Метод ветвей и границ пример решения. Методы решения труднорешаемых задач

Метод ветвей и границ относится к комбинаторным методам решения целочисленных задач и применим как к полностью, так и к частично целочисленным задачам.

Суть метода ветвей и границ – в направленном частичном переборе допустимых решений. Будем рассматривать . Вначале она решается без ограничений на целочисленность. При этом находится верхняя граница F(x), так как целочисленное решение не может улучшить значение функции цели.

Далее в методе ветвей и границ область допустимых значений переменных (ОДЗП) разбивается на ряд непересекающихся областей (ветвление), в каждой из которых оценивается экстремальное значение функции. Если целое решение не найдено, ветвление продолжается.

Ветвление производится последовательным введением дополнительных ограничений. Пусть x k – целочисленная переменная, значение которой в оптимальном решении получилось дробным. Интервал [β k ] ≤ x k ≤ [β k ]+1 не содержит целочисленных компонентов решения. Поэтому допустимое целое значение x k должно удовлетворять одному из неравенств x k ≥[β k ]+1 или x k ≤[β k ]. Это и есть дополнительные ограничения. Введение их в методе ветвей и границ на каждом шаге порождает две не связанные между собой подзадачи. Каждая подзадача решается как задача линейного программирования с исходной целевой функцией. После конечного числа шагов будет найдено целочисленное оптимальное решение.

Применение метода ветвей и границ рассмотрим на конкретном примере.

Пример 1. Методом ветвей и границ F(x) = 2x 1 + 3x 2 при ограничениях

3x 1 +4x 2 ≤24

2x 1 +5x 2 ≤22

x 1,2 ≥0 - целые

1-й шаг метода ветвей и границ. с отброшенными условиями целочисленности с помощью симплекс-метода (табл. 1 – 3).

По данным табл. 3 запишем оптимальное нецелое решение

; x * 2 =2 4 ; F max =16 6
7 7

Таблица 1 - симплекс-таблица для задачи ЛП

Таблица 2 - симплекс-таблица для задачи ЛП

Таблица 3 - симплекс-таблица для задачи ЛП

Графическая интерпретация задачи приведена на рис. 1. Здесь ОДЗП представлена четырехугольником ABCD, а координаты вершины С совпадают с x * 1 и x * 2 . Обе переменные в оптимальном решении являются нецелыми, поэтому любая из них может быть выбрана в качестве переменной, инициирующей процесс ветвления.

Пусть это будет x 2 . Выбор x 2 порождает две подзадачи (2 и 3), одна из них получается путем добавления ограничения x 2 ≥3 к исходной задаче, а другая – путем добавления ограничения x 2 ≤2. При этом ОДЗП разбивается на две заштрихованные области (рис. 1), а полоса значений 2 < x 2 < 3 исключается из рассмотрения. Однако множество допустимых целочисленных решений сохраняется, порожденные подзадачи содержат все целочисленные решения исходной задачи.

Рисунок 1 - графическая интерпритация решения примера методом ветвей и границ

2-й шаг метода ветвей и границ. Осуществляется выбор одной из обозначенных ранее подзадач. Не существует точных методов определения, какой из подзадач отдать предпочтение. Случайный выбор приводит к разным последовательностям подзадач и, следовательно, к различным количествам итераций, обеспечивающих получение оптимального решения.

Пусть вначале решается подзадача 3 с дополнительным ограничением x 2 ≤2 или x 2 + x 5 = 2 . Из табл. 3 для переменной x 2 справедливо следующее выражение -2/7x 3 +3/7x 4 +x 2 =18/7 или x 2 =18/7+2/7x 3 -3/7x 4 , тогда 2/7x 3 -3/7x 4 +x 5 =-4/7 . Включаем ограничение в табл. 3, при этом получим новую таблицу (табл. 4).

Осуществляя оптимизацию решения, переходим к табл. 5, которой соответствует решение

; x * 2 =2 ; F max =16 2
3

Переменная x 1 нецелая, поэтому ветвление необходимо продолжить; при этом возникают подзадачи 4 и 5 с ограничениями x 1 ≤5 и x 1 ≥6 соответственно. Полоса значений 5 < x 1 < 6 исключается из рассмотрения.

Таблица 5 - симплекс-таблица для задачи ЛП

3-й шаг метода ветвей и границ. Решаются подзадачи 4 и 5. Из рис. 1 видно, что оптимальное целочисленное решение подзадачи 4 достигается в вершине К с координатами x * 1 =5, x * 2 =2, однако это не означает, что найден оптимум исходной задачи. Причиной такого вывода являются еще не решенные подзадачи 3 и 5, которые также могут дать целочисленные решения. Найденное целочисленное решение F = 16 определяет нижнюю границу значений целевой функции, т.е. меньше этого значения оно быть не должно.

Подзадача 5 предполагает введение дополнительного ограничения x 1 ≥6 в подзадачу 3 . Графическое решение на рис. 1 определяет вершину L с координатами x * 1 =6, x * 2 =3/2 , в которой достигается оптимальное решение подзадачи 5: F max = 16.5 . Дальнейшее ветвление в этом направлении осуществлять нецелесообразно, так как большего, чем 16, целого значения функции цели получить невозможно. Ветвление подзадачи 5 в лучшем случае приведёт к другому целочисленному решению, в котором F = 16.

4-й шаг метода ветвей и границ. Исследуется подзадача 2 с ограничением x 2 ≥3, находится её оптимальное решение, которое соответствует вершине М (рис. 1) с координатами x * 1 =3.5, x * 2 =3. Значение функции цели при этом F max =16, которое не превышает найденного ранее решения. Таким образом, поиск вдоль ветви x 2 ≥3 следует прекратить.

Отметим, что алгоритм метода ветвей и границ является наиболее надёжным средством решения целочисленных задач, он положен в основу большинства прикладных программ для ПЭВМ, используемых для этих целей.

Для решения задач линейного программирования имеется широкий набор разнообразных машинных программ, которые избавляют от трудоёмкого процесса вычислений вручную. Однако интерпретация информации, выведенной на печать, невозможна без чёткого представления о том, почему и как работает .

Требуется решить следующую задачу:

max 2х 1 + х 2

5х 1 + 2х 2 10

3х 1 + 8х 2 13

Вначале решим эту задачу графически без ограниченийцелочисленности. Решение может быть найдено как симплекс-методом, так и графически. Найдем его графически (рисунок 4). Координаты точки оптимума можно найти, решив систему уравнений: 5х 1 + 2х 2 = 10 х 1 =27/17

3х 1 + 8х 2 = 13 х 2 =35/34

Х G = (27/17;35/34), z G =143/34

Рисунок 4 - Графическое решение задачи без ограничений целочиелейности

Начнем строить дерево, первая вершина которого будет соответствовать всей ОДП нецелочисленной задачи (G), а ее оценка будет равна z G (рис.5).

Рисунок 5 - Схема метода ветвей и границ

Полученный план не является целочисленным, поэтому возьмем его произвольную нецелочисленную компоненту, например, первую (х 1 Z; [х 1 ] = = 1) и разобьем ОДП на две части следующим образом:

G 1 ={XG: х 1 1}

G 2 ={XG: х 1 2}

Это означает, что в область G 1 войдут все точки из G, у которых абсцисса не больше 1, а в G 2 - у которых она не меньше 2. Точки с дробными значениями абсциссы от 1 до 2 исключены из рассмотрения.

Изобразим эти области на графике (рисунок 6).

Из рисунка 6 видно, что G 2 представляет собой одну точку Х G 2 =(2;0), следовательно, на этом множестве оптимум задачи равен 4 ( 2 =4).

План Х G 2 является целочисленным, следовательно, решение целочисленной задачи уже, возможно, найдено. Однако, следует еще найти оценку множества G 1 |. Она может оказаться не менее 4 (но обязательно не более 143/34). Если это так, то нужно проверить, не является ли целочисленным решение задачи на G 1. Если оно целое, то является решением задачи, а если нет, то процесс решения необходимо продолжить, разбивая G 1

Рисунок 6 - Разбиение множества на части

На G 1 точку оптимума можно найти, решив систему уравнений:

х 1 = 1 х 1 =1

3х 1 + 8х 2 = 13 х 2 =5/4

Х G 1 = (1; 5/4), z G =13/4

Оценка меньше 4, следовательно, решением задачи является Х * =Х G 2 =(2;0),z * =4.

3.4 Решение задачи целочисленного линейного программирования методом ветвей и границ с помощью ппп «Система деловых задач»

ЗЦЛП можно решить с помощью пакета прикладных программ “Quantitative Systems for Business” ("Система деловых задач") . Соответствующая программа запускается файлом intlprog.ехе. Она решает как частично, так и полностью целочисленные задачи линейного программирования с числом переменных и ограничений до 20, используя метод ветвей и границ. В том числе решаются и задачи с булевыми переменными (т.е. с переменными, которые могут принимать одно из двух значений - 0 или 1; как, например, в задаче о назначениях ). По умолчанию все переменные неотрицательны. Программа позволяет ввести целочисленные границы для переменных, не включая их в общее число ограничений. По умолчанию нижняя граница 0, а верхняя 32000. Если необходимо установить нецелочисленные границы, их вводят, как обычные ограничения.

Если в задаче имеется несколько оптимальных планов, из них находится только один. Информация о наличии множественного решения не выводится.

Режим 2 (ввод новой задачи) включает три этапа. На первом этапе осуществляют ввод информации о размерности задачи, направлении экстремизации и именах переменных (по умолчанию XI, Х2,..., Хn).

На втором этапе необходимо определить, являются ли все переменные целочисленными, являются ли все переменные булевыми, и будут ли вводиться границы для переменных. При ответе «нет» на первый вопрос или «да» на третий, выводится таблица (рисунок 7):

Введите предел и границы для переменных

(По умолчанию значения нижней границы 0 и верхней границы 32000)

№ перем. Имя Предел (I/C) Нижняя гр. Верхняя гр.

1 X 1 <0 > <0 >

2 X 2 <0 > <0 >

Рисунок 7 - Определение пределов и границ

Установив I (integer) в столбце «Предел», на переменную накладывают ограничение целочисленности. В противном случае (С, continuous) -переменная может принимать и нецелые значения, т.е. является непрерывной.

Значения границ округляются до целых. Если нижняя больше верхней, выдается сообщение об ошибке.

На третьем этапе вводятся коэффициенты при переменных и знаки в ограничениях.

В меню решений имеется возможность исправить целочисленную погрешность (по умолчанию она 0,001).

Решение задачи методом ветвей и границ не сопровождается графической иллюстрацией (изображением дерева) в программе, но для пояснения алгоритма приведем такую иллюстрацию на рисунок 8.

Алгоритм метода ветвей и границ, реализованный в данной программе, несколько отличается от рассмотренного выше в методических указаниях и является менее эффективным в том смысле, что может потребовать большего числа итераций. Тем не менее, его полезно рассмотреть, чтобы наглядно проиллюстрировать разницу в подходах. Кроме того, во многих учебных пособиях применение метода ветвей и границ рассматривается именно на примере данной его модификации.

Основное различие заключается в том, что здесь на каждом этапе не выбирается наиболее «перспективное» подмножество. После того, как очередное подмножество разбито на две части, не подсчитывают сразу оценку обеих частей, а вместо этого каждая ветвь дерева последовательно рассматривается до конца. Исходная ОДП разбивается на подмножества по первой нецелочисленной переменной в оптимальном плане нецелочисленной задачи. Затем рассматривают ту вершину, которой соответствует знак , разбивают соответствующее подмножество так же, как и исходную ОДП, снова рассматривают ту вершину, которой соответствует знак , и т.д. до тех пор, пока не будет получен целочисленный план, или задача окажется неразрешимой. Только после этого возвращаются к рассмотрению вершин, которым соответствовал знак .

При этом на каждой итерации выводится информация о текущих целочисленных границах (определяющих рассматриваемое подмножество), оптимальном плане нецелочисленной задачи, о том, является ли он целочисленным, о значении целевой функции (ЦФ) на нем и о величинах ZL или ZU. Для задачи на максимум выводится значение нижней границы ZL, а на минимум верхней ZU. До тех пор, пока не найдено какое-нибудь целое решение, ZL =-1*10 20 , а ZU = 1*10 20 .

После нахождения целочисленного плана нельзя сразу судить о том, является ли он оптимальным, так как рассматривались не наиболее перспективные вершины. Но можно в уверенностью утверждать, что искомый максимум не меньше (а минимум не больше) значения целевой функции на целочисленном плане. Поэтому значения границ ZL и ZU изменяются (если только ранее не был найден целочисленный план с не меньшим (не большим) значением целевой функции).

Ветви с оценкой, меньшей ZL или большей ZU, не рассматриваются. План, соответствующий границе, запоминается. После того, как рассмотрены или исключены из рассмотрения все подмножества, этот план можно считать оптимальным.

Поясним это на примере (рис.8):

max 3х 1 + 2х 2

7х 1 + 5х 2 35

9х 1 + 4х 2 36

На первой итерации найдено нецелочисленное решение Х=(2,353; 3,706). Вся ОДП (множество G) разбивается на два подмножества - G 1 и G 2 следующим образом:

G 1 ={XG: х 1 3}

G 2 ={XG: х 1 2}.

На второй итерации решают задачу на подмножестве G 1 . Полученное решение также нецелочисленно. Далее, вместо того, чтобы рассмотреть подмножество G 2 , продолжают рассматривать G 1 . В соответствующем плане выбирают первую по счету нецелочисленную компоненту (это х 2) и разбивают G 1 на G 3 и G 4 . На третьей итерации рассматривают G 3 - на этом подмножестве допустимых планов нет. Только после этого на четвертой итерации рассматривается вторая ветвь, выходящая из G 1 - подмножество G 4 . Далее аналогично.

На пятой итерации на подмножестве G 5 найдено целочисленное решение, которому соответствует значение целевой функции 12. На следующей итерации это значение присваивается величине ZL, которая до этого была равна -1*10 20 . Соответствующий план запоминается - он может оказаться оптимальным. Но на шестой итерации снова получен целочисленный план, целевая функция на котором равна 13 (больше 12) - ZL снова изменяется, запоминается новый план.

После этого, на седьмой итерации, переходят к рассмотрению подмножества G 2 , которое разбивают на G 7 и G 8 .

На тринадцатой итерации (подмножество G 14) снова найдено целочисленное решение Х=(0; 7), целевая функция на нем равна 14. Снова изменяется ZL и запоминается соответствующий план.

План, найденный на четырнадцатой итерации, также является целочисленным, но его не запоминают, так как 13<14 (ZL=14). План, найденный на пятнадцатой итерации, тоже, к сожалению, не запоминается, так как 1414, а программа ставит своей целью найти хотя бы одно решение.

Наличие других оптимальных планов здесь игнорируется.

Таким образом, решение Х=(0; 7) получено за 15 итераций.

Отметим, что если бы использовался более эффективный вариант метода ветвей и границ, схема которого описана в методических указаниях, то после второй итерации произошел бы сразу переход к седьмой. В самом деле, если рассматривать значения целевой функции на соответствующих планах в качестве оценки подмножеств, то оценка G 2 выше. Поэтому итерации с 3-ей по 6-ю оказываются лишними, и общее число итераций могло быть равно 11.

Метод ветвей и границ -- один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов.

Метод ветвей и границ состоит в следующем: множество допустимых решений (планов) некоторым способом разбивается на подмножества, каждое из которых этим же способом снова разбивается на подмножества. Процесс продолжается до тех пор, пока не получено оптимальное целочисленное решение исходной задачи.

Алгоритм решения:

Первоначально находим симплексным методом или методом искусственного базиса оптимальный план задачи без учета целочисленности переменных. Пусть им является план X 0 . Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи и

Если же среди компонент плана X 0 имеются дробные числа, то X 0 не удовлетворяет условию целочисленности и необходимо осуществить упорядоченный переход к новым планам, пока не будет найдено решение задачи. Покажем, как это можно сделать, предварительно отметив, что F(X 0) F(X) для всякого последующего плана X.

Предполагая, что найденный оптимальный план X 0 не удовлетворяет условию целочисленности переменных, тем самым считаем, что среди его компонент есть дробные числа. Пусть, например, переменная приняла в плане X 0 дробное значение. Тогда в оптимальном целочисленном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу, либо больше или равно ближайшему большему целому числу. Определяя эти числа, находим симплексным методом решение двух задач линейного программирования:

Найдем решение задач линейного программирования (I) и (II). Очевидно, здесь возможен один из следующих четырех случаев:

  • 1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нем и дают решение исходной задачи.
  • 2. Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи, аналогичные задачам (I) и (II).
  • 3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции на этих планах и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и он вместе со значением целевой функции на нем дает искомое решение.

Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, необходимо построить две задачи, аналогичные (I) и (II).

4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда вычисляем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и строим две задачи, аналогичные (I) и (II).

Таким образом, описанный выше итерационный процесс может быть представлен в виде некоторого дерева, на котором исходная вершина отвечает оптимальному плану Х 0 задачи (1)-(3), а каждая соединенная с ней ветвью вершина отвечает оптимальным планам задач (I) и (II). Каждая из этих вершин имеет свои ветвления. При этом на каждом шаге выбирается та вершина, для которой значение функции является наибольшим. Если на некотором шаге будет получен план, имеющий целочисленные компоненты, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.

Итак, процесс нахождения решения задачи целочисленного программирования (1)-(4) методом ветвей и границ включает следующие основные этапы:

  • 1. Находят решение задачи линейного программирования (1)-(3).
  • 2. Составляют дополнительные ограничения для одной из переменных, значение которой в оптимальном плане задачи (1)-(3) является дробным числом.
  • 3. Находят решение задач (I) и (II), которые получаются из задачи (1)-(3) в результате присоединения дополнительных ограничений.
  • 4. В случае необходимости составляют дополнительные ограничения для переменной, значение которой является дробным, формулируют задачи, аналогичные задачам (I) и (II), и находят их решение. Итерационный процесс продолжают до тех пор, пока не будет найдена вершина, соответствующая целочисленному плану задачи (1)-(3) и такая, что значение функции в этой вершине больше или равно значению функции в других возможных для ветвления вершинах.

Описанный выше метод ветвей и границ имеет более простую логическую схему расчетов, чем метод Гомори. Поэтому в большинстве случаев для нахождения решения конкретных задач целочисленного программирования с использованием ЭВМ применяется именно этот метод.

целочисленный программирование задача коммивояжер ранец

В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода для элементов разбиения выполняется проверка для выяснения, содержит данное подмножество оптимальное решение или нет. Для этого вычисляется нижняя оценка целевой функции на данном подмножестве.

Если оценка снизу не меньше рекорда (наилучшего из найденных решений), то подмножество может больше не рассматриваться. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы. Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д. Вычисление нижней границы является важнейшим элементом данной схемы.

Для каждой конкретной задачи целочисленного программирования (другими словами, дискретной оптимизации) метод ветвей и границ реализуется по-своему. Есть много модификаций этого метода.

Рассмотрим реализацию метода ветвей и границ для задачи коммивояжёра и задачи о рюкзаке.

Рассмотрим алгоритм Литтла (методом ветвей и границ) для задачи коммивояжера. Идею можно сформулировать следующим образом. В каждой строке матрицы расстояний находится минимальный элемент и вычитается из всех элементов соответствующей строки. Получается матрица, приведенная по строкам. Аналогично приводится матрица по столбцам. Получается матрица, приведенная по строкам и столбцам. Суммируя при приведении минимальные элементы, получим константу приведения, которая будет нижней границей множества всех допустимых гамильтоновых контуров. После находятся степени нулей для приведенной матрицы (сумма минимальных элементов строки и столбца, соответствующих этому нулю) и выбирается дуга , для которой степень нулевого элемента достигает максимального значения. Множество всех гамильтоновых контуров разбивается на два подмножества, одно из которых содержит дугу , второе эту дугу не содержит. После этого приводятся полученные матрицы гамильтоновых контуров и сравниваются нижние границы подмножества гамильтоновых контуров с целью выбора для дальнейшего разбиения множества с меньшей нижней границей. Процесс разбиения множеств на подмножества сопровождается построением дерева ветвлений. Сравнивая длину гамильтонова контура с нижними границами оборванных ветвей, выбирается для дальнейшего ветвления подмножество с нижней границей, меньшей полученного контура, до тех пор, пока не получен маршрут с наименьшей длиной или не становится ясно, что такого маршрута не существует.



Пример.

Пусть в задаче коммивояжера задана следующая матрица стоимостей переездов

Находим в каждой строке матрицы минимальный элемент и вычитаем его из всех элементов соответствующей строки. Получим матрицу, приведенную по строкам, с элементами

.

Если в матрице , приведенной по строкам, окажутся столбцы, не содержащие нуля, то приводим ее по столбцам. Для этого в каждом столбце матрицы выбираем минимальный элемент , и вычитаем его из всех элементов соответствующего столбца. Получим матрицу

,

каждая строка и столбец, которой содержит хотя бы один нуль. Такая матрица называется приведенной по строкам и столбцам.

Суммируя элементы и , получим константу приведения:

.

Находим степени нулей для приведенной по строкам и столбцам матрицы. Для этого мысленно нули в матице заменяем на знак и находим сумму минимальных элементов строки и столбца, соответствующих этому нулю. Записываем ее в правом верхнем углу клетки:

.

Выбираем дугу , для которой степень нулевого элемента достигает максимального значения

Разбиваем множество всех допустимых маршрутов на два подмножества:

– подмножество, содержащее дугу ;

– подмножество, не содержащее дугу

Для вычисления оценки затрат для маршрутов, включающих дугу , вычеркиваем в матрице строку и столбец и заменяем симметричный элемент на знак . Приводим полученную матрицу и вычисляем сумму констант приведения .

Начало развитию подхода, получившего название метод ветвей и границ, положила работа Ленд и Дойг (1960). Это, скорее, даже не метод, а концепция или процедурная оболочка, на основе которой стали разрабатывать алгоритмы решения целочисленных задач различной природы. Ценность предложенной идеи стала особенно заметна после появления первого точного алгоритма решения задачи коммивояжера, построенного по схеме ветвей и границ (Литтл с соавторами, 1963). Метод можно применять как к полностью, так и частично целочисленным задачам.

Суть идеи схожа с известной шуткой о ловле льва в пустыне: делим пустыню пополам; если льва нет в первой половине, ищем во второй, которую делим пополам и т. д. В отличии от льва оптимум не перемещается, и в этом смысле наша задача легче.

Метод заключается в построении дерева задач, корнем которого является исходная задача, возможно без условия целочисленности (НЗ). Нижележащие задачи порождаются вышележащими так, что их допустимые множества (ДМ) являются непересекающимися подмножествами ДМ вышележащей задачи. Рост дерева происходит за счет перспективных ветвей. Перспективность определяется по оценке критерия терминальной задачи ветвиV ирекорду Z. ОценкаV – это значение критерия, заведомо не хуже оптимального, аZ – достигнутое в процессе решения значение критерия исходной задачи (в качестве начального может приниматься значение, заведомо хуже оптимального). Значит, задача будет порождающей только при условии, что ее оценка лучше рекорда. При этом уровень, на котором находится задача, не имеет значения.

Рассмотрим метод применительно к линейной целочисленной задаче. Хотя нет каких-либо ограничений на число задач, непосредственно порождаемых перспективной, в алгоритмах, как правило, используется разбиение на две задачи, то есть строится бинарное дерево (рис. 7.5). При этом для целочисленных множеств выполняются соотношения

Очевидно, что если, например,V 22 окажется хуже рекорда илиD 22 =, правая ветвь обрывается (говорят также, что она прозондирована). Если же оценкаV 22 будет лучше Z , производится ветвление: множествоD 22 разбивается на 2 подмножества. Решение завершится, когда все ветви будут прозондированы.

Вид оценки зависит от направленности критерия: при максимизации используется верхняя оценка, при минимизации – нижняя. Последующее изложение метода будет относиться к задаче на максимум.

Для алгоритмической реализации схемы ветвей и границ необходимо решить два основополагающих вопроса:

    Каким образом разбивать перспективное множество на подмножества;

    Как определять верхнюю оценку критерия на рассматриваемом множестве.

Ответы на них зависят от типа задачи (частично или полностью целочисленная, имеет особые свойства или нет, с булевыми или не булевыми переменными). Ниже рассматривается общий случай.

Пусть известен диапазон возможных значений j -й переменной

0  х j d j ,

которая в непрерывном оптимальном решении оказалась нецелочисленной и равной x j * . Тогда целочисленное значение этой переменной может достигаться либо в интервале 0  х j
,либо в интервале
+1 х j d j , где
- целая часть (рис. 7.6).

Это соответствует разбиению непрерывного множестваD н на два непересекающихся подмножества D 1 н и D 2 н , объединение которых не равно D н . В то же время такое разбиение целочисленного множества удовлетворяет соотношениям (7.9). При этом целочисленные множества, как исходное, так и порожденные, включены в соответствующие непрерывные множества. Следовательно, поиск целочисленного решения на непрерывном множестве даст тот же результат, что и на целочисленном. Легко увидеть, что приведенное выделение подинтервалов по одной переменной приводит к разбиению исходного множества на два подмножества при любом числе переменных.

Теперь перейдем ко второму вопросу. Так как целочисленное множество является подмножеством соответствующего непрерывного, оптимальное значение критерия на непрерывном множестве всегда будет не меньше, чем на целочисленном. Поэтому в качестве верхней оценки V можно брать оптимальное значение критерия L * непрерывной задачи.

Выбор начального значения рекорда зависит от ситуации:

    если известно какое-либо целочисленное значение, то рекорд принимается равным критерию в этом решении;

    при положительности всех коэффициентов критерия можно взять нулевое значение рекорда;

    в иных случаях за начальное значение рекорда берется –М , где М- максимально представимое в компьютере число.

По ходу разбиения формируются порождаемые задачи, которые помещаются в список задач. Первоначальный список содержит только одну задачу – исходную задачу без условий целочисленности. И в последующем список будет содержать только непрерывные задачи.

Таким образом, базовый алгоритм, реализующий метод ветвей и границ, включает следующие шаги.


Приведенный алгоритм является базовым, так как не включает однозначных правил выбора задачи из списка и ветвящей переменной. Для частично целочисленных задач при выборе переменной для ветвления исключаются непрерывные переменные.

Пример 7.3 . Применим алгоритм ветвей и границ к задаче

L= 9x 1 + 5x 2 max;

3x 1 - 6x 2 1;

5x 1 +2x 2  28;

x j 0 , целые.

Отбрасывая условие цедочисленности, получаем непрерывную задачу, которую помещаем в список задач. Так как коэффициенты критерия положительны, начальное значение рекорда принимаем равным нулю. Берем из списка единственную задачу и решаем ее. Получаем оптимальное решение в вершине А (рис. 7.7):x 1 * =4,72; x 2 * =2,19 . Ветвление производим по переменнойx 1 . Добавляя к решенной задаче ограничение x 1 4, образуем задачу 2, а добавление x 1 5 дает задачу 3. Допустимые множества новых задач покзаны на рис. 7.7. Эти задачи помещаем в список задач. Решение задачи 2 достигается в точке В, а задачи 3 – в С. Весь ход решения исходной задачи представлен в виде дерева решений на рис. 7.10. Порядок решения задач из списка отражает счетчик итераций k . На 3-й итерации (задача 4) получено целочисленное решение со значением критерия 41 (точка D нарис. 7.8). Поэтому изменяется рекорд: Z =41.Задача 6 имеет нецелочисленное решение (вершина Е на рис. 7.9), задача 8 – целочисленное решение в точкеF. В результате после 7-й итерации рекорд становится равным 50.

Остальные задачи не имеют допустимых решений, то есть список задач исчерпывается и, таким образом, констатируем получение оптимального решения исходной задачи, равное решению непрерывной задачи 8.

Из приведенного дерева решений видно, что число задач в списке могло быть меньше при другом порядке решения задач. Действительно, если бы сначала были решены задачи правой ветви с рекордом Z= 50, то после решения задачи 2 не произошло бы ветвления, так как верхняя оценка оказалась бы ниже рекорда (V=L * =45,17<50).

Естественно возникает вопрос: а как на числе задач и дереве решений может отразиться выбор другой переменной для ветвления? Так, в нашем примере если после 1-й итерации произвести ветвление по переменнойx 2 , то получим дерево, показанное на рис. 7.11. Оно содержит на 2 задачи больше, чем на рис. 7.10. Конечно, оно может быть также другим при ином порядке решения задач.

Таким образом, число решаемых задач существенно зависит от выбора задачи из списка и переменной для ветвления.

Из алгоритма и приведенного примера следует, что ветвь обрывается по одной из трех причин:

    неразрешимость задачи;

    задача имеет целочисленное решение;

    верхняя оценка не больше рекорда.

Теперь сделаем ряд замечаний относительно метода ветвей и границ. Как уже отмечалось, в базовом алгоритме не оговариваются правила выбора задачи и переменной. В большинстве программных реализаций метода используются правила, основанные на эвристических оценках перспективности задач и переменных. В некоторых пакетах, например, "ЛП в АСУ" предлагается несколько вариантов управления процессом решения: от автоматического до ручного, в котором пользователь может сам делать выбор как задачи, так и переменной. Кроме того, алгоритмы, основанные на методе ветвей и границ, могут существенно отличаться в связи с учетом особенностей класса задач. Например, для задачи коммивояжера, определение оценки значительно упрощено (не требуется решать непрерывную линейную задачу).

Метода ветвей и границ имеет преимущества в сравнении с методом отсечений:

    накопление ошибок менее значительное, так как решение идет по разным ветвям;

    при принудительной остановке процесса решения высока вероятность получения целочисленного результата, но без установления его оптимальности;

    при решении непрерывных задач размеры симплекс-таблиц не увеличиваются.

Недостатки метода ветвей и границ:

    Нельзя оценить число задач, которые придется решать. Чем ближе снизу начальное значение рекорда и сверху оценка критерия задачи к искомому оптимальному значению критерия, тем меньше вершин будет иметь дерево решений, а значит, и затрат ресурсов. Однако завышение начального рекорда может привести к неразрешимости задачи, что всегда следует иметь в виду.

    Отсутствие признака оптимальности. Оптимальное решение может быть получено задолго до останова алгоритма, но обнаружить это в общем случае нельзя. Оптимальность устанавливается только по исчерпании списка задач.

Очевидно, что эффективность метода повышается с уменьшением диапазонов значений переменных и числа нецелых переменных в решении первой непрерывной задачи.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: