Функции одной переменной: основные понятия. Функция одной переменной и её характеристики

Рассмотрим сначала понятие переменной величины, или просто переменной.

Переменная величина х определяется множеством тех значений, которые она может принять в рассматриваемом случае. Это множество X назовем областью изменения значений переменной x .

Главным предметом изучения в математике является, однако, не изменение одной переменной самой по себе, а зависимость между двумя или несколькими переменными при их совместном изменении. Во многих случаях переменные не могут принимать любую пару значений из своих областей изменения; если одной из них придано конкретное значение, то этим уже определяется и значение другой. Тогда первая из них называется независимой , а вторая – зависимой переменной.

Пусть даны две переменные x и y с областями изменения X и Y . Если при этом каждому элементу x X по определенному правилу f поставлен в соответствие единственный элемент y Y , то говорят, что на множестве X задана функция y = f (x ).

Ясно, что при этом переменная x является независимой переменной. Ее часто называют аргументом функции.

Переменная y является зависимой переменной и называется значением функции, или просто функцией .

Множество X называется областью определения функции, а множество Y - областью ее значений .

Существует ряд способов задания функции:

а) наиболее простой - аналитический способ, т. е. задание функции в виде формулы. Если область определения функции X при этом не указана, то под X подразумевается множество значений x , при которых формула имеет смысл;

б) графический способ. Этот способ особенно нагляден. Для функции одной переменной y = f (x ) используется координатная плоскость (xy ).

Совокупность точек y , соответствующих заданным значениям x , определяет график функции на плоскости (xy );

в) табличный способ. Он часто используется, когда независимая переменная x принимает лишь конечное число значений.


5.2. Основные свойства функций

Рассмотрим основные свойства функций, которые упрощают проведение их исследования:



Четность. Функция y = f (x ) называется четной , если для любого значения x , принадлежащего области определения функции X , значение (–x ) тоже принадлежит X и при этом выполняется

f (–x ) = f (x ).

График четной функции симметричен относительно оси ординат.

Функция y = f (x ) называется нечетной , если для любого x X следует (–x ) X и при этом

f (–x ) = –f (x ).

График нечетной функции симметричен относительно начала координат.

Если функция y = f (x ) не является ни четной, ни нечетной, то ее часто называют функцией общего вида .

Монотонность. Функция y = f (x ) называется возрастающей на некотором интервале (a , b ), если для любых x 1 , x 2 (a , b ), таких,

что x 1 < x 2 , следует, что f (x 1) < f (x 2), и убывающей , если f (x 1) > f (x 2).

Возрастающую и убывающую на интервале (a,b ) функции называют монотонными на этом интервале, а сам интервал (a,b ) - интервалом монотонности этих функций.

В некоторых учебниках такие функции называют строго монотонными , а монотонными называют неубывающую и невозрастающую на рассматриваемом интервале функции (вместо строгих неравенств для функций пишутся нестрогие).

Ограниченность. Функция y = f (x ) называется ограниченной на интервале (a , b ), если существует такое число С > 0, что для любого x (a , b ) следует |f (x )| < C , и неограниченной в противном случае, т. е. если для любого числа C > 0 существует такой x (a , b ), что |f (x )| > C. На рис. 5.1 показан график функции, ограниченной на интервале (a , b ).

Аналогичное определение ограниченности можно дать для любого вида промежутка.

Периодичность. Функция y = f (x ) называется периодической , если существует такое число t , что для любого x X выполняется

f (x + t ) = f (x ).

Наименьшее из таких чисел t называется периодом функции и обозначается Т .

Характерным признаком периодичности функций является наличие в их составе тригонометрических функций.

5.3. Элементарные функции и их графики

К элементарным функциям относятся:

а) простейшие элементарные функции

1. Константа y = c , где с - постоянное для данной функции действительное число, одно и то же для всех значений x .


2. Степенная функция , где - любое постоянное действительное число, кроме нуля. Вид графиков функций при некоторых целых положительных ( = n ), целых отрицательных ( = –n ) и дробных ( = 1/n ) значениях представлен ниже.


4. Логарифмическая функция y = log a x (a > 0; a 1).


5. Тригонометрические функции : y = sin x , y = cos x , y = tg x , y = ctg x .


6. Обратные тригонометрические функции .

y = arcsin x y = arccos x


y = arctg x y = arcctg x


б) сложные функции

Кроме перечисленных простейших элементарных функций аргумента x к элементарным функциям также относятся функции, аргументами которых являются тоже элементарные функции, а также функции, полученные путем выполнения конечного числа арифметических действий над элементарными функциями. Например, функция

тоже является элементарной функцией.

Функции, аргументами которых являются не независимые переменные, а другие функции, называются сложными функциями или суперпозициями функций. Пусть даны две функции: y = sinx и z = log 2 y . Тогда сложная функция (суперпозиция функций) может иметь вид

z = log 2 (sin x ).

Также можно ввести понятиеобратной функции .Пусть y = f (x ) задана в области определения X , а Y - множество ее значений. Выберем какое-нибудь значение y = y 0 и по нему найдем x 0 так, чтобы y 0 было равно f (x 0).Подобных значений x 0 может оказаться и несколько.

Таким образом, каждому значению y из Y ставится в соответствие одно или несколько значений x . Если такое значение x только одно, то в области Y может быть определена функция x = g (y ), которая называется обратной для функции y = f (x ).

Найдем, например, обратную функцию для показательной функции y = a x . Из определения логарифма следует, что если задано значение y , то значение x , удовлетворяющее условию y = a x , находится по формуле x = log a y . То есть каждому y из Y можно поставить в соответствие одно определенное значение x = log a y .

Следовательно, функция x = log a y является обратной для функции y = a x на множествах X и Y . Так как принято у любой функции независимую переменную обозначать x , то в этом случае говорят, что y = f (x ) и y = g (x ) - обратные функции.

Графики функции y = f (x ) и обратной ей функции y = g (x ) симметричны относительно биссектрисы 1-го и 3-го координатных углов.

Скачать с Depositfiles

ВВЕДЕНИЕ В АНАЛИЗ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

Лекция № 13. Тема 1 : Функции

1.1. Определение функции

При изучении определённых процессов реального мира мы встречаемся с характеризующими их величинами, которые меняются во время изучения этих процессов. При этом изменение одной величины сопутствует изменению другой. Например, при прямолинейном равно-мерном движении связь между пройденным путём s , скоростью v и вре-менем t выражается формулой . При заданной скорости v величина пути s зависит от времени t .

В этом случае изменение одной величины (t ) произвольно, а другая (s ) зависит от первой. Тогда говорят, что задана функциональная зависимость. Дадим математическое обоснование этому понятию.

Пусть заданы два множества X и Y .

Определение. Функцией называется закон или правило, согласно которому каждому элементу
ставится в соответствие единственный элемент
, при этом пишут

или
.

Элемент называется аргументом функции f , а элемент значением функции. Множество X , при котором функция опреде-лена, называется областью определения функции , а множество Y областью изменения функции . Эти множества соответственно обозначаются
и
.

Примеры функций:

1. Скорость свободного падения тела
. Здесь X и Y множества действительных неотрицательных чисел.

2. Площадь круга
. Здесь X и Y множества положитель-ных действительных чисел.

3. Пусть X множество студентов группы, т.е.
, а
множество оценок на экзамене. Здесь в качестве функции f рассматривается критерий оценки знаний.

В дальнейшем под множествами X и Y будем подразумевать множества чисел и придерживаться обозначения . Для большей наглядности будем использовать геометрическое представление множеств и в виде множества точек на действительной оси. Рассмотрим некоторые наиболее употребительные числовые множества (промежутки) :

 отрезок;

 интервал;

числовая ось (множество действительных чисел);

или  окрестность точки a .


а
х

Замечание 1. Мы рассмотрели определение однозначной функции. Если же каждому соответствует по некоторому правилу определённое множество чисел y , то таким правилом определена многозначная функция . Например, .

Примеры. Найти области определения и значений функций :

1. .

2. .

3. .

4. .

1.2. Способы задания функции

1. Аналитический способ. Прежде всего, функции могут задаваться при помощи формул. Для этого используются уже изученные и специально обозначенные функции и алгебраические действия.

Примеры:

1.
. 2.
. 3.
.

В дальнейшем будем использовать краткие математические обозначения (кванторы): для всех, любых; существует, можно указать.

Напомним некоторые элементы поведения функций. Функция называется возрастающей (убывающей ) на некотором промежутке, если
из этого промежутка выполняется неравенство
или
и пишут
или
соответственно
. Возрастающие и убывающие функции называются монотонными . Функция называется ограниченной на некотором промежутке, если
выполняется условие
. В противном случае функция называется
неограниченной.

Функция называется четной (нечетной ), если она обладает свойством . Остальные функции называются функциями общего вида .

Функция называется периодической с периодом Т , если выполня-ется условие
.

Например, функция
является возрастающей
и убывающей
. Функция
является монотонной . Функция
ограничена для , так как
. Функции:
являются четными, а функции
нечетными. Функция
периодическая с периодом
.

Функция может быть задана и уравнением вида

(1)

Если существует такая функция , что
, то уравнение (1) определяет функцию заданную неявно . Например, в приме-ре 2 функция задана неявно, это уравнение определяет много-значную функцию
.

Пусть
, а
, тогда функция
называется сложной функцией или суперпозицией двух функций F и f . Например, в примере 3 функция является суперпозицией двух функций
и
.

Если в качестве аргумента рассмотреть переменную у , а в качестве функции – переменную х , то получим функцию, которая называется для однозначной функции обратной и обозначается
. Например, для функции
обратной функцией служит
или
, если придерживаться общепринятых обозначений аргумента и функции.

Замечание 2. Функция может быть задана и с помощью описания соответствия (описательный способ ). Например, поставим в соответствие каждому числу
число
1, а каждому
число
0. В результате получим единичную функцию

Следует отметить, что всякая формула является символической записью некоторого описанного соответствия и поэтому различие между заданием функции с помощью формул и описания соответствия чисто внешнее.

Графическое изображение функции также может служить для задания функциональной зависимости.

2. Графический способ. Функция задаётся в виде графика. Примером графического задания функции может служить показания осциллографа.

d

Функцию можно задавать с помощью таблиц:

3. Табличный способ. Для некоторых значений переменной x указываются соответствующие значения переменной y . Примерами такого способа заданий являются таблицы значений тригонометрических функ-ций, таблицы, представляющие собой зависимость между измеряемыми величинами и др.

х 1

х 2

x 3

x n

у 1

у 2

у 3

у n

Для работы на ЭВМ функцию задают алгоритмическим способом.

1.3. Элементарные функции

К основным или простейшим элементарным функциям относятся: . целая часть числа, где x наибольшее целое число, не превосходящее x , например,
.

Основные определения и понятия

Одним из основных понятий математики является число. Числа целые и дробные, как положительные, так и отрицательные, вместе с числом ноль называются рациональными числами. Рациональные числа могут быть представлены в виде конечных или бесконечных периодических дробей. Числа, которые представляются в виде бесконечных, но непериодических дробей, называются иррациональными .

Совокупность всех рациональных и иррациональных чисел называется множеством действительных , или вещественных чисел. Действительные числа можно изображать точками числовой оси. Числовой осью называется бесконечная прямая, на которой выбраны:

1) некоторая точка О, называемая началом отсчёта;

2) положительное направление, указываемое стрелкой;

3) масштаб для измерения длин.

Между всеми действительными числами и всеми точками числовой оси существует взаимно-однозначное соответствие , т.е. каждому действительному числу соответствует точка числовой оси и наоборот.

Абсолютной величиной (или модулем ) действительного числа x называется неотрицательное действительное число Рx Р, определяемое следующим образом: Рx Р = x , если x ? 0, и Рx Р = -x , если x < 0.

Переменной величиной называется величина, которая принимает различные численные значения. Величина, численные значения которой не меняются, называется постоянной величиной.

упорядоченной , если известна область её изменения и про каждое из двух любых её значений можно сказать, какое из них предыдущее и какое последующее. Частным случаем такой величины является числовая последовательность

Переменная величина называется возрастающей (убывающей ), если каждое её последующее значение больше (меньше) предыдущего. Возрастающие и убывающие переменные величины называются монотонными . Переменная величина называется ограниченной , если существует такое постоянное число M > 0, что все последующие значения переменной, начиная с некоторого, удовлетворяют условию:

M ? x ? M, т.е. Рx Р? M.

Переменная величина y называется (однозначной) функцией переменной величины x, если каждому значению переменной величины x, принадлежащему множеству действительных чисел X, соответствует одно определённое действительное значение переменной величины y .

Переменная x называется в этом случае аргументом , или независимой переменной , а множество X - областью определения функции.

Запись y = f(x) означает, что y является функцией x . Значение функции f(x) при x = a обозначают через f(a).

Область определения функции в простейших случаях представляет собой: интервал (открытый промежуток ) (a, b ), т.е. совокупность значений x , удовлетворяющих условию a < x < b ; сегмент (отрезок или замкнутый промежуток ) , т.е. совокупность значений x , удовлетворяющих условию a ? x ? b ; полуинтервал (т.е. a < x ? b ) или (т.е. a ? x < b ); бесконечный интервал (a, + ?) (т.е. a < x < + ?) или (- ?, b ) (т.е. - ? < x < b ) или (- ?, + ?) (т.е. - ? < x < + ?); совокупность нескольких интервалов или сегментов и т. п.

Графиком функции y = f(x) называется геометрическое место точек плоскости xOy, координаты которых удовлетворяют уравнению y = f(x).

Функция f(x) называется чётной, если для любого значения x . График чётной функции расположен симметрично относительно оси ординат. Функция f(x) называется нечётной , если для любого значения x . График нечётной функции расположен симметрично относительно начала координат.

Функция f(x) называется периодической , если существует такое положительное число T, называемое периодом функции, что для любого значения x выполняется равенство.

Наименьшим же периодом функции называется наименьшее положительное число?, для которого f(x + ?) = f(x) при любом x . Следует иметь в виду, что f(x + k?) = f(x) , где k - любое целое число.

Функции задаются:

1) аналитически (в виде формулы), например, ;

2) графически (в виде графика);

3) таблично (в виде таблицы), например таблица логарифмов.

Основными элементарными функциями являются следующие, аналитически заданные функции:

1. Степенная функция : , где? - действительное число.

2. Показательная функция : , где a > 0, a ? 1.

3. Логарифмическая функция : , где a > 0, a ? 1.

4. Тригонометрические функции : y = sin x, y = cos x, y = tg x, y = ctg x ,

y = sec x, y = cosec x.

5. Обратные тригонометрические функции :

y = arcsin x, y = arccos x, y = arctg x, y = arcctg x, y = arcsec x ,

y = arccosec x .

Если y является функцией от u , а u есть функция от x , то y также зависит от x . Пусть y = F(u ), u = ?(x ). Тогда y = F(?(x )). Последняя функция называется функцией от функции , или сложной функцией. Например, y = sin u , u = . Функция y = sin () есть сложная функция от x .

Элементарной функцией называется функция, которая может быть задана одной формулой вида y = f(x) , где выражение f(x) составлено из основных элементарных функций и постоянных при помощи конечного числа операций сложения, вычитания, умножения, деления и взятия функции от функции.

Например, y = Рx Р = ; ; .

Пример 1 . Найти, если.

Решение . Найдём значения данной функции при x = a и x = b :

Тогда получим

Пример 2 . Определить, какая из данных функций чётная или нечётная:

Решение . а) Так как, то

т.е. f(- x) = - f(x). Следовательно, функция нечётная.

б) Имеем, т.е.

f(- x) = f(x). Следовательно, функция чётная.

в) Здесь,т.е.

f(- x) = f(x). Следовательно, функция чётная.

г) Здесь. Таким образом, функция не является ни чётной, ни нечётной.

Пример 3

Решение . Функция определена, если 2x - 1 ? 0, т.е. если. Таким образом, областью определения функции является совокупность двух интервалов:

Пример 4 . Найти область определения функции.

Решение . Функция определена, если x - 1 ? 0 и 1+ x > 0, т.е. если x ? 1 и x > - 1. Область определения функции есть совокупность двух интервалов: (- 1, 1) и (1, + ?).

Пример 5. Найти область определения функции

Решение. Первое слагаемое принимает вещественные значения при 1 -2x ? 0, а второе при. Таким образом, для нахождения области определения заданной функции необходимо решить систему неравенств: Получаем

Следовательно, областью определения будет сегмент

Рассмотрим два числовых множества X и Y . Правило f , по которому каждому числу хI Х ставится в соответствие единственное число yI Y , называется числовой функцией , заданной на множестве Х и принимающей значения во множестве Y .

Таким образом, задать функцию, значит задать три объекта:

1) множество Х (область определения функции);

2) множество Y (область значений функции);

3) правило соответствия f (сама функция).

Например, поставим в соответствие каждому числу его куб. Математически это можно записать формулой y=x 3 . В этом случае правило f есть возведение числа х в третью степень. В общем случае, если каждому х по правилу f соответствует единственный y , пишут y = f(x). Здесь "х " называют независимой переменной или аргументом , а "y " -зависимой переменной (т.к. выражение типа x 3 само по себе не имеет определенного числового значения пока не указано значение х ) или функцией от х . О величинах х и y говорят, что они связаны функциональной зависимостью. Зная все значения х и правило f можно найти все значения у . Например, если х=2 , то функция f(x) =x 3 принимает значение у= f(2) =2 3 =8 .

Существуют несколько способов задания функции.

Аналитический способ. Функция f задается в виде формулы y=f(x). Например, y=3cos(x)+2x 2 . Этот способ является преобладающим в математических исследованиях и подробно рассматривается в классическом курсе математики. В географических исследованиях соответствие между переменными величинами x и y не всегда удается записать в виде формулы. Во многих случаях формула бывает неизвестна. Тогда для выражения функциональной зависимости используются другие способы.

Графический способ. На метеорологических станциях можно наблюдать работу приборов-самописцев, регистрирующих величины атмосферного давления, температуры воздуха, его влажности в любой момент времени суток. По полученному графику можно определить значения указанных величин в любой момент времени. Графиком функции y=f(x) называется множество всех точек плоскости с координатами (x, f(x) ). График содержит всю информацию о функции. Имея перед собой график, мы как бы "видим функцию".

Табличный способ . Этот способ является наиболее простым. В одной строке таблицы записываются все значения аргумента (числа), а в другой – значения f(x) , соответствующие каждому х . Например, зависимость температуры воздуха (Т) от времени суток (t) в определенный день можно представить таблицей.

t 0 1 2 3 4 5 6 7 8 9 10 11
T, 0 С 12 11 10 9 8 7 8 10 12 14 16 17

Несмотря на повсеместное внедрение компьютеров большинство функций, с которыми приходится сталкиваться специалисту-географу в повседневной деятельности, до сих пор представлены в виде табличного или графического задания. Табличные зависимости получаются в результате регистрации результатов опытов, лабораторных анализов, периодических замеров атмосферных или иных физических параметров. К сожалению, по таблице можно найти лишь те значения функции, значения аргумента которых имеются в таблице. В то же время часто возникают задачи, требующие нахождения значения функции для значения аргумента, не входящего в таблицу. Кроме того этот способ не дает достаточно наглядного представления о характере изменения функции с изменением независимого переменного. От этого недостатка свободны графики, полученные в результате работы автоматических приборов, но и графическое задание не всегда может быть достаточным для дальнейших исследований. Например, такая функция иногда должна в целях исследования протекания природного процесса подвергаться каким-либо математическим операциям, в том числе, дифференцированию или интегрированию. Таким образом, во многих случаях важно знать аналитическое задание функции. Так как точного аналитического задания функции, полученной в результате экспериментальной работы не существует, то для целей исследования применяют следующий прием: функцию, заданную таблично (функцию, заданную графически всегда можно представить в табличном виде) заменяют на некотором отрезке другой функцией более простой, близкой в некотором смысле к данной и имеющей аналитическое выражение. Существует два основных приема такой замены - интерполирование и аппроксимация функции-таблицы.

Если каждому элементу х множ-ва Х (х є Х) ставится в соответствие вполне определённый элемент у множ-ва У (у є У), то говорят, что на множ-ве Х задана функция у = f(x). При этом х назыв. независимой переменной (или аргументом), у – зависимой переменной, а буква f обозначает закон соответсвия. Множ-во Х назыв. областью определения, а множ-во У – областью значений функции.

Способы задания фун-ий.

а)аналитический, если фун-ия задана формулой у = f(x)

б)табличный способ. Состоит в том, что фун-ия задаётся таблицей, содержащей значения аргумента х и соответствующие значения фун-ии f(x).

в)графический. Состоит в изображении графика фун-ии – множества точек (х,у) плоскости, абсциссы которых есть значения аргумента х, а ординаты – соответствующие им значения фун-ии f(x).

г)логический

3 . Односторонний предел. Существование предела в точке.

Число назыв. односторонним пределом слева фун-ии f(x) в точке сгущения x 0, если для ∀ε>0 ∃δ>0, такое, что x∈(x 0 -δ, x 0 ] => f(x)

Число назыв. односторонним пределом справа фун-ии f(x) в точке сгущения х 0 , если если ∀ε>0

∃δ>0, такое, что x∈(x 0 -δ, x 0 ] => f(x)

Число назыв. односторонним пределом справа фун-ии f(x) в точке сгущения х 0 , если если ∀ε>0 ∃δ>0, такое,что х ∈[ x 0, x 0 + δ) =>

Сущ-ие предела в точке. Число А назыв. пределом фун-ии f(x) при х, стремящемся к х 0 (или точке х 0), если для любого, даже сколь угодно малого положительного числа ε>0, найдётся такое положительное число δ>0 (зависящее от ε, δ=δ(ε)), что для всех х, не равных х 0 и удовлетворяющее условию , выполняется неравенство

Обозначается или

2. Предел функции и его свойства.

Предельной точной сгущения множества A называется точка x 0 , если в любой окрестности этой точки найдутся такие множества, отличные от x 0 .

Определение предела по Коши. Функция y=f(x), определенная в A, имеет предел С в точке сгущения x 0 , если ∀ε>0 ∃δ>0, такое, что x∈(x 0 -δ, x 0) ∪(x 0 , x 0 +δ) ⇒ f(x)∈(C-ε, С+ε). Существование предела записывают в виде lim x → x 0 f(x)=C или |x-x 0 |<δ⇒|f(x)-C|< ε.

Определение предела по Гейне. Если для различных последовательностей {x n }, стремящихся к x 0 , последовательность значений функции {f(x n)} сходится к некоторому числу C, то это число называется пределом функции f(x).

Определение Коши используется для обоснования существования предела, а опред-ие Гейна – для обоснования отсутствия предела.

Свойства предела: предел единственен и фун-ия в некоторой окрестности предельной точки ограничена.

1)Предел постоянной величины

Предел постоянной величины равен самой постоянной величине.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: