Привет студент. Объекты и отношения между ними

Помимо описания объекта с его свойствами фиксируются связи между объектами разных классов в инфологической модели.

Различают 4 типа связи :

    1:N (один ко многим).

    N:1 (многие к одному).

    N:N(многие ко многим).

Помимо «тип связи» используется понятие«степень связи» . В инфологической модели помимо степени связи надо указыватьпринадлежность связи .

Класс принадлежности – показывает должен или не должен объект одного класса участвовать в связях с объектами другого класса. Класс принадлежности объекта может быть обязательным или необязательным.

Обязательный класс принадлежности.

Если все объекты первого класса должны участвовать в связи с объектами второго класса, то класс принадлежности объектов 1-го класса называется обязательным .

Необязательный класс принадлежности.

Если некоторые объекты 1-го класса могут не участвовать в связях с объектами 2-го класса, то класс принадлежности объектов 1-го класса называются необязательными .

8.ER-диаграммы и их разновидности. Понятия сущности, связи, атрибуты.

Преподаватель читает курс.

Связь именуется глаголом «читает».

Связь между объектами может быть выражена 2 способами представления с помощью ER-диаграмм.

    Диаграмма ER- экземпляра.

По номеру курса можно однозначно идентифицировать курс.

    Диаграмма ER- типа

Тип связи 1 к 1.

Класс принадлежности объектов и для П и для К необязательный.

Сущность – определяется как некоторый объект, представляющий интерес в данной предметной области. Этот объект должен иметь экземпляры, отличающиеся друг от друга и допускающие однозначную идентификацию.

Как правило в описании предметной области сущность обозначается как существительное.

Связь – представляет собой соединение между двумя или более сущностями.

При поиске связей в описании предметной области следует полагаться в основном на то, что связь отражается глаголом.

Атрибут – свойство сущности.

Атрибутами сущности «Преподаватель» является номер, ФИО, дата рождения, должность.

Ключ сущности – это атрибут или набор атрибутов, используемый для идентификации экземпляра сущности.

Ключ связи – набор ключей сущностей, которые соединяются этой связью.

Ключом связи «Читает» является набор сущностей П и К <НП, НК>.

К
аждый преподаватель читает 1 курс, каждый курс читается одним преподавателем.

Каждый преподаватель читает 1 курс, каждый курс читается не более, чем одним преподавателем.

Каждый курс читается одним преподавателем. Каждый преподаватель читает не более одного курса.

Каждый преподаватель читает одновременно несколько курсов, но каждый курс читается не более, чем одним преподавателем.


Каждый преподаватель читает не более одного курса, каждый курс может читаться несколькими преподавателями.


9.Описание сложных объектов. Составные, обобщенные, агрегированные объекты

По степени сложности различают простые и сложные объекты.

Простой объект – объект, который рассматривается как неделимый.

Сложный объект – объект, который представляет собой объединение других объектов, также выделяемых в предметной области.

При разработке базы данных сначала исследуется предметная область (например, «Университет»). В ней выделяются основные объекты. Они могут быть реальными («Студент») или абстрактными («Дисциплина»). Каждый объект характеризуется набором свойств – атрибутов объекта (поля данных) . Для каждого объекта атрибуты заполняются определенными значениями. Атрибуты могут быть простыми и ключевыми.

Ключевой атрибут (ключ) – это отдельные элементы данных, по которым можно определить все остальные элементы данных («Номер зачетной книжки»). Ключ может быть простым или составным («Фамилия», «Имя», «Отчество»).

После определения основных объектов предметной области с помощью их ключевых атрибутов устанавливаются связи между этими объектами:

a) 1:1 ("один к одному») – каждому экземпляру объекта А соответствует только один экземпляр объекта В и наоборот (рисунок 17).

Рисунок 17 – Связь «один к одному»

b) 1:М («один ко многим») – каждому экземпляру объекта А может соответствовать 0, 1 или несколько экземпляров объекта В, однако каждому экземпляру объекта В соответствует только 1 экземпляр объекта А (рисунок 18).

Рисунок 18 – Связь «один ко многим»

c) М:М («многие ко многим») – каждому экземпляру объекта А соответствует 0, 1 или несколько экземпляров объекта В и наоборот (рисунок 19).

Рисунок 19 - Связь «многие ко многим»

Выделенные основные объекты предметной области с установленными связями между ними представляют собой инфологическую модель.

Отношения

Объект предметной области может быть представлен в виде таблицы-отношения – таблицы особого рода, у которой:

· каждая строка содержит информацию об одном экземпляре объекта (строка отношения - кортеж );

· все столбцы однородные, то есть все элементы в столбце имеют одинаковый тип и длину, имеют имя и содержат информацию об отдельном атрибуте объекта;

· каждый элемент представляет собой один элемент данных об объекте;

· все строки и столбцы уникальны (нет повторений);

· в таблицах нет пустых ячеек.

Базы данных, основанные на таблицах-отношениях, называются реляционными (relation - отношение). Набор отношений (таблиц) используется в БД для хранения информации об объектах реального мира и моделирования связей между ними. Например, для хранения объекта «студент» используют отношение СТУДЕНТ , в котором свойства объекта располагаются в столбцах таблицы, являющихся атрибутами объекта (таблица 8):

Таблица 8 – Отношение СТУДЕНТ


Список имен атрибутов отношения называется схемой отношения . Схему отношения СТУДЕНТ можно записать так:СТУДЕНТ = (Фамилия, Возраст, Группа).

Реляционная БД – набор взаимосвязанных отношений. Каждое отношение (таблица) в ЭВМ представляется в виде файла записей.

Над таблицами - отношениями можно выполнять восемь различных операций теории множеств и реляционной алгебры (объединение, выборка, проекция, пересечение, сложение, умножение, разность, деление). Вследствие этого из введенных (базовых) отношений можно получать много новых (вычисляемых) таблиц - отношений (отчетов, выборок, запросов и т.п.).

Благодаря тому, что информация в базах данных представлена в двух видах – хранимая информация (исходные, введенные таблицы) и вычисляемая информация (таблицы, полученные на основании исходных), можно существенно экономить память и ускорить процесс обработки этой информации.

Для создания простой и надёжной базы данных необходимо нормализовать отношения. Нормализация отношений – пошаговый процесс разложения отношений на более мелкие и простые. Не смотря на увеличение при этом количества отношений, операции доступа к данным существенно ускоряются благодаря улучшению корректности, устранению дублирования и обеспечению непротиворечивости данных в базе.

Существует несколько нормальных форм :

1-я нормальная форма. Отношение считается находящимся в первой нормальной форме, если все его атрибуты – неделимые (простые). К примеру, приведенное ниже на рисунке 20 отношение не нормализовано, поскольку содержит сложный атрибут Спорт . Чтобы привести это отношение к нормализованному виду, нужно избавиться от этого сложного атрибута.


Рисунок 20 – Приведение к первой нормальной форме

В полученном отношении ключ является составным, состоящим из атрибутов Фамилия и Вид спорта .

2-я нормальная форма . Отношение считается находящимся во второй нормальной форме, если все его атрибуты зависят от составного ключа в целом, а не от его частей. Следовательно, если отношение находится в первой нормальной форме и имеет простой, а не составной ключ, то оно автоматически находится и в первой, и во второй нормальной форме.

Например, в отношении ВЕДОМОСТЬ (рисунок 21), имеющем составной ключ «Студент, Дисциплина», атрибут Лектор зависит только от Дисциплины , а не от всего ключа. Это отношение можно нормализовать, «разбив» его на два отношения УСПЕВАЕМОСТЬ и ПРЕПОДАВАТЕЛЬ :

ВЕДОМОСТЬ = (Студент, Дисциплина, Лектор, Оценка)


УСПЕВАЕМОСТЬ = (Студент, Дисциплина , Оценка) ПРЕПОДАВАТЕЛЬ = (Дисциплина , Лектор)

Рисунок 21 – Приведение ко второй нормальной форме

3-я нормальная форма. Отношение считается находящимся в третьей нормальной форме, если устранены зависимости между не ключевыми атрибутами (транзитивные зависимости). Например, в отношении ПРЕДМЕТ = (Название, Лектор, Кафедра, Телефон) не ключевой атрибут Телефон зависит от не ключевого атрибута Кафедра .

Для устранения транзитивной зависимости необходимо «расщепить» исходное отношение на два ДИСЦИПЛИНА = (Название , Лектор, Кафедра) и ДАННЫЕ КАФЕДРЫ = (Кафедра , Телефон).

Дальнейшее упрощение таблиц связано с дальнейшим ограничением типов зависимости между атрибутами отношений.

После нормализации отношений и установления связей между ними формируется инфологическая модель предметной области. Ниже (на рисунке 22) представлен пример инфологической модели фирмы, оформляющей сделки с заказчиками через своих сотрудников-менеджеров:


Заказчик Фамилия И. О. № сделки Фамилия И. О. Должность Дата Адрес Стаж Фамилия И. О. менеджера Телефон Фамилия И. О. заказчика

Рисунок 22 – Модель фирмы

На основании инфологической модели разрабатывается модель данных, которая дает описание логической структуры базы данных на языке описания данных (ЯОД), – даталогическая модель (ДМ) .

Для привязки ДМ к среде хранения используется модель данных физического уровня – физическая модель (ФМ). На этом этапе физического проектирования базы данных осуществляется выбор типа носителя, разрабатывается формат хранимых записей и проектируются методы доступа к данным.

СУБД

После этого уже возможно формирование (заполнение) базы данных и непосредственно работа с ней. Работа с базами данных сводится к выполнению следующих операций:

1) запись (заполнение базы данных);

2) просмотр;

3) редактирование (добавление, удаление, исправление);

4) выборка (запросы, отчеты).

Эти операции накопления и манипулирования данными выполняет специальная программа – система управления базами данных (СУБД).

По технологии решения задач, выполняемых СУБД, базы данных можно разделить на два вида:

Централизованная БД (хранится целиком на ВЗУ одной вычислительной системы и, если система входит в состав сети, то возможен доступ к этой БД других систем);

Распределенная БД (состоит из нескольких, иногда пересекающихся или дублирующих друг друга БД, хранящихся на ВЗУ разных узлов сети).

СУБД предоставляет доступ к данным БД двумя способами:

Локальный доступ (предполагает, что СУБД обрабатывает БД, которая хранится на ВЗУ того же компьютера);

Удаленный доступ (это обращение к БД, которая хранится на одном из узлов сети).

Удаленный доступ может быть выполнен по технологии файл-сервер или клиент-сервер. Технология файл-сервер предполагает выделение одной из вычислительных систем, называемой сервером, для хранения БД. Все остальные компьютеры сети (клиенты) исполняют роль рабочих станций, которые копируют требуемую часть централизованной БД в свою память, где и происходит обработка. Технология клиент-сервер предполагает, что сервер, выделенный для хранения централизованной БД, дополнительно производит обработку запросов клиентских рабочих станций. Клиент посылает запрос серверу. Сервер пересылает клиенту данные, являющиеся результатом поиска в БД по ее запросу.

Система управления базами данных– совокупность программных и языковых средств.

Программные средства обеспечивают организацию ввода, обработки и хранения данных, а также обеспечивают взаимодействие всех частей системы при её функционировании (настройка, тестирование, восстановление).

Языковые средства обеспечивают взаимодействие пользователя с базой данных. К ним относятся:

  • языки манипулирования данными (ЯМД) – языки запросов к БД, представляющие собой систему команд для работы с данными (выборка, запрос, вставка, удаление и т.п.);
  • языки определения данных (ЯОД) – языки, предназначенные для создания схемы базы данных (описания типов данных, структуры базы, взаимодействия и связей между элементами).


Рисунок 22 - Схема взаимодействия пользователя с базой данных

Современная СУБД – прикладная программа, которая предназначена для облегчения работы неквалифицированного пользователя с БД. Он работает с ней на естественном языке без знания языка манипулирования данными и языка определения данных (рисунок 22). Одним из примеров такой СУБД является широко известный продукт фирмы Microsoft – СУБД Access.


Связи между объектами.

Наименование параметра Значение
Тема статьи: Связи между объектами.
Рубрика (тематическая категория) Связь

В реальном мире особенно в сложных системах между предметами существуют различные отношения. При моделировании предметы представляются как объекты, а отношения между ними как связи. Каждый типсвязи в модели имеет свое имя. В графической форме связь отображается в виде линии между связанными объектами с указанием идентификатора связи.

Существует три вида элементарных связей: один-к-одному (рис. 4.1.), один-ко-многим (рис. 4.2.) и многие-ко-многим (рис. 4.3.).

Связь один-к-одному существует, когда один экземпляр одного объекта связан с единственным экземпляром другого. Связь один-к-одному обозначается стрелками ←или→.

Руководит

Рис. 4.1. Пример связи ʼʼодин-к-одномуʼʼ.

Связь один-ко-многим существует, когда один экземпляр первого объекта связан с более чем с одним экземпляром второго объекта͵ но каждый экземпляр второго объекта связан только с одним экземпляром первого. Такая связь изображается двойной стрелкой →→.

Состоит из

Рис. 4. 2. Пример связи ʼʼодин-ко-многимʼʼ.

Связь многие-ко-многим существует, когда каждый экземпляр первого объекта связан с одним или большим количеством экземпляров второго, и каждый экземпляр второго связан с одним или многими экземплярами первого. Этот тип связи изображается двусторонней стрелкой ↔.

Изучает(ся)

Рис. 4.3. Пример связи ʼʼмногие-ко-многимʼʼ.

Помимо множественности, связи могут подразделяться на безусловные и условные. В безусловной связи участвует каждый экземпляр объекта. В условной связи принимают участие не всœе экземпляры объекта. Связь должна быть условной как с одной, так и с обеих сторон.

Все связи в информационной модели требуют описания, ĸᴏᴛᴏᴩᴏᴇ, как минимум, включает:

‣‣‣ идентификатор связи;

‣‣‣ вид связи (ее множественность и условность).

Элементарные связи являются составными частями структур связей . Безусловная последовательность связей один-к-одному принято называть структурой типа очередь и графически отображена на рис.4.4.а. Обобщением структуры типа очередь является циклическая структура, изображенная на рис. 4.4.б.

Очень важную роль играет древовидная информационная модель, являющаяся одной из самых распространенных типов классификационных структур.
Размещено на реф.рф
Древовидная связь является безусловной связью типа один-ко-многим и графически изображена на рис. 4.4. в. Особенностью такой структуры является то, что каждый объект может иметь не более одного предка, произвольное количество потомков. Объект, который не имеет потомков, называют листовым. Иерархическое дерево начинается с одного объекта͵ называемого корневым объектом. Очень важно, что каждый объект должен иметь свое уникальное имя или идентификатор.
Размещено на реф.рф
Эту структуру связи еще называют иерархической. На рис. 4.4. в. прямоугольник R является корневым объектом. Объекты B1,. . ., B8 являются листовыми. Иерархическая модель довольно удобна для представления предметных областей, так как иерархические отношения довольно часто встречаются между сущностями реального мира. Но иерархическая модель не поддерживает отношения ʼʼмногие ко многимʼʼ, когда множество объектов одного типа связаны со множеством объектов другого типа. Предположим, что требуется построить модель отношения между множеством преподавателœей и множеством предметов. Для моделирования таких отношений иерархическая древовидная структура не подходит.

Z
В
А
а) . . .
Z
B
б)
C

R
в)
A1
A2 A@A@
A3
A4
B1
B4
B5
B6
B7
B8

Рис.4.4. Информационные модели типа ʼʼочередьʼʼ (а), ʼʼциклʼʼ (б), ʼʼдеревоʼʼ (в).

Вторая фаза анализа предметной области состоит в выборе информационных объектов, задании необходимых свойств для каждого объекта, выявлении связей между объектами, определении ограничений, накладываемых на информационные объекты, типы связей между ним, характеристики информационных объектов.

При выборе информационных объектов необходимо ответить на ряд вопросов:

1. На какие таблицы можно разбить данные, подлежащие хранению в БД?

2. Какое имя можно присвоить каждой таблице?

3. Какие наиболее интересные характеристики (с точки зрения пользователя) можно выделить?

4. Какие имена можно присвоить выбранным характеристикам?

В нашем случае предполагается завести следующие таблицы (рис 4):


Выделим связи между информационными объектами (рис.5)



В ходе этого процесса необходимо ответить на следующие вопросы:

1. Какие типы связей между информационными объектами?

2. Какое имя можно присвоить каждому типу связей?

3. Каковы возможные типы связей, которые могут быть использованы впоследствии?

Попытка задать ограничения на объекты, их характеристики и связи приводит к необходимости ответа на следующие вопросы:

1. Какова область значений для числовых характеристик?

2. Каковы функциональные зависимости между характеристиками одного информационного объекта?

3. Какой тип отображения соответствует каждому типу связей?

При проектировании БД существуют взаимосвязи между информационными объектами трех типов: «один к одному», «один ко многим», «многие ко многим» (рис.6).


Например:

Построение концептуальной модели

В простых случаях для построения концептуальной схемы используют традиционные методы агрегации и обобщения. При агрегации объединяются информационные объекты (элементы данных) в один в соответствии с семантическими связями между объектами. Например, урок истории в 10 «а» классе проводится в кабинете №7, начало в 9-30. Методом агрегации создаем информационный объект (сущность) РАСПИСАНИЕ со следующими атрибутами: «класс», «предмет», «кабинет», «время». При обобщении информационные объекты (элементы данных) объединяются в родовой объект (рис.7):

Выбор модели диктуется прежде всего характером предметной области и требованиями к БД. Другим немаловажным обстоятельством является независимость концептуальной модели от СУБД, которая должна быть выбрана после построения концептуальной схемы.

Модели «сущность-связь», дающие возможность представлять структуру и ограничения реального мира, а затем трансформировать их в соответствии с возможностями промышленных СУБД, являются весьма распространенными.

Под сущностью понимают основное содержание того явления, процесса или объекта, о котором собирают информацию для БД. В качестве сущности могут выступать место, вещь, личность, явление и т.д. При этом различают тип сущности и экземпляр сущности. Под типом сущности обычно понимают набор однородных объектов, выступающих как целое. Понятие «экземпляр сущности» относится к конкретному предмету. Например:

Тип сущности - ученик

Экземпляр сущности - Иванов, Петров, Сидоров и др.

В нашем примере Школа, Класс, Предметы, Ученики, Учителя, Оценки – сущности. Проанализируем связи между сущностями (рис.8).

Теперь можно перейти к проектированию информационной (концептуальной) схемы БД (атрибуты сущностей на диаграмме не показаны) (рис.9).


принадлежит Школа
Класс Учится Ученик
работает изучает
Учитель Преподает Предмет
экзамен
Ведомость

Логическое проектирование

Логическое проектирование представляет собой необходимый этап при создании БД. Основной задачей логического проектирования является разработка логической схемы, ориентированной на выбранную систему управления базами данных. Процесс логического проектирования состоит из следующих этапов:

1. Выбор конкретной СУБД;

2. Отображение концептуальной схемы на логическую схему;

3. Выбор языка манипулирования данными.

Выбор конкретной СУБД

Одним из основных критериев выбора СУБД является оценка того, насколько эффективно внутренняя модель данных, поддерживаемая системой, способна описать концептуальную схему. Системы управления базами данных, ориентированные на персональные компьютеры, как правило поддерживают реляционную или сетевую модель данных. Подавляющее большинство современных СУБД – реляционные.

Конструирование баз данных на основе реляционной модели имеет ряд важных преимуществ перед другими моделями

· Независимость логической структуры от физического и пользовательского представления.

· Гибкость структуры базы данных – конструктивные решения не ограничивают возможности разработчика БД выполнять в будущем самые разнообразные запросы.

Так как реляционная модель не требует описания всех возможных связей между данными, впоследствии разработчик может задавать запросы о любых логических взаимосвязях, содержащихся в базе, а не только о тех, которые планировались первоначально.

Диаграмма ER-типа:

Упрощения:

1. Рассматриваются только те жители, которые имеют квартиру.

2. Житель может быть зарегистрирован только в одной квартире.

3. Учитываются только населенные квартиры, в которых зарегистрированы жители.

4. В одной квартире могут быть зарегистрированы несколько жителей.

5. Для одной квартиры один номер телефона.

6. Не во всякой квартире может быть телефон.

7. Имеются жители без источника дохода (дети).

8. У одного жителя может быть несколько источников дохода.

9. Разные виды дохода у разных жителей.

10. Имеются виды доходов, которые не используются.

Конец работы -

Эта тема принадлежит разделу:

Сравнение однотабличной и многотабличной баз данных

На сайте сайт читайте: "сравнение однотабличной и многотабличной баз данных"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Компоненты БнД
Словарь данных – «хранилище» метаинформации. Метаинформация – информаци

Этап определения подсхем
В некоторых СУБД имеется возможность описать логическую структуру БД с точки зрения конкретной группы пользователей. Такая модель называется внешней, а ее описание – подсхе

Инфологическое моделирование предметной области. Состав инфологической модели (ИЛМ)
1-2. Описание предметной области представляется с помощью какой-либо знаковой системы, поэтому в

Описание объектов и их свойств. Разновидности свойств объектов
Класс объектов – совокупность объектов, обладающих одинаковым набором свойств. Классы объектов могут быть как материальными, так и абстрактными (например, предметы, по кот

Диаграмма ER-типа
Тип связи 1 к 1. Класс принадлежности объектов и для П и для К необязател

Разновидности сложных объектов
1. Составной объект. 2. Обобщенный объект. 3. Агрегированный объект. Составной объект

Определение состава БД
Один из подходов к определению состава БД – принцип синтезирования. Суть:В БД должны храниться только исходные показатели. Все производные показатели долж

Разновидности даталогических моделей (ДЛМ)
По способу установления связей между данными различают следующие модели: Реляционная модель, Иерархическая модель, Сетевая модель, Объектно-ориентированная модель. Реляцио

Индексация файлов (таблиц) в БД. Индексные файлы и индексные ключи
Для ускорения доступа к информации в файле осуществляется индексирование файла. В качестве индексного ключа при индексации используется атрибут или набор атрибутов, определенный в отношении. В част

Метод проектирования РБД на основе ИЛМ (правила 1-12)
1. Для каждого простого объекта и его единичных свойств строится отношение, атрибуты которого являются идентификаторами объекта и реквизиты соответствуют каждому из единичных свойс

Определение состава БД и отношений
Принцип синтезирования: В состав БД включают атрибуты всех сущностей + вычисляемый доход SumD. БД состоит из 5 отношений: PERSON (Nom, FIO, Rdate, Pol, S

Сравнение однотабличной и многотабличной баз данных
Могут возникать проблемы вставки, обновления, удаления. Проблема вставки В любой БД не должно быть полей с неопределенными или пустыми значениями. Например: для од

Structured Query Language
Конкретные реализации SQL учитывают требования стандарта, но предоставляют и дополнительные возможности (SQL1, SQL2(1992), SQL3(1999)) SQL можно использовать в 2-х режимах: 1. Инт

Предложение Select
В качестве ТРЗ может быть имя столбца, константа, выражение. Имя столбца идентифицирует один из столбцов, содержащихся в таблице, которая указана в предложении FROM. Оно может быть указано


Указывает, какие строки следует отбирать. Задается условие поиска, как критерий отбора. Виды условий поиска: 1. Сравнение. =, <>, <, >, <=, >=. 2. Прове

Составные условия поиска. Таблицы истинности
AND true false null OR true

Агрегатные функции языка SQL
Итоговые запросы можно составить из различных операторов и агрегатных функций языка. Все функции принимают в качестве аргумента какой-либо столбец данных целиком, а возвращает одно, подытоженное зн

Запросы с группировкой и ограничения на них
Select ADR, AVG(SUMD) FROM PERSON GROUP BY ADR 1. Сведения о жителях в таблице Person делятся на группы – по одной группе на каждую квартиру. В каждой группе все квартиры имеют 1

Ограничение на список возвращаемых столбцов
В запросе с группировкой все элементы списка возвращаемых столбцов должны иметь одно и то же значение для каждой группы слов. => В качестве элементов списка возвращаемых столбцов можно использов

Процедура выполнения запроса, в составе которого имеется связанный подзапрос
1) Выбрать строку из таблицы, имя которой указано в главном запросе. 2) Выполнить вложенный запрос с учетом значений, содержащихся в выбранной строке 3) Вычислить условия поиска г

Проверка на существование результатов вложенного запроса
SELECT *FROM PERSON WHERE EXISTS (SELECT ID FROM HAVE_D, PROVIT WHERE PROVIT.ID

Добавление новых элементов
Наименьшей единицей информации, которую можно добавить в базу данных, является одна строка. Существует 2 способа добавления новых строк: 1) однострочный оператор INSERT, включающи

Удаление существующих данных
Наименьшей единицей информации, которую можно удалить из БД является 1 строка. Для удаления строк из 1-й таблицы используется оператор DELETE. DELETE FROM – имя_таблицы -------------------

Условия уникальности данных
Возьмем таблицу PERSON, опишем ее структуру: CREATE TABLE PERSON (INTERBASE) (NOM INTEGER NOT N

Изменение определения таблицы
ALTER TABLE служит для: 1. добавить определение нового столбца. 2. изменить значение по умолчанию. 3. изменить или удалить первичный ключ таблицы.

Индексы
Индекс –это средство, которое обеспечивает быстрый доступ к строкам таблицы на основе значения 1-го или нескольких столбцов. В индексе хранятся значения данных и указатели на строк



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: