Курс лекций по сетевым технологиям. Режимы QoS радиоинтерфейса

Часть IV

В настоящее время количество приложений, передающих трафик, чувствительный к задержкам, значительно возросло. Причем тенденция роста таких приложений и соответственно их пользователей не только сохраняется, но и набирает обороты. Для решения вопросов передачи указанного трафика было разработано несколько стандартов и спецификаций, о которых и пойдет речь в этой статье.

Стандарты IEEE 802.1Q и IEEE 802.1р

Задача рабочих групп, трудящихся над стандартами p и Q, - дать сетевой отрасли единый метод передачи по сети информации о приоритете кадра и его принадлежности к ВЛВС. Были разработаны две спецификации маркировки пакетов:

  • первая, одноуровневая, определяет взаимодействие виртуальных сетей по магистрали Fast Ethernet;
  • вторая, двухуровневая, касается маркировки пакетов в смешанных магистралях, включая Token Ring и FDDI.

Первая спецификация с самого начала нуждалась лишь в минимальной доработке, так как она, по сути, представляет собой технологию тэговой коммутации, продвигаемую на рынок усилиями Cisco. Задержки с принятием стандарта 802.1Q объясняются необходимостью детальной проработки куда более сложной «двухуровневой» спецификации.

Стандарт должен был удовлетворять следующим достаточно высоким требованиям:

  • масштабируемости на уровне обмена пакетами между коммутаторами;
  • преемственности на уровне существующих конечных приложений;
  • адаптации на уровне существующих протоколов и таблиц маршрутизации;
  • экономичности в плане утилизации высокоскоростных магистралей;
  • совместимости с ATM, особенно с эмуляцией ЛВС;
  • управляемости процесса маркировки пакетов.

В соответствии со стандартом 802.1Q к кадру Ethernet добавлены четыре байта. Эти 32 бита содержат информацию по принадлежности кадра Ethernet к ВЛВС и о его приоритете. Говоря точнее, тремя битами кодируется до восьми уровней приоритета, 12 бит позволяют различать трафик до 4096 ВЛВС, один бит зарезервирован для обозначения кадров сетей других типов (Token Ring, FDDI), передаваемых по магистрали Ethernet, и т. д.

Поле идентификатора уровня приоритета дает возможность использовать восемь таких уровней, соответствующих системе приоритетов стандарта 802.1p.

В заголовке кадра Ethernet поля 802.1Q размещаются между адресом отправителя и полем с информацией о длине кадра полезной нагрузки 802.3 (кадр Ethernet) или о типе протокола более высокого уровня (кадр Ethernet II).

В настоящее время практически все сетевые фирмы уже создали коммерческие версии продуктов, поддерживающие стандарты 802.1p и 802.1Q. Кроме того, многие производители коммутаторов Ethernet уже реализовали службы приоритезации собственной разработки.

Очевидно, что изменение структуры кадра Ethernet влечет за собой возникновение серьезных проблем - ведь он теряет совместимость со всеми традиционными устройствами Ethernet, ориентированными на старый формат кадра.

В самом деле, из-за того что данные 802.1Q размещаются перед полем с информацией о длине полезной нагрузки (или типе протокола), традиционный сетевой продукт не обнаружит эту информацию на привычном месте и вместо нее «прочитает» число x8100 - значение по умолчанию нового поля «Тэг протокольного идентификатора» (Tag Protocol Identifier) в кадрах 802.1Q.

Источником проблем является не только изменение в размещении полей заголовка кадра Ethernet, но и увеличение максимальной длины данного кадра. Многие сетевые устройства не способны обрабатывать кадры длиннее 1518 байт. Между специалистами возникли споры по поводу того, нужно ли максимальный размер кадра Ethernet удлинять на четыре байта или следует укоротить на четыре байта максимальный размер полезной нагрузки и таким образом компенсировать увеличение заголовка. Спецификация 802.1Q предусматривает оба подхода, поэтому производителям самим предстоит обеспечивать взаимную совместимость своих продуктов.

С технической точки зрения осуществить взаимодействие старого оборудования с 802.1Q-совместимыми современными устройствами несложно, и большинство производителей сумеют реализовать такую возможность в своих продуктах на уровне их портов. Для состыковки 802.1Q-совместимого устройства с прежним коммутатором или сетевой платой потребуется просто отключить поддержку стандарта 802.1Q на нужном порте, и весь трафик будет посылаться в сеть в обычном виде.

Приоритеты и классы обслуживания

Спецификация IEEE 802.1p, создаваемая в рамках процесса стандартизации 802.1Q, определяет метод передачи информации о приоритете сетевого трафика. Хотя в большинстве ЛВС редко случаются длительные перегрузки, отдельные всплески трафика представляют собой обычное явление и могут привести к задержкам передач пакетов. Это абсолютно неприемлемо для работы сетей, предназначенных для передачи голоса и видео. Стандарт 802.1p специфицирует алгоритм изменения порядка расположения пакетов в очередях, с помощью которого обеспечивается своевременная доставка трафика, чувствительного к временным задержкам.

Рабочая группа по стандартизации интегрированного обслуживания в сетях с разными канальными уровнями (ISSLL) определила ряд классов обслуживания в зависимости от того, какое время задержки допустимо для передачи пакета того или иного типа трафика. Представьте себе сеть с разными видами трафика: чувствительного к задержкам порядка 10 мс, не допускающего задержек более 100 мс и почти не чувствительного к задержкам. Для успешной работы такой сети каждый из этих типов трафика должен иметь свой уровень приоритета, обеспечивающий выполнение требований, предъявляемых к величине задержки. Используя концепцию протокола резервирования ресурсов (Resource Reservation Protocol - RSVP) и систему классов обслуживания, можно определить схему управления приоритетами. Протокол RSVP, который будет рассмотрен ниже, поддерживается большинством коммутирующих маршрутизаторов и, в частности, моделями SSR 8000/8600 производства Cabletron.

В дополнение к определению приоритетов стандарт 802.1p вводит важный протокол GARP (Generic Attributes Registration Protocol) с двумя специальными реализациями. Первая из них - протокол GMRP (GARP Multicast Registration Protocol), позволяющий рабочим станциям делать запрос на подключение к домену групповой рассылки сообщений. Поддерживаемую этим протоколом концепцию назвали подсоединением, инициируемым «листьями». Протокол GMRP обеспечивает передачу трафика только в те порты, из которых пришел запрос на групповой трафик, и хорошо согласуется со стандартом 802.1Q.

Второй реализацией GARP является протокол GVRP (GARP VLAN Registration Protocol), похожий на GMRP. Однако, работая по нему, рабочая станция вместо запроса на подключение к домену групповой рассылки сообщений посылает запрос на доступ к определенной ВЛВС. Данный протокол связывает стандарты p и Q.

С принятием предварительных вариантов стандартов 802.1Q и 802.1p появились все возможности для широкого использования средств приоритезации трафика в сетях Ethernet. Задействуя продукты, поддерживающие механизмы приоритезации, сетевые администраторы смогут распоряжаться коммутирующей инфраструктурой своей сети таким образом, чтобы, например, высший уровень приоритета получил трафик офисного пакета Lotus Notes и электронной почты, а аудиопотоки RealAudio - низший уровень. Механизмы приоритезации трафика, основанные на спецификациях 802.1Q и 802.1p, бесспорно, стали еще одним козырем технологии Ethernet.

Но хотя упомянутые спецификации и обеспечивают приоритезацию трафика для наиболее популярных топологий второго уровня, они не гарантируют того, что вся инфраструктура сети (от одной ее конечной точки до другой) будет поддерживать обработку приоритетного трафика. В частности, спецификации 802.1Q и 802.1p бесполезны при управлении приоритетом IP-трафика (трафика третьего уровня), передаваемого через низкоскоростную распределенную сеть или каналы доступа в Интернет, то есть через наиболее вероятные «узкие места» сетевой инфраструктуры.

Чтобы в полной мере управлять трафиком во всей сети, необходимо прежде всего реализовать эффективную приоритезацию IP-трафика. В связи с этим возникает ряд вопросов. Поддерживает ли локальная сеть механизмы такой приоритезации? А оборудование распределенной сети? Поддерживает ли эти механизмы ваш поставщик услуг Интернета? Что в связи с этим можно сказать об инфраструктуре на другом конце соединения? Если хотя бы одно устройство, находящееся между двумя системами, не поддерживает механизмы приоритезации, будет невозможно реализовать передачу приоритетного трафика от одного конечного узла сети до другого.

В отличие от технологии Ethernet, протокол IP уже довольно давно обладает средствами приоритезации сетевого трафика - впервые они были предложены в версии, опубликованной в 1981 году. Каждый IP-пакет имеет восьмибитовое поле «Тип сервиса» (Type of Service, ToS), состоящее из двух подполей (см. структуру заголовка пакета IP):

  • трехбитового - для установления уровня приоритета пакета;
  • четырехбитового - для указания класса (типа) обслуживания, предпочтительного для данного пакета (оставшийся восьмой бит не используется).

Три первых бита поля ToS позволяют устанавливать для IP-трафика те же восемь уровней приоритета (от 0 до 7), что и спецификации 802.1Q и 802.1p, а также большинство других технологий ЛВС. Поэтому можно взаимно однозначно отображать информацию о приоритетах кадров Ethernet и пакетов IP, а значит, реализовать сквозную обработку приоритетного трафика, передаваемого из одной сети Ethernet в другую через распределенную сеть IP или инфраструктуру поставщика услуг Интернета.

Четыре других используемых бита поля ToS позволяют администратору сети осуществлять индивидуальную маршрутизацию каждого пакета в соответствии с особенностями содержащихся в нем данных. Так, например, пакетам протокола NNTP (Network News Transfer Protocol), транспортирующим новости UseNet, можно установить класс обслуживания с низкой стоимостью («low cost», а пакетам Telnet - класс обслуживания с низкой задержкой «(low latency»).

Изначально стандарт RFC 791 (первоначальный вариант протокола IP) определял только три класса обслуживания, каждому из которых ставился в соответствие отдельный бит, устанавливаемый в «1» или «0» в зависимости от потребностей в том или ином типе обслуживания. С принятием стандарта RFC 1349 был добавлен еще один класс, и теперь ранее разобщенные четыре бита стали рассматриваться как единое целое. Поэтому сегодня с их помощью можно задавать максимум 16 значений (от 0 до 15).

Сетевые администраторы, управляющие сложными сетями с множеством маршрутов, могут использовать биты определения типа обслуживания в сочетании с такими протоколами маршрутизации, как OSPF, для создания специальных служб маршрутизации. Например, пакеты с «отметкой» low latency (низкая задержка) можно посылать не по спутниковому соединению, а по высокоскоростной оптической линии, тогда как «неприхотливый» трафик (класс обслуживания «low cost») направить через Интернет, а не через корпоративную распределенную сеть.

Комбинируя биты установки типа обслуживания с битами приоритета, можно очень точно задавать режимы обработки пакетов с конкретными типами данных, например: определить правила, в соответствии с которыми сетевые фильтры будут присваивать всем пакетам приложения Lotus Notes средний уровень приоритета и назначать класс обслуживания с низкой задержкой. При этом пользователи Notes получат льготное обслуживание по сравнению с пользователями других, менее важных приложений. Можно определить иной набор фильтров, который пометит весь трафик аудиоприложения RealAudio как низкоприоритетный и установит для него класс обслуживания с высокой пропускной способностью (high throughput).

Если вы располагаете собственным сквозным соединением между узлом-отправителем и узлом-получателем, то можете распоряжаться пакетами по своему усмотрению. Но в большинстве сетей поставщиков услуг Интернета пакеты с установленными уровнями приоритета и непомеченные пакеты будут обрабатываться одинаково. Поэтому с точки зрения приоритезации трафика и назначения ему разных классов обслуживания лучшим вариантом является использование частной территориально распределенной сети. При работе через Интернет можно назначить фильтры для поступающего из этой глобальной сети трафика, чтобы по крайней мере контролировать его продвижение по вашей собственной сети.

Однако далеко не все зависит от сетевой инфраструктуры. В настоящее время имеются значительные проблемы, связанные с установкой битов приоритета и типа обслуживания в IP-пакетах. Эти биты могут быть установлены как самим приложением по мере формирования и отправки пакетов, так и сетевым устройством с помощью специальных фильтров. И в том и в другом случае поддержка этих функций всецело зависит от производителей приложений, операционных систем и сетевого оборудования.

Но удивительно, что лишь некоторые операционные системы используют в своих IP-стеках механизмы записи в пакет информации об уровне его приоритета и требуемом для него классе обслуживания. В прикладном программном интерфейсе WINSOCK.DLL, поставляемом вместе с Windows 95 и Windows NT, такие возможности вообще отсутствуют, так что попытки вызвать функцию «setsockopt (IP_TOS)» приводят к выдаче диагностического сообщения «invalid operation» («Недопустимая операция»). В других операционных системах, например в Irix, HP-UX и Solaris, реализована лишь частичная поддержка данных функций.

Среди всех операционных систем мощная поддержка функций ToS реализована только в Linux и Digital UNIX. Причем она имеется как непосредственно в самих системах, так и в наборах их стандартных приложений. Например, обе системы предоставляют клиенты и серверы Telnet, способные устанавливать бит low latency поля ToS - ни одна другая из протестированных нами операционных систем такими важными возможностями не обладает. Клиент и сервер FTP, работающие в среде Linux и Digital UNIX, способны устанавливать бит low latency в пакетах, передаваемых по каналу управления, а бит high throughput - в пакетах, передаваемых по информационному каналу. В итоге такая команда FTP, как abort operation (прервать команду), будет передана на сервер по самому скоростному маршруту и соответственно за минимальное время (оперативно отменив при этом загрузку файла с сервера).

Почему же лишь немногие приложения поддерживают функции байта ToS? Да потому, что большая часть операционных систем, в среде которых они работают, не обеспечивает надлежащую поддержку этих функций. И до тех пор, пока Microsoft не модифицирует программный интерфейс WINSOCK.DLL системы Windows NT, поставщики приложений вроде Lotus Development, Netscape Communications и Oracle не смогут реализовать в своих приложениях механизмы управления приоритетами.

Тем не менее существуют способы, позволяющие обходить те проблемы, которые не спешат решать поставщики операционных систем и приложений. Самый верный из них - реализовать службы приоритезации трафика IP не в приложениях и операционных системах, а в устройствах сетевой инфраструктуры. Администраторы многих крупных и сильно загруженных сетей уже несколько лет осуществляют приоритезацию с помощью фильтров, устанавливаемых в маршрутизаторах отдельно для каждого приложения.

Published on Февраль 18, 2009 by · Комментариев нет

Если вы хотите прочесть предыдущие части этой серии статей, перейдите по ссылкам:

В предыдущей части я рассказал о том, что Windows Server 2003"s QoS применение поддерживает маркирование приоритетов 802.1p и Diffserv. В этой части я объясню принцип работы маркировки приоритетов.

802.1P сигнал

Как я говорил в предыдущей части, передача сигнала 802.1p осуществляется на втором уровне модели OSI. Этот уровень используется такими физическими устройствами, как коммутаторы. Устройства второго уровня, поддерживающие 802.1p, могут просматривать маркировку приоритетов, которые назначены пакетам, а затем группировать эти пакеты в отдельные классы трафика.

В сетях Ethernet маркировка приоритетов включена в тэги VLAN. VLANs и VLAN тэги определяются 802.1Q стандартом, который определяет поле трехразрядных приоритетов, но на самом деле не определяет то, как это поле приоритетов должно использоваться. Именно здесь в игру вступает 802.1P стандарт.

802.1P определяет различные классы приоритетов, которые можно использовать совместно с 802.1Q стандартом. В конечном счете, 802.1Q оставляет право выбора маркировки приоритетов за администратором, поэтому технически вам не нужно следовать указаниям 802.1P, но 802.1P, кажется, является тем, что все выбирают.

Хотя идея использования 802.1P стандартов для обеспечения маркировки второго уровня, вероятно, звучит как чистая теория, на самом деле она может определяться с помощью параметров групповой политики. Стандарт 802.1P обеспечивает восемь различных классов приоритетов (варьирующихся в пределах от 0 до 7). Пакеты с приоритетами более высокого класса обрабатываются QoS с более высоким приоритетом доставки.

По умолчанию Microsoft назначает следующие маркировки приоритетов:

Но как я упомянул ранее, вы можете изменять эти приоритеты, модифицируя различные параметры групповой политики. Для этого нужно открыть редактора групповой политики и перейти в древе консоли по ветвям Конфигурация компьютера \ Шаблоны администрирования \ Сети \ Планировщик QoS пакетов \ Значение приоритетов второго уровня. Как видно из рисунка A, есть параметры групповой политики, соответствующие каждой маркировке приоритетов, которые я перечислил выше. Вы можете назначить свои уровни маркировки приоритетов любому из этих типов служб. Однако не следует забывать о том, что эти параметры групповой политики действуют только для хостов, на которых используется Windows XP, 2003 или Vista.

Рисунок A: Вы можете использовать редактора групповой политики, чтобы настраивать маркировку приоритетов второго уровня.

Раздельные службы (Differentiated Services)

Как я объяснял в предыдущей статье, QoS выполняет маркировку приоритетов на втором и третьем уровнях модели OSI. Это обеспечивает учет приоритетов на протяжении всего процесса доставки пакетов. К примеру, коммутаторы работают на втором уровне модели OSI, но маршрутизаторы, как правило, работают на третьем уровне. Таким образом, если бы пакеты использовали только 802.1p маркировку приоритетов, то приоритеты этим пакетам назначал бы коммутатор, однако эти приоритеты игнорировались бы сетевыми маршрутизаторами. Чтобы препятствовать этому, QoS использует протокол Differentiated Services protocol (Diffserv) для назначения приоритетов трафику на третьем уровне модели OSI. Маркировка Diffserv включена в IP заголовки пакетов с помощью TCP/IP.

Архитектура, используемая Diffserv, была изначально определена RFC 2475. Однако многие спецификации архитектуры были переписаны в RFC 2474. RFC 2474 определяет Diffserv архитектуру для IPv4 и IPv6.

Интересный момент IPv4 применения в RFC 2474 заключается в том, что даже, несмотря на тот факт, что Diffserv был абсолютно переопределен, он все еще обратно совместим с оригинальной RFC 2475 спецификацией. Это означает, что более старые маршрутизаторы, которые не поддерживают новые спецификации, могут распознавать назначенные приоритеты.

Текущее Diffserv применение использует октеты типов служб пакетов Type of Service (TOS) для хранения Diffserv значения (которое называется DSCP значением). В рамках этого октета первые шесть битов хранят DSCP значение, а последние два бита не используются. Причина, по которой эти маркировки обратно совместимы с RFC 2475 спецификацией, заключается в том, что RFC 2475 требовала первые три бита в том же октете для использования в информации посследовательности IP. Хотя DSCP значения в длину составляют шесть бит, первые три бита все равно отражают IP последовательность.

Как и в случае с маркировкой 802.1p, которую я демонстрировал ранее, вы можете настраивать Diffserv приоритеты с помощью различных параметров групповой политики. Прежде чем я покажу вам как, я представлю стандартные Diffserv приоритеты, используемые в Windows:

Вы, возможно, заметили, что маркировки приоритетов Diffserv используют абсолютно другой диапазон, нежели 802.1P. Вместо поддержки диапазона 0 — 7, Diffserv поддерживает диапазон маркировки приоритетов в пределах от 0 до 63, при этом большие числа имеют более высокие приоритеты.

Как я уже говорил, Windows позволяет вам определять Diffserv маркировку приоритетов с помощью параметров групповой политики. Однако следует помнить, что некоторые более совершенные маршрутизаторы будут назначать пакетам свои собственные Diffserv значения, независимо от тех значений, которые назначила Windows.

Учитывая это, вы можете настроить маркировку приоритетов Diffserv, открыв редактора групповой политики, и перейдя в древе консоли по ветвям Конфигурация компьютера \ Шаблоны администрирования \ Сеть \ Планировщик пакетов QoS.

Если вы посмотрите на рисунок B, вы заметите, что там есть две вкладки, связанных с DSCP, которые расположены под вкладкой планировщика пакетов QoS. Одна из этих вкладок позволяет вам назначать маркировку приоритетов DSCP для пакетов, соответствующих flowspec, а вторая позволяет вам устанавливать маркировку приоритетов DSCP для несоответствующих пакетов. Действительные параметры сами по себе сходны для обеих вкладок, как показано на рисунке C.

Рисунок B: Windows управляет маркировками приоритетов DSCP отдельно для пакетов, которые соответствуют flowspec, и которые не соответствуют.

Рисунок C: Вы можете вручную назначить маркировку приоритетов DSCP для различных типов служб.

Разнообразные параметры групповой политики

Если вы посмотрите на рисунок B, вы заметите, что там есть три параметра групповой политики, о которых я не говорил. Я хотел вкратце упомянуть о том, что это за параметры и что они делают, для тех, кому может быть интересно.

Параметр Limit Outstanding Packets, по сути, представляет собой значение порога службы. Если количество превосходящих пакетов достигает определенного значения, то QoS запретит любые дополнительные выделения пропускной способности для сетевого адаптера, пока значение не опустится ниже максимально допустимого порога.

Параметр Limit Reservable Bandwidth управляет процентом общей пропускной способности, которую могут зарезервировать приложения с поддержкой QoS. По умолчанию приложения с поддержкой QoS могут резервировать до 80% процентов пропускной способности сети. Конечно, любая часть полосы пропускания, зарезервированная, и в данный момент не используемая QoS приложениями, может использоваться другими приложениями.

Параметр Set Timer Resolution управляет минимальными единицами времени (в микросекундах) которые планировщик пакетов QoS будет использовать для планирования пакетов. По сути, этот параметр контролирует максимальную частоту, с которой пакеты могут ставиться в очередь на доставку.

Заключение

В этой статье я объяснил разницу между и внутри 802.1p и Diffserv стандартов назначения пакетов. Затем я показал некоторые параметры групповой политики, которые вы можете использовать для контроля над поведением QoS. В четвертой части этой серии я расскажу о том, как работает QoS в сетях с медленной скоростью.

www.windowsnetworking.com


Смотрите также:

Exchange 2007

Если вы хотите прочитать предыдущие части этой серии статей, перейдите по ссылкам: Проведение мониторинга Exchange 2007 с помощью диспетчера System ...

Введение В этой статье из нескольких частей я хочу показать вам процесс, который недавно использовал для перехода с существующей среды Exchange 2003 ...

Если вы пропустили первую часть этой серии, пожалуйста, прочтите ее по ссылке Использование инструмента Exchange Server Remote Connectivity Analyzer Tool (Часть...

Если вы пропустили предыдущую часть этой серии статей, перейдите по ссылке Мониторинг Exchange 2007 с помощью диспетчера System Center Operations ...

IEEE 802.1p

Стандарт IEEE 802.1p специфицирует метод указания приоритета кадра, основанный на использовании новых полей, определенных в стандарте IEEE 802.1Q .

К кадру Ethernet добавлены два байта. Эти 16 бит содержат информацию по принадлежности кадра Ethernet к VLAN и о его приоритете. Говоря точнее, тремя битами кодируется до восьми уровней приоритета, 12 бит позволяют различать трафик до 4096 VLAN , а один бит зарезервирован для обозначения кадров сетей других типов (Token ring , FDDI), передаваемых по магистрали Ethernet .

Надо сказать, что добавление двух байтов к максимальному размеру кадра Ethernet ведет к возникновению проблем в работе многих коммутаторов, обрабатывающих кадры Ethernet аппаратно. Чтобы избежать их, группы по стандартизации предложили сократить на два байта максимальный размер полезной нагрузки в кадре.

Спецификация IEEE 802.1p , создаваемая в рамках процесса стандартизации IEEE 802.1Q , определяет метод передачи информации о приоритете сетевого трафика. Стандарт 802.1p специфицирует алгоритм изменения порядка расположения пакетов в очередях, с помощью которого обеспечивается своевременная доставка чувствительного к временным задержкам трафика.

В дополнение к определению приоритетов стандарт 802.1p вводит важный протокол GARP (Generic Attributes Registration Protocol) с двумя специальными его реализациями. Первая из них - протокол GMRP (GARP Multicast Registration Protocol), позволяющий рабочим станциям делать запрос на подключение к домену групповой рассылки сообщений. Поддерживаемую этим протоколом концепцию назвали подсоединением, инициируемым «листьями». Протокол GMRP обеспечивает передачу трафика только в те порты, из которых пришел запрос на групповой трафик, и хорошо согласуется со стандартом IEEE 802.1Q .

Ссылки


Wikimedia Foundation . 2010 .

  • Хлоропреновый каучук
  • Гротгер, Артур

Смотреть что такое "IEEE 802.1p" в других словарях:

    IEEE 802.11 - is a set of standards for wireless local area network (WLAN) computer communication, developed by the IEEE LAN/MAN Standards Committee (IEEE 802) in the 5 GHz and 2.4 GHz public spectrum bands.General descriptionThe 802.11 family includes over… … Wikipedia

    IEEE 802.11 - (auch: Wireless LAN (WLAN), Wi Fi) bezeichnet eine IEEE Norm für Kommunikation in Funknetzwerken. Herausgeber ist das Institute of Electrical and Electronics Engineers (IEEE). Die erste Version des Standards wurde 1997 verabschiedet. Sie… … Deutsch Wikipedia

    IEEE 802.3

    Ieee 802

    Ieee 802.3 - est une norme pour les réseaux informatiques édictée par l Institute of Electrical and Electronics Engineers (IEEE). Cette norme est généralement connue sous le nom d Ethernet. C est aussi un sous comité du comité IEEE 802 comprenant plusieurs… … Wikipédia en Français

    IEEE 802 - группа стандартов семейства IEEE, касающихся локальных вычислительных сетей (LAN) и сетей мегаполисов (MAN). В частности, стандарты IEEE 802 ограничены сетями с пакетами переменной длины. Число 802 являлось следующим свободным номером для… … Википедия

    IEEE 802.15 - is the 15th working group of the IEEE 802 which specializes in Wireless PAN (Personal Area Network) standards. It includes six task groups (numbered from 1 to 6):Task group 1 (WPAN/Bluetooth)IEEE 802.15.1 2002 has derived a Wireless Personal Area … Wikipedia

    IEEE 802 - est un comité de l IEEE qui décrit une famille de normes relatives aux réseaux locaux (LAN) et métropolitains (MAN) basés sur la transmission de données numériques par le biais de liaisons filaires ou sans fil. Plus spécifiquement, les normes… … Wikipédia en Français

    IEEE 802 - refers to a family of IEEE standards dealing with local area networks and metropolitan area networks.More specifically, the IEEE 802 standards are restricted to networks carrying variable size packets. (By contrast, in cell based networks data is … Wikipedia

    IEEE 802.15.4a - (formally called IEEE 802.15.4a 2007) is an amendment to IEEE 802.15.4 (formally called IEEE 802.15.4 20060 specifying that additional physical layers (PHYs) be added to the original standard.OverviewIEEE 802.15.4 2006 specified four different… … Wikipedia

    Ieee 802.11 - Exemple d équipement fabriqué sur les recommandations de la norme IEEE 802.11. Ici, un routeur avec switch 4 ports intégré de la marque Linksys. IEEE 802.11 est un terme qui désigne un ensemble de normes concernant les réseaux sans fil qui ont… … Wikipédia en Français

Рубрика «Консультация» cоздана на портале «Цифровая подстанция» для того, чтобы каждый читатель мог получить ответ на интересующий его вопрос. Свои вопросы участники могут направлять на адрес [email protected] . Сегодня мы рассматриваем следующий вопрос:

Когда речь идет о коммутаторах и о передаче данных по информационной сети Ethernet часто возникает такое понятие как QoS (Quality of Service). Что это такое?

Отвечает начальник отдела инжиниринга компании «ТЕКВЕЛ» Дмитрий Стешенко:

Под качеством обслуживания (QoS) понимается способность сетевой инфраструктуры предоставлять улучшенное обслуживание определенному виду передаваемого трафика при помощи различных технологий.

Качество обслуживания на втором уровне модели OSI (канальном) в пределах одного сетевого элемента обеспечивается за счет использования модели дифференцированного обслуживания (Differentiated Service – DiffServ) и обеспечивается:

  • Классификацией и разметкой трафика.
  • Управлением перегрузками (механизмы очередей).

Следует отметить, что данная модель начинает работать лишь в случае появления очередей и перегрузок.

Согласно стандарту МЭК 61850 все коммуникационные процессы передачи данных осуществляются посредством технологии Ethernet. Данная технология определяет формат Ethernet кадров (фреймов), линии соединения (среду передачи), электрические и световые сигналы на физическом уровне, протоколы управления доступом к среде - на втором уровне модели OSI (канальном). Основные методы и технологии Ethernet описываются семейством протоколов IEEE 802.3.

Протокол Ethernet в чистом виде не поддерживает функцию приоритезации трафика, поэтому наряду со стандартным протоколом Ethernet IEEE 802.3, организация IEEE разработала стандарт создания виртуальных локальных сетей VLAN IEEE 802.1q. В стандарте IEEE 802.1q предусматривается вставка дополнительного четырехбайтового тега VLAN в заголовок Ethernet исходного фрейма, содержащий метку приоритета (Priority) класса обслуживания (Class of Service – CoS) IEEE 802.1p (см. рис. 1).

Рис. 1. Структура кадра Ethernet согласно стандарту IEEE 802.1q

КЛАССИФИКАЦИЯ И РАЗМЕТКА ТРАФИКА

К примеру, коммутаторы 2–го уровня PULLNET семейства AGENT-2 позволяют различать кадры Ethernet (классифицировать трафик) по параметрам метки приоритета (Priority) IEEE 802.1p. Значения приоритета в зависимости от типа трафика приведены в таблице ниже. Стандарт МЭК 61850 по умолчанию предусматривает для GOOSE сообщений и выборок мгновенных значений SV приоритет равный 4.

Таблица 1. Классы трафика согласно стандарту IEEE 802.1p.

Биты приоритета

Обозначение

Класс приоритета трафика

NC (Network Controlled)

Критически важный для сети. Трафик управления сетью

Интерактивный мультимедийный (видео)

CL (Controlled Effort)

Контролируемый. Потоковый мультимедийный

EE (Excellent Effort)

Приоритетный

Стандартный (Экономный)

BE (Best Effort)

Низший. Трафик передаваемый с максимальными усилиями («по возможности»). Вариант по умолчанию

Таким образом, классификация и разметка трафика решает две задачи:

  • Отнесение передаваемых данных к определенному классу трафика.
  • Назначение передаваемому фрейму соответствующего приоритета.

УПРАВЛЕНИЕ ПЕРЕГРУЗКАМИ (МЕХАНИЗМЫ ОЧЕРЕДЕЙ)

Перегрузка возникает в случае переполнения выходных буферов передающего трафик оборудования. Основными механизмами возникновения перегрузок (или, что равнозначно, скоплений – congestions) является агрегация трафика (когда скорость входящего трафика превышает скорость исходящего) и несогласованность скоростей на интерфейсах. Управление пропускной способностью в случае перегрузок (узких мест) осуществляется с помощью механизма очередей. Кадры Ethernet помещаются в очереди, которые упорядоченно обрабатываются по определенному алгоритму. Фактически, управление перегрузками – это определение порядка, в котором фреймы выходят из интерфейса (очередей) на основе приоритетов. Если перегрузок нет – очереди не работают.

Так как очереди не бесконечны, они могут заполняться и переполняться. Если очередь уже заполнена, то новые пакеты в нее не попадают и отбрасываются. Это явление называется концевыми потерями. Проблема концевых потерь заключается в том, что в этой ситуации коммутатор не может не отбрасывать данный фрейм, даже если он имеет высокий приоритет. Таким образом, необходим механизм, выполняющий следующие две операции:

  • Выяснить, действительно ли очередь переполнена и нет ли в ней места для фреймов с высоким приоритетом.
  • Сформировать политику, согласно которой в первую очередь будут отбрасываться фреймы с более низким приоритетом, и только потом – с более высоким.

Приоритезация используется для классификации фреймов путем их привязки к одной из очередей выхода. Метка приоритета IEEE 802.1p для назначений очереди определяется пользователем. Коммутаторы 2–го уровня PULLNET семейства AGENT-2 поддерживают 4 очереди приоритетов. В таблице ниже представлена подробная информация по меткам приоритета для параметров очереди, установленных на коммутаторе PULLNET по умолчанию.

Таблица 2. Привязка Class of Service (CoS) к очереди пересылки данных по умолчанию.

Значение приоритета

CoS IEEE 802.1p

IEEE 802.1p

Номер очереди

по умолчанию

в PULLNET AGENT-2

q0 (низший приоритет)

q3 (максимальный приоритет)

После процесса классификации фреймы можно привязать к определенной очереди (очередям) в зависимости от метки приоритета CoS.

Настройка очередей выхода осуществляется с помощью схемы планирования одного из следующих способов:

  • Строгий приоритет (Strict Priority – SP).
  • Взвешенный циклический алгоритм (Weighted Round Robin –WRR).

Строгий приоритет (Strict Priority) – гарантирует, что чувствительные ко времени приложения передаются всегда. Строгий приоритет (Strict Priority) позволяет присвоить трафику, зависящему от целевого назначения и чувствительности ко времени, наивысший приоритет перед менее чувствительными ко времени данными. Т.е. фреймы, находящиеся в очереди с высоким приоритетом, обрабатываются первыми. Кадры Ethernet из следующей по приоритету обслуживания очереди начнут передаваться только после того, как опустеет высокоприоритетная очередь. Например, передача голоса по IP осуществляется до пересылки трафика FTP или электронной почты (SMTP). Недостатком данного метода является то, что данные с низким приоритетом могут длительное время не обрабатываться.


Рис. 2. Механизм обработки очередей “Строгий приоритет” (Strict Priority) при постановке фреймов в очередь в соответствии с настройками по умолчанию в коммутаторах PULLNET.

Взвешенный циклический алгоритм (WRR) − гарантирует, что отдельное приложение не будет использовать все ресурсы по пересылке, доступные посредством модуля коммутатора Ethernet. С помощью WRR осуществляется пересылка всех очередей в цикле.

При наличии нескольких очередей фреймы могут быть помещены в разные очереди и обслуживаться по взвешенному циклическому алгоритму (Weighted Round Robin – WRR). Внутри очереди устанавливаются весовые коэффициенты (Weight Value) – в коммутаторах AGENT-2 это значения от 1 до 20. Они играют роль исходных точек, по которым определяется, с какой вероятностью может быть отброшен пакет. Процесс обработки очередей осуществляется по круговому принципу, начиная с самой приоритетной очереди. Из каждой непустой очереди передается некоторый объем трафика, пропорциональный назначенному ей весовому коэффициенту, после чего выполняется переход к следующей по убыванию приоритета очереди и так далее по кругу.


Рис. 3. Механизм обработки очередей “Взвешенный циклический алгоритм” (Weighted Round Robin).

Все очереди, за исключением очередей SP, могут работать по схеме WRR. Очереди SP обслуживаются непосредственно перед очередями WRR. Если поток трафика минимален и очереди SP не занимают всю полосу пропускания, назначенную для порта, то очереди WRR используют полосу пропускания совместно с очередями SP. При этом оставшаяся часть полосы пропускания распределяется в соответствии с весовыми коэффициентами. Данный комбинированный механизм «SP+WRR» доступен в коммутаторах PULLNET AGENT-2.

Конфигурирование коммутаторов с поддержкой 802.1Q

Первая редакция статьи, опубликованная 17 мая 2000 г, вызвала неадекватную реакцию некоторых читателей, вылившуюся даже в дискуссию . Критически взглянув на текст статьи, мы решили внести в нее несколько строк. Они выделены цветом .

Современный подход к построению сетей имеет девиз "коммутаторы — по возможности, маршрутизаторы — по необходимости". При этом на коммутаторы возлагаются задачи не только уменьшения размеров доменов коллизий (сегментация), но и локализации широковещательного и группового трафика, а также ограничения распространения кадров с неизвестными адресами назначения. Интеллектуальные коммутаторы служат средством построения виртуальных локальных сетей (ВЛС). Виртуальная локальная сеть (VLAN — Virtual LAN) — это, по сути, домен широковещательных кадров. Основные цели введения виртуальных сетей в коммутируемую среду — повышение полезной пропускной способности за счет локализации широковещательного трафика, формирование виртуальных рабочих групп из некомпактно (в плане подключения) расположенных узлов, обеспечение безопасности, улучшение соотношения цены/производительности по сравнению с применением маршрутизаторов.

Когда виртуальные сети распространяются на несколько связанных между собой коммутаторов, возникает довольно сложная задача передачи информации о принадлежности передаваемых кадров к той или иной ВЛС. В ВЛС на основе номеров портов относительно простые коммутаторы должны быть соединены столькими линиями связи, сколько определено распределенных ВЛС. Это приводит к дополнительным расходам портов коммутаторов на межкоммутаторные связи, и виртуальные сети практически перестают отличаться от реальных. Сети без излишних линий связи с передачей информации о ВЛС строятся либо на основе фирменных решений (при этом объединяться могут лишь коммутаторы одной фирмы или даже одного семейства), либо на основе стандарта 802.1Q.

Задача идентификации принадлежности кадров Ethernet к конкретной виртуальной сети совместно с обеспечением приоритезации обслуживания кадров коммутаторами решается с помощью применения маркировки кадров. Недавно принятая пара связанных стандартов IEEE 802.1Q и 802.1p закладывает основу для взаимодействия оборудования различных производителей. Стандарт IEEE 802.1Q определяет структуру заголовка для маркированных кадров (tagged frames) Ethernet. Тег вставляется в обычный кадр Ethernet после адреса источника (SA). В тег входит 3-битное поле приоритета кадра Prt, 12-битное поле идентификатора ВЛС VID (VLAN ID) и бит-индикатор канонического формата заголовка CFI (Canonical Format Identifier). Поле VID позволяет определить принадлежность кадра к конкретной ВЛС (до 4096 штук) в пределах коммутируемой сети, поддерживающей маркированные кадры. Поле приоритета кадра позволяет различать 8 уровней приоритета. Маркировку кадра выполняет либо сетевой адаптер конечного узла, "понимающий" ВЛС по 802.1Q, либо интеллектуальный коммутатор, который первым принимает данный кадр (он вставляет идентификатор и приоритет по заданым правилам, например, по номеру порта). Маркированный кадр путешествует по коммутаторам сети, где его обслуживают (или не обслужиают) в соответствии с идентификатором ВЛС и полем приоритета. Маркировочное поле удаляется из кадра пограничным коммутатором (тем, к которому подключен традиционный узел назначения или его разделяемый сегмент), или же оно достигает сетевого адаптера узла назначения, поддерживающего маркированные кадры. Устройство, вставляющее тег в кадр или удаляющее тег, должно пересчитать контрольную последовательность кадра (поле FCS), по которой определяется его целостность. Поддержка маркированных кадров конечными узлами позволяет наиболее гибко формировать виртуальные сети (один узел может входить и в несколько виртуальных сетей) в коммутируемой среде.

Стандарт IEEE 802.1p определяет поведение коммутаторов при обработке маркированных кадров с использованием приоритезации. Коммутатор, поддерживающий приоритезацию, должен иметь для каждого порта несколько выходных очередей, в которые помещаются кадры в зависимости от их приоритета. Дисциплина обслуживания этих очередей определяется при конфигурировании коммутатора. Необходимость приоритезации трафика появляется с введением мультимедийных приложений, чувствительных к задержкам. Протокол IP позволяет управлять приоритетом обработки пакетов устройствами 3-го уровня (маршрутизаторами). Маркировка кадров распространяет управление приоритетом и на уровень коммутаторов технологии Ethernet, изначально не имевшей этих средств (в отличие от Token Ring и FDDI). Для того, чтобы обеспечивать гарантированное качество сервиса (регламентированную скорость и задержки), необходимо взаимодействие нескольких составляющих. Маркировка кадров обеспечивает систему сигнализации приоритета, 802.1p обеспечивает приоритезацию обработки. Необходимы еще средства распределения ресурсов сети, которые сообщают конечным узлам разрешенные параметры трафика. Кроме того, необходимы и "полицейские" средства, следящие за трафиком узлов и пресекающие попытки его генерации сверх согласованных лимитов.

Рассмотрим вариант построения виртуальных сетей на коммутаторах фирмы Nortel Networks типа BayStack-350/450, в которых имеется поддержка VLAN на основе стандарта IEEE 802.1Q. Заметим, что наличие поддержки этого стандарта имеется только в коммутаторах с относительно новой версией как аппаратной части, так и внутреннего ПО (firmware). Стандарт IEEE 802.1Q — Virtual Bridge Local Area Networks — определяет только формат используемых кадров Ethernet и минимальный набор требований к устройству, которые обязательны к реализации всеми производителями. Вместе с тем, очень большая область использования этой технологии отдается на откуп производителю оборудования. Именно поэтому все случаи использования VLAN, которые хоть немного отличаются от простейших VLAN на основе портов, сильнейшим образом зависят от конкретного используемого оборудования. Все примеры, приведенные в статье — живые. Именно на этом подходе построена сеть ЦНИИ Робототехники и технической кибернетики в СПб. Сеть прекрасно работает и с точки зрения VLAN выполняет все, что от нее требуется, и все, что декларировано Nortel Networks.

Коммутаторы для ВЛС требуют предварительного конфигурирования (поставляются они обычно в состоянии, в котором ведут себя как обычные коммутаторы). Для конфигурирования удобно использовать внеполосное (out of band) управление через консольный порт, поскольку при внутриполосном (in band) по неосторожности или неопытности можно попасть в "капкан" — в какой-то момент из-за ошибки конфигурирования консоль может потерять связь с коммутатором.

Портам коммутаторов, поддерживающих 802.1Q, и участвующим в формировании ВЛС, назначаются специфические атрибуты. Каждому порту назначается PVID (Port VLAN Identifier) — идентификатор ВЛС для всех приходящих на него немаркированных кадров, и приоритет порта (P_Prt). Коммутатор маркирует каждый приходящий к нему немаркированный кадр (вставляет номер VLAN и приоритет, пересчитывает FCS), а маркированные оставляет без изменений. В результате внутри коммутатора все кадры будут маркированными. Порты могут конфигурироваться как маркированные или немаркированные члены ВЛС. Немаркированный член ВЛС (untagged member) выходящие через него кадры выпускает без тега (удаляя его и снова пересчитывая FCS). Маркированный член ВЛС (tagged member) выпускает все кадры маркированными. Теги берутся либо исходные (когда в коммутатор кадр входил уже маркированным), либо устанавливаются в соответствии PVID и приоритетом порта, откуда этот кадр пришел в коммутатор. Для каждой ВЛС определяется список портов, являющихся ее членами. Порт может быть членом одной или более ВЛС. Маркированный кадр, пришедший на порт с "чужим" для него идентификатором ВЛС, называется незарегистрированным (unregistered) и коммутатором игнорируется. Работу коммутатора 802.1Q иллюстрирует рис. 1. При конфигурировании для каждой ВЛС каждый порт должен быть объявлен как немаркированный (U), маркированный (T) или не являющийся членом данной VLAN (-). Если используется запараллеливание портов (port trunking) или резервирование линий (LinkSafe), то с точки зрения ВЛС запараллеленные порты представляют единое целое.

Рис. 1. Прохождение кадров через коммутатор 802.1Q

На рис. 2 приведена структура сети с ВЛС, распространяющимися на несколько коммутаторов. Коммутаторы SW2 и SW3 поддерживают 802.1Q, SW1 поддерживает только ВЛС по портам, SW4 — коммутатор без поддержки ВЛС. Для того, чтобы в обе ВЛС V1 и V2 попали узлы, подключенные к коммутаторам SW1 и SW2, между этими коммутаторами приходится прокладывать отдельные линии и занимать по порту на каждую ВЛС. Порты 1 и 2 коммутатора SW2 конфигурируются как немаркированные (U), один для ВЛС V1 (PVID=1), другой для V2 (PVID=2). Порт 8 у SW2 и 1 у SW3 объявляются маркированным (T) для ВЛС V2 и V3. Порты SW2 и SW3, к которым подключаются компьютеры, объявляются немаркированными членами соответствующих ВЛС, у этих портов PVID принимает значения 1, 2 и 3 (в соответствии с номером ВЛС). Членам ВЛС V2 и V3 разрешаем доступ в Интернет через маршрутизатор, подключенный к порту 7 коммутатора SW3. Для этого порт 7 конфигурируется как немаркированный член V2 и V3, это обеспечит прохождение всех кадров от пользователей Интернет к маршрутизатору. Для того, чтобы ответные кадры могли дойти до пользоввателей, назначим порту 7 коммутатора SW3 PVID=9 — это будет дополнительная ВЛС для доступа к Интернет. Эта ВЛС должна быть "прописана" и во всех портах SW2 и SW3, к которым подключаются пользователи Интернет (порты SW2.8 и SW3.1 будут маркированными членами ВЛС 9, остальные — немаркированными). Под словом "прописана" подразумеваем указание на членство этих портов в VLAN 9, но никак не назначение им PVID=9 (специальное пояснение для участников дискуссии по первой редакции данной статьи).


Рис. 2. Сеть с распределенными ВЛС

Если использовать узлы, поддерживающие маркировку кадров (эта возможность имеется в современных серверных картах), то их можно подключать к маркированным портам коммутаторов 802.1Q. Поддержка 802.1Q особенно желательна на магистральных коммутаторах, разнесенных территориально — тогда развитие сети не будет требовать прокладки новых магистральных линий (пока хватает их пропускной способности). В пределах одного распределительного пункта поддержка 802.1Q избавляет от необходимости физических перекоммутаций, связанных с изменением структуры сети, а также перемещением, добавлением и удалением пользователей.

Данная статья является адаптированным фрагментом из новой книги "Аппаратные средства локальных сетей. Энциклопедия", которую издательство "Питер" выпустило в мае этого года. В книге рассматриваются теоретические и практические вопросы построения сетей — от кабельных систем до коммуникационного оборудования. С содержанием книги можно ознакомиться на сайте www.neva.ru/mgook , где имеется информация по всем книгам Михаила Гука, а также электронная версия "Книги ответов" по сетям NetWare.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: