, этот переменный поток воды способен совершать работу.

Откуда вообще появилось понятие переменный ток?

Да с тех самых пор, когда человечество, узнав, что перемещение магнита вблизи проводника вызывает электрический ток в проводнике. Именно движение магнита вызывает ток, если магнит положить рядом с проводом и не двигать - никакого тока в проводнике это не вызовет. Далее, мы хотим получить (генерировать) в проводнике ток, чтобы использовать его в дальнейшем для каких-либо целей. Для этого изготовим катушку из медного провода и начнём возле неё двигать магнит. Магнит можно передвигать возле катушки как угодно - двигать по прямой туда-сюда, но, чтобы не двигать магнит руками, создать такой механизм технически сложнее, чем просто начать его вращать около катушки, аналогично вращению бутылки с водой из предыдущего примера. Вот именно таким образом - по техническим причинам - мы и получили синусоидальный переменный ток, используемый ныне повсеместно. Синусоида - это развёрнутое во времени описание вращения.

В дальнейшем оказалось, что законы протекания переменного тока в цепи отличаются от протекания постоянного тока. Например, для протекания постоянного тока сопротивление катушки равно просто омическому сопротивлению проводов. А для переменного тока - сопротивление катушки из проводов значительно увеличивается из-за появления, так называемого индуктивного сопротивления. Постоянный ток через заряженный конденсатор не проходит, для него конденсатор - разрыв цепи. А переменный ток способен свободно протекать через конденсатор с некоторым сопротивлением. Далее выяснилось, что переменный ток может быть преобразован с помощью трансформаторов в переменный ток с другими напряжением или силой тока. Постоянный ток такой трансформации не поддаётся и, если мы включим любой трансформатор в сеть постоянного тока (что делать категорически нельзя), то он неизбежно сгорит, так как постоянному току будет сопротивляться только омическое сопротивление провода, которое делается как можно меньше, и через первичную обмотку потечёт большой ток в режиме короткого замыкания.

Заметим также, что электродвигатели могут быть созданы для работы и от постоянного тока, и от переменного тока. Но разница между ними такая - электродвигатели постоянного тока сложнее в изготовлении, но зато позволяют плавно изменять скорость вращения обычным регулирующим силу тока реостатом. А электродвигатели переменного тока гораздо проще и дешевле в изготовлении, но вращаются только с одной, обусловленной конструкцией скоростью. Поэтому в практике широко применяются и те, и другие. В зависимости от назначения. Для целей управления и регулирования применяются двигатели постоянного тока, а в качестве силовых установок - двигатели переменного тока.

Далее конструкторская мысль изобретателя генератора двигалась примерно в таком направлении - если удобнее всего для генерации тока использовать вращение магнита рядом с катушкой, то почему бы вместо одной катушки генератора не расположить вокруг вращающегося магнита несколько катушек (места-то вокруг вон сколько)?

Получится сразу же, как бы несколько генераторов, работающих от одного вращающегося магнита. Причём переменный ток в катушках будет отличаться по фазе - максимум тока в последующих катушках будет несколько запаздывать относительно предыдущих. То есть синусоиды тока, если их графически изобразить, будут, как бы между собой, сдвинуты. Это важное свойство - сдвиг фаз, о котором мы расскажем ниже.

Примерно так рассуждая, американский изобретатель Никола Тесла и изобрёл сначала переменный ток, а затем и трёхфазную систему генерации тока с шестью проводами. Он расположил три катушки вокруг магнита на равном расстоянии под углами 120 градусов, если за центр углов принять ось вращения магнита.

(Число катушек (фаз) вообще-то может быть любым, но для получения всех тех преимуществ, что даёт многофазная система генерации тока, минимально достаточно трёх).

Далее русский учёный электротехник Михаил Осипович Доливо-Добровольский развил изобретение Н. Тесла, впервые предложив трёх - и четырёхпроводную систему передачи трёхфазного переменного тока. Он предложил соединить один конец всех трёх обмоток генератора в одну точку и передавать электроэнергию всего по четырём проводам. (Экономия на дорогих цветных металлах существенная). Оказалось, что при симметричной нагрузке каждой фазы (равным сопротивлением) ток в этом общем проводе равняется нулю. Потому что при суммировании (алгебраическом, с учётом знаков) сдвинутых по фазе на 120 градусов токов они взаимно уничтожаются. Этот общий провод так и назвали - нулевой. Поскольку ток в нём возникает только при неравномерности нагрузок фаз и численно он небольшой, гораздо меньше фазных токов, то представилась возможность использовать в качестве «нулевого» провод меньшего сечения, чем для фазных проводов.

По этой же самой причине (сдвиг фаз на 120 градусов) трехфазные получились значительно менее материалоёмкими, так как в магнитопроводе трансформатора происходит взаимопоглощение магнитных потоков и его можно делать с меньшим сечением.

Сегодня трёхфазная система электроснабжения осуществляется четырьмя проводами, три из них называются фазными и обозначаются латинскими буквами: на генераторе - А, В и С, у потребителя - L1, L2 и L3. Нулевой провод так и обозначается - 0.

Напряжение между нулевым проводом и любым из фазных проводов называется - фазным и составляет в сетях потребителей - 220 вольт.

Между фазными проводами тоже существует напряжение, причём значительно выше, чем фазное напряжение. Это напряжение называется линейным и составляет в цепях потребителей 380 вольт. Почему же оно больше фазного? Да всё это из-за сдвига фаз на 120 градусов. Поэтому, если на одном проводе, к примеру, в данный момент времени потенциал равен плюс 200 вольт, то на другом фазном проводе в этот же момент времени потенциал будет минус 180 вольт. Напряжение - это разность потенциалов, то есть оно будет + 200 - (-180)=+380 В.

Возникает вопрос, если по нулевому проводу ток не протекает, то нельзя ли его вообще убрать. Можно. И мы получим трёхпроводную систему электроснабжения. С соединением потребителей так называемым «треугольником» - между фазными проводами. Однако нужно заметить, что при неравномерной нагрузке в сторонах «треугольника» на генератор будут действовать разрушающие его нагрузки, поэтому данную систему можно применять при огромном количестве потребителей, когда неравномерности нагрузок нивелируются. Передача электроэнергии от больших электростанций при высоких фазных и линейных напряжениях (сотни тысяч вольт) так и осуществляются. Почему же применяется такое высокое напряжение. Ответ простой - чтобы уменьшить потери в проводах на нагрев. Так как нагрев проводов (потери энергии) пропорционален квадрату протекающего тока, то желательно чтобы протекающий ток был минимален. Ну а для передачи необходимой мощности при минимальном токе нужно повышать напряжение. (ЛЭП) так и обозначаются, к примеру, ЛЭП - 500 - это линия электропередачи под напряжением 500 киловольт.

Кстати потери в проводах ЛЭП можно ещё более снизить, применяя передачу постоянного тока высокого напряжения (перестаёт действовать емкостная составляющая потерь, действующая между проводами), проводились даже такие эксперименты, но широкого распространения пока такая система не получила, видимо вследствие большей экономии в проводах при трёхфазной системе генерации.

Выводы: преимущества трёхфазной системы

В заключение статьи подведём итоги, - какие же преимущества даёт трёхфазная система генерации и электроснабжения?

  1. Экономия на количестве проводов, необходимых для передачи электроэнергии. Учитывая немалые расстояния (сотни и тысячи километров) и то, что для проводов используют цветные металлы с малым удельным электрическим сопротивлением, экономия получается весьма существенной.
  2. Трёхфазные трансформаторы, при равной мощности с однофазными, имеют значительно меньшие размеры магнитопровода. Что позволяет получить существенную экономию.
  3. Очень важно, что трёхфазная система передачи электроэнергии создаёт при подключении потребителя к трём фазам как бы вращающееся электромагнитное поле. Опять-таки, вследствие сдвига фаз. Это свойство позволило создать чрезвычайно простые и надёжные трёхфазные электродвигатели, у которых нет коллектора, а ротор, по сути, представляет собой простую «болванку» в подшипниках, к которой не нужно подсоединять никакие провода. (На самом деле конструкция короткозамкнутого ротора имеет свои особенности и вовсе не болванка) Это так называемые трёхфазные асинхронные электродвигатели с короткозамкнутым ротором. Очень широко распространённые сегодня в качестве силовых установок. Замечательное свойство таких двигателей - это возможность менять направление вращения ротора на обратное простым переключением двух любых фазных проводов.
  4. Возможность получения в трёхфазных сетях двух рабочих напряжений. Другими словами менять мощность электродвигателя или нагревательной установки путём простого переключения питающих проводов.
  5. Возможность значительного уменьшения мерцаний и стробоскопического эффекта светильников на люминисцентных лампах путём размещения в светильнике трёх ламп, питающихся от разных фаз.

Благодаря этим преимуществам трёхфазные системы электроснабжения получили широчайшее распространение в мире.

Большинство генераторов переменного тока, а также линий, передающих электроэнергию, используют трехфазные системы. Передача тока осуществляется по трем линиям (или четырем) вместо двух. Трехфазный ток представляет собой систему переменного электротока, где значения токов и напряжений меняются по синусоидальному закону. Частота синусоидальных колебаний тока в России и Европе – 50 Гц.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-15-768x530..jpg 800w" sizes="(max-width: 600px) 100vw, 600px">

Трехфазная ЛЭП

Почему используют трехфазный ток

Транспортировка электроэнергии от электростанций до отдаленных точек предполагает использование очень длинных проводов и кабелей, имеющих большое сопротивление. Это означает, что часть энергии будет потеряна, рассеиваясь в виде тепла. Уменьшив токи, передаваемые по ЛЭП, можно значительно снизить потери.

Наиболее распространенной формой производства электроэнергии является трехфазная генерация. В промышленности трехфазный переменный ток часто применяется для работы электродвигателей.

Преимущества трехфазной системы:

  1. Возможность наличия фазного и линейного напряжений в трехфазных цепях двух разных значений: высокое – для мощных потребителей, низкое – для остальных;
  2. Сниженные потери при транспортировке энергии, следовательно, использование более дешевых проводов и кабелей;
  3. Трехфазные машины имеют более стабильный крутящий момент, чем однофазные (выше производительность);
  4. Лучшая производительность в трехфазных генераторах;
  5. В некоторых случаях постоянный ток должен получаться из переменного. При этом использование 3 фазного тока является существенным преимуществом, так как пульсация выпрямляемого напряжения значительно ниже.

Что такое трехфазный ток

Трехфазная система переменного тока – это три синусоидальных токовых сигнала, различия между которыми составляют треть цикла или 120 электрических градусов (полный цикл – 360°). Они проходят свои максимумы в регулярном порядке, называемом фазовой последовательностью. Синусоидальное напряжение пропорционально косинусу или синусу фазы.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-11-210x140..jpg 615w" sizes="(max-width: 600px) 100vw, 600px">

Трехфазный ток

Три фазы поставляются обычно по трем (или четырем) проводам, а фазные и линейные напряжения в трехфазных цепях представляют собой разности потенциалов между парами проводников. Фазные токи являются токовыми величинами в каждом проводнике.

Схемы трехфазных цепей

В схемной конфигурации «звезда» имеется три фазных провода. Если нулевые точки системы питания и приемника соединены, то получается четырехпроводная «звезда».

В схеме различаются межфазное напряжение, находящееся между проводниками фазы (его еще именуют линейным), и фазное – между отдельными проводниками фазы и N-проводником.

Что такое фазное напряжение, наиболее наглядно определяется с помощью построения векторов – это три симметричных вектора U(А), U(В) и U(С). Здесь же видно, что такое линейное напряжение:

  • U(АВ) = U(А) – U(В);
  • U(ВС) = U(В) – U(С);
  • U(СА) = U(С) – U(А).

Важно! Векторные построения дают представления о сдвиге между согласующимися фазным и межфазным напряжением – 30°.

Следовательно, линейное напряжение для звездной схемы с равномерными нагрузками можно рассчитать так:

Uab = 2 x Ua x cos 30° = 2 x Ua x √3/2 = √3 x Ua.

Аналогично находятся другие показатели фазного напряжения.

Линейное и фазное напряжение, если суммировать векторные величины всех фаз, равны нулю:

  • U(А) + U(В) + U(С) = 0;
  • U(АВ) + U(ВС) + U(СА) = 0.

Если к «звезде» подсоединяется электроприемник с сопротивлением, идентичным в каждой фазе:

то можно произвести расчет линейного и фазного токов:

  • Ia = Ua/Za;
  • Ib = Ub/Zb;
  • Ic = Uc/Zc.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/3-12-600x335.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-12-768x429..jpg 902w" sizes="(max-width: 600px) 100vw, 600px">

Построение векторов в схеме «Y»

Применительно для общих случаев «звездной» системы линейные токовые величины идентичны фазовым.

Обычно предполагается, что источник, питающий электроприемники, симметричен, и только импеданс определяет работу схемы.

Поскольку суммирующий токовый показатель соответствует нулю (закон Кирхгофа), то в случае четырехпроводной системы в нейтральном проводнике ток не течет. Система будет вести себя одинаково, независимо, существует нейтральный проводник или нет.

Для активной мощности трехфазного приемника справедлива формула:

P = √3 x Uф I x cos φ.

Реактивная мощность:

Q = √3 x Uф I x sin φ.

«Y» при асимметричной нагрузке

Это такая схемная конфигурация, где токовая величина одной фазы отличается от другой, либо различны фазовые сдвиги токов по сравнению с напряжениями. Межфазовые напряжения будут оставаться симметричными. По векторным построениям определяется появление сдвига нулевой точки от центра треугольника. Результатом является асимметрия фазных величин напряжений и появление Uo:

Uo = 1/3 (U(А) + U(В) + U(С)).

Несмотря на асимметричную нагрузку, суммирующий токовый показатель нулевой.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-11-768x515..jpg 210w, https://elquanta.ru/wp-content/uploads/2018/03/4-11.jpg 901w" sizes="(max-width: 600px) 100vw, 600px">

«Y» без N-проводника при асимметричной нагрузке

Важно! Работа схемы с асимметричной нагрузкой зависит от того, есть или нет N-проводник.

Иначе ведет себя схема, когда подключен N-проводник с незначительным полным сопротивлением Zo = 0. Нулевые точки ИП и электроприемника оказываются гальванически связанными и имеют одинаковый потенциал. Фазное напряжение разных фаз приобретает идентичное значение, а токовая величина в N -проводнике:

Io = I(А) + I(В) + I(С).

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-6-210x140..jpg 720w" sizes="(max-width: 600px) 100vw, 600px">

Схема четырехпроводной «Y»

При передаче мощности принято использовать трехпроводные системы на уровнях высокого и среднего напряжения. На низком уровне напряжения, где трудно избежать несбалансированных нагрузок, применяются четырехпроводные системы.

Схема «Δ»

Подключая конец каждой фазы электроприемника к началу следующей, можно получить трехфазный ток с последовательно подсоединенными фазами. Полученная схемная конфигурация называется «треугольником». В таком виде она может работать только как трехпроводная.

С помощью векторных построений, понятных даже для чайников, иллюстрируются фазные и линейные напряжения и токи. Каждая фаза электроприемника оказывается подключенной на линейное напряжение между двумя проводниками. Линейное и фазное напряжение идентичны на приемнике электроэнергии.

Png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/6-3-768x239..png 910w" sizes="(max-width: 600px) 100vw, 600px">

Схема «Δ» и построения векторов

Межфазовые токи для «треугольника» – I(А), I(В), I(С). Фазные – I(АВ), IВС), I(СА).

Линейные токи находятся из векторных построений:

  • I(А) = I(АВ) – I(СА);
  • I(В) = I(ВС) – I(АВ);
  • I(С) = I(СА) – I(ВС).

Суммирующая токовая величина в симметричной системе соответствует нулю. Среднеквадратичные величины фазных токов:

I(АВ) = I(ВС) = I(СА) = U/Z.

Поскольку фазовый сдвиг между U и I равен 30°, линейный ток в данной конфигурации будет равен:

I(А) = I(АВ) – I(СА) = 2 x I(АВ) x cos 30° = 2 x Iф x √3/2 = √3 x Iф.

Важно! Эффективная величина линейного тока превышает в √3 раз эффективную величину тока фазы.

Трехфазный и однофазный ток

Схемная конфигурация «Y» дает возможность использовать два разных напряжения при питании потребителей бытовой и промышленной сети: 220 В и 380 В. 220 В получается с использованием двух проводников. Один из них –фазный, другой – N-проводник. Напряжение между ними соответствует фазному. Если взять 2 проводника, оба представляющие собой фазы, то напряжение между фазами носит название линейного и равно 380 В. Для подключения используются все 3 фазы.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/7-3.jpg 700w" sizes="(max-width: 600px) 100vw, 600px">

Распределение напряжений в однофазной и трехфазной системах

Основные различия однофазной и трехфазной систем:

  1. Однофазный ток предполагает питание через один проводник, трехфазный – через три;
  2. Для завершения цепи однофазного питания требуется 2 проводника: еще один нейтральный, для трехфазного – 4 (плюс нейтральный);
  3. Наибольшая мощность передается по трем фазам, в отличие от однофазной системы;
  4. Однофазная сеть более простая;
  5. При неисправности фазного провода в однофазной сети питание полностью пропадает, в трехфазной – подается по двум оставшимся фазам.

Интересно. Никола Тесла, первооткрыватель многофазных токов и изобретатель асинхронного двигателя, использовал двухфазный ток с разностью фаз 90°.Такая система пригодна для создания вращающегося магнитного поля больше, чем однофазная, но меньше, чем трехфазная. Двухфазная система поначалу получила распространение в США, но затем полностью исчезла из употребления.

Сегодня почти все электроснабжение основано на низкочастотном трехфазном токе при параллельном использовании индивидуальных фаз. Практически все электростанции имеют генераторы, производящие трехфазный ток. Трансформаторы могут работать с трехфазным или однофазным током. Наличие реактивной мощности в подобных сетях требует установки компенсирующего оборудования.

Видео

Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я , это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке, и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

  • Ограниченная мощность потребителя

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

  • Дороже оборудование
  • Более опасное напряжение
  • Ограничивается максимальная мощность однофазных нагрузок

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее ), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже . А про выбор сечения провода – . Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

И на вводе (перед счетчиком) стоят примерно такие “ящички”:

Трехфазный ввод. Вводной автомат перед счетчиком.

Существенный минус трехфазного ввод а (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда” , то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных и .

Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Фото

Напоследок – ещё несколько фото с комментариями.

Электрощит с трехфазным вводом, но все потребители – однофазные.

Друзья, на сегодня всё, всем удачи!

Жду отзывов и вопросов в комментариях!

У новичков в мире электрики и домовладельцев иногда возникает вопрос: что такое в бытовой электропроводке. Связано это с необходимостью починить какой-либо электроприбор.

В возникшей ситуации наиболее приоритетной задачей мастера должно стать соблюдение правил техники безопасности, а не проявление прикладных навыков и умений. Знание элементарных законов функционирования тока и процессов, проходящих внутри бытовых электроприборов не только поможет справиться с большинством неисправностей, возникающих в них, но и сделает этот процесс наиболее безопасным.

Конструкторы и инженеры делают все возможное, чтобы предотвратить несчастный случай при работе с электричеством в быту. Задача потребителя сводится к соблюдению предписанных норм.

  • однофазный ток;
  • двухфазный ток;
  • трехфазный ток.

Однофазный ток.

Переменный ток, который получают при помощи вращения в магнитном потоке проводника или системы проводников, соединенных в одну катушку, называется однофазным переменным током .

Как правило, для передачи однофазного тока используют 2 провода. Называются они фазным и нулевым соответственно. Напряжение между этими проводами составляет 220 В.

Однофазное электропитание . Однофазный ток можно подвести к потребителю двумя различными способами: 2-проводным и 3-проводным. При первом (двухпроводном), для подведения однофазного тока используют два провода. По одному протекает фазный ток, другой предназначен для нулевого провода. Таким образом электропитание подведено почти во все, построенные в бывшем СССР, дома. При втором способе для подведения однофазного тока — добавляют ещё один провод. Называется такой провод заземлением (РЕ). Он предназначен для предотвращения поражения человека электрическим током, а так же для отвода токов утечки и предотвращения приборов от поломки.

Двухфазный ток.

Двухфазным электрическим током называется совокупность двух однофазных токов, сдвинутых по фазе относительно друг друга на угол Pi2 или на 90 °.

Наглядный пример образования двухфазного тока . Возьмем две катушки индуктивности и расположим их в пространстве таким образом, чтобы их оси были взаимно перпендикулярны, после чего запитаем систему катушек двухфазным током , как результат получим в системе два магнитных потока. Вектор результирующего магнитного поля будет вращаться с постоянной угловой скоростью, как следствие, возникает вращающееся магнитное поле. Ротор с обмотками, изготовленными в виде короткозамкнутого «беличьего колеса» или представляющий собой металлический цилиндр на валу, будет вращаться, приводя в движение механизмы.

Передают двухфазные токи при помощи двух проводов: двумя фазными и двумя нулевыми.

Трехфазный ток.

Трехфазной системой электрических цепей называется система, которая состоит из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ=2π/3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током. Трехфазный ток легко передаётся на дальние расстояния. Любая пара фазных проводов имеет напряжение 380 В. Пара - фазный провод и нуль — имеет напряжение 220 В.

Распределение трёхфазного тока по жилым домам выполняется двумя способами: 4-проводным и 5-проводным. Четырёхпроводное подключение выполняется тремя фазными и одним нулевым проводом. После распределительного щита для питания розеток и выключателей используют два провода — одну из фаз и нуль. Напряжение между этими проводами будет составлять 220В.

Пятипроводное подключение трехфазного тока — в схему добавляется защитный, заземляющий провод (РЕ). В трёхфазной сети фазы должны нагружаться максимально равномерно, в противном случае может произойти перекос фаз. От того, какая электропроводка используется в доме, зависит какое электрооборудование можно в неё включать. К примеру, заземление обязательно, если в сеть включаются приборы с большой мощностью — холодильники, печи, обогреватели, электронные бытовые приборы — компьютеры, телевизоры, устройства, связанные с водой — джакузи, душевые кабины (вода проводник тока). Трехфазный ток необходим для электропитания двигателей (актуальных для частного дома).

Устройство бытовой электропроводки.

Вначале электроэнергия вырабатывается на электростанции. Затем через промышленную электросеть она попадает на трансформаторную подстанцию, где напряжение преобразуется в 380 вольт. Соединение вторичных обмоток понижающего трансформатора выполнено по схеме «звезда»: три контакта подключены к общей точке «0», а три оставшихся присоединены к клеммам «A», «B» и «C» соответственно. Для наглядности приводится картинка.

Объединенные контакты «0» подсоединяются к заземлительному контуру подстанции. Также здесь ноль расщепляется на:

  • Рабочий ноль (на картинке изображен синим)
  • PE-проводник, выполняющий защитную функцию (линия желто-зеленого цвета)

Нули и фазы тока с выхода понижающего трансформатора подводятся к распределительному щитку жилого дома. Полученная трехфазная система разводится по щиткам в подъездах. В конечном итоге, в квартиру попадает фазовое напряжение 220 В и проводник PE, выполняющий защитную функцию.

Итак, что же такое и ноль ? Нулем называют проводник тока, присоединенный к заземлительному контуру понижающего трансформатора и служащий для создания нагрузки от фазы тока, подсоединенной к противоположному концу обмотки трансформатора. Кроме того, существует так называемый «защитный ноль» - это PE-контакт, описанный ранее. Он служит для отвода токов при возникновении технической неисправности в цепи.

Этот метод подключения жилых домов к городской электросети отработан десятилетиями, но все же он не идеален. Иногда в вышеописанной системе появляются неисправности. Чаще всего, они связаны с низким качеством соединения на определенном участке цепи или полным обрывом электрического провода.

Что происходит в нуле и фазе при обрыве провода.

Обрыв электрического провода часто обусловлен элементарной рассеянностью мастера - забыть присоединить к определенному прибору в доме фазу тока или ноль - проще простого. Кроме того, нередки случаи отгорания нуля на подъездном щитке в связи с высокой нагрузкой на систему.

В случае обрыва соединения любого электроприбора в доме со щитком, этот прибор перестает работать - ведь цепь не замкнута. При этом не имеет значения, какой именно провод разорван - ноль или .

Аналогичная ситуация происходит, когда разрыв наблюдается между распределительным щитком многоквартирного дома и щитом конкретного подъезда - все квартиры, подключенные к щиту подъезда , окажутся обесточены.

Вышеописанные ситуации не вызывают серьезных сложностей и не представляют опасности. Они связаны с обрывом лишь одного проводника и не несут в себе угрозы безопасности электроприборов или людей, находящихся в квартире.

Самая опасная ситуация - исчезновение соединения между заземлительным контуром подстанции и средней точкой, к которой подключена нагрузка внутридомового электрощита.

В этом случае электрический ток пойдет по контурам AB, BC, CA, а общее напряжение на этих контурах - 380 В. В связи с этим возникнет очень неприятная и опасная ситуация - на одном электрощитке может вовсе не быть напряжения, так как хозяин квартиры посчитал нужным отключить электроприборы, а на другом возникнет высокое напряжение близкое к 380 вольтам. Это вызовет выход из строя большинства электроприборов, ведь номинальное напряжение работы для них - 240 вольт.

Конечно, такие ситуации можно предотвратить - существуют достаточно дорогостоящие решения для защиты от скачков напряжения. Некоторые производитель встраивают их в свои приборы.

Как определить ноль и фазу собственными силами.

Для определения нуля и фазы тока существуют специальные отвертки-тестеры.

Она работает по принципу прохождения тока низкого напряжения через тело человека, использующего ее. Отвертка состоит из следующих частей:

  • Наконечник для подключения к фазовому потенциалу розетки;
  • Резистор, снижающий амплитуду электротока до безопасных пределов;
  • Светодиод, загорающийся при наличии потенциала фазы тока в цепи;
  • Плоский контакт для создания цепи сквозь тело оператора.

Принцип работы с отверткой-тестером показан на картинке ниже.

Кроме тестовых отверток, существуют и другие способы определить, к какому контакту розетки подключена , а к какому - ноль. Некоторые электрики предпочитают пользоваться более точным тестером, используя его в режиме вольтметра.

Показания стрелки вольтметра означают:

1. Наличие напряжения 220 В между фазой и нулем

2. Отсутствие напряжения между землей и нулем

3. Отсутствие напряжения между фазой и нулем

Вообще-то, в последнем случае стрелка должна показывать 220 В, но в данном конкретном случае центральный контакт розетки не подключен к потенциалу земли.

Современный образ жизни невозможно представить без электроэнергии и благ, которые с ней связаны. Отсутствие природного газа легко компенсируется твердотопливными источниками тепла, вода также доступна, а вот без электричества настает самый настоящий «конец света».

Подавляющее большинство современных электростанций генерируют трехфазный переменный ток. Среди его преимуществ особо следует отметить легкость получения и последующих преобразований, высокую надежность и простоту конструкции предназначенных для него Трехфазный ток - это наиболее распространенный во всем мире тип электроэнергии.

Система трехфазного электрического тока представляет собой совокупность трех цепей однофазного тока с одинаковой частотой и амплитудой, однако, смещенных относительно друг друга на 120 градусов (или, что одно и то же, 1/3 периода). Каждая из этих цепей называется фазой, соответственно, все три формируют трехфазный ток.

Теоретические основы довольно просты: металлическая рамка вращается в магнитном поле, пересекая линии напряженности. Чтобы в соответствии с получить электрический ток, достаточно подключить к ее выводам нагрузку и создать цепь. Если же необходим трехфазный ток, то устройство усложняется: в механизме располагаются три идентичные рамки, сдвинутые одна относительно другой на 120 градусов. Итогом является генерация трех электродвижущих сил (ЭДС). В стандартных электростанциях скорость вращения неизменна.

На практике же реализация немного отлична от теории. Трехфазный ток создают специальные машины - генераторы. В них обмотки фазных цепей неподвижны (сравните с теорией) и определенным образом расположены на полюсах статора (неподвижная часть машины). А вращающееся магнитное поле создается ротором. Момент вращения ему сообщает энергия падающей воды в гидроэлектростанциях, паровой турбины в АЭС и пр.

Одна из особенностей цепей, использующих трехфазный ток, заключается в задействовании на стороне потребителя всего трех или четырех проводов - три фазных и нулевой. Этого удается добиться благодаря способу соединения обмоток генератора - звездой или треугольником.

Соединение звездой подразумевает, что концы всех трех обмоток сходятся в одной нулевой точке. Исходя из закона Кирхгофа, следует, что сумма всех токов в этой точке (узле) равняется нулю, поэтому никакого замыкания не происходит. Из нулевой точки выводится Напряжение, замеренное между этим проводом и любым из трех линейных, в 1.73 раз меньше, чем значение напряжения между самими линейными проводами. В первом случае получается фазное напряжение, а во втором линейное.

Важной особенностью соединения звездой является необходимость избегать перекоса фаз, то есть, контролировать, чтобы протекающие в ветках токи были примерно равны. Та небольшая неизбежная разница приводит к появлению небольшого тока в нулевом проводе, но он невелик.

Совершенно иной тип соединения обмоток генератора - треугольником, позволяет упразднить нулевой провод. При ее реализации каждый конец обмотки соединяется с началом следующей, фактически, образуя треугольник, а напряжения снимаются с его вершин. При таком способе фазное и равны. Также необходим контроль за равенством токов в ветвях, так как при игнорировании этого общее значение тока в замкнутой цепи может стать чрезмерным, вызывая нагрев генератора и выход его из строя.

Большинство электрических двигателей, предназначенных для трехфазной сети, предусматривают возможность выбора способа соединения обмоток на звезду или треугольник. Это позволяет выбирать рабочее напряжение. Так, при соединении обмоток нагрузки звездой расчетное напряжение будет в 1.73 раз меньше, чем при треугольнике.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: