Разъем 1394 для чего. FireWire или чем ещё помогла цифровому миру компания Apple

Что такое IEEE 1394?

Интерфейс IEEE 1394

Немного истории. 10 лет назад, на выставке IFA’95 в Берлине фирма Sony продемонстрировала первые промышленные модели цифровых видеокамер формата mini-DV. Это были камеры DCR-XV700 и DCR-XV1000 с выходным цифровым интерфейсом IEEE 1394 (FireWire) и новым для видеотехники 4-контактным разъемом DV Out. Уже в следующем году цифровые видеокамеры стали выпускаться и другими фирмами, в частности, появилась модель Panasonic NV-DS1, оснащенная двунаправленным интерфейсом DV In/Out и способная к цифровой записи как собственных съемок, так и аналоговых видеосигналов, поступающих на собственные разъемы Video и S-Video для композитного и раздельных видеосигналов.

С тех пор популярность интерфейса IEEE 1394, известного также как FireWire и i-Link, стала стремительно возрастать. Он стал обязательным для любой цифровой видеокамеры и поддерживается в большинстве современных ноутбуков.

А начиналось все гораздо раньше, когда Комитет по стандартам для микрокомпьютеров Института инженеров по электротехнике и электронике (IEEE) решил объединить имеющиеся наработки по последовательной шине и создать быстродействующий универсальный интерфейс, обеспечивающий работу с мультимедийной информацией, накопителями, формирователями, визуализаторами и синтезаторами данных. Ведущим разработчиком такого интерфейса была фирма Apple, которая решила применять его в своих компьютерах под названием FireWire. В процессе выполнения этих работ организовался консорциум с участием компаний Compaq, Matsushita, Philips, Sony, Toshiba и др., в результате чего в конце 1995 года IEEE принял соответствующий стандарт под порядковым номером 1394. Любопытно, что в цифровых камерах Sony интерфейс IEEE 1394 появился под названием i-Link раньше этого события.

Что такое IEEE 1394? Это стандартная технология шины последовательной передачи данных для соединения компьютера с периферией. При этом обеспечиваются следующие преимущества:

· высокая скорость (100, 200, или 400 Мб/с для IEEE 1394a; 800 Мб/с для IEEE 1394b, в перспективе 1,6 и 3,2 Гб/с);

· поддержка “горячего” (Fire) подключения и отключения. Автоматическое распознавание присоединения и отсоединения аппаратуры и возможности делать это при работающем компьютере, т.е. даже тогда, когда шина работает в полном режиме;

· возможности общения аппаратуры с IEEE 1394 In/ Out между собой без компьютера. Широко применяется, например, для редактирования при прямой перезаписи информации с одной видеокамеры на другую;

· простота конфигурирования и широта возможностей . Шина позволяет подключать до 63 устройств без применения концентраторов. На одном устройстве может быть до 27 разъемов для подключения к компьютеру и другим устройствам. Шина поддерживает конфигурирование Plug&Play;

· использование кабелей малого диаметра и миниатюрных разъемов (4 или 6 контактов). Интересно, что разъем был заимствован у компьютерной игры Nintendo Gameboy, так как показал высокую износостойкость в условиях беспощадной эксплуатации;

· пакетная передача данных. Мультимедийные данные, например видеофильм, разбиваются на пакеты с интервалами между ними. Число пакетов определяется тем, какой длины фильм посылается, а в интервалах посылается служебная информация, например, «Стоп» или «Пуск».

· поддержка асинхронной и изохронной передачи данных. При асинхронной передаче получение каждого пакета данных проверяется, и, если он не получен или принят с повреждением, передача повторяется и ошибки исправляются;

· питание внешних устройств через кабель IEEE 1394.

Составляющие IEEE 1394. Функциональная схема интерфейса IEEE 1394 показана на рисунке 1. Здесь внизу находится физический уровень, на котором происходит перевод стыкуемых мультимедийных сигналов в компьютерные форматы или наоборот, с формированием, кодированием/декодированием и арбитражем, определяющим, в каком порядке устройства IEEE 1394, составляющие сеть, могут работать.

Рис. 1 Функциональная схема интерфейса IEEE 1394

На уровне обрабатываются и формируются пакеты данных, организуется их прием и передача. Этих уровней достаточно для изохронной передачи данных, когда контроль за передаваемой и получаемой информацией не ведется. При асинхронной передаче данных такой контроль производится на программном уровне обработке, где данные проверяются и отправляются потребителю, если ошибок не обнаружено. В противном случае процедуры на нижнем уровне повторяются до устранения ошибок. Физический уровень может содержать несколько разъемов FireWire, причем два любых устройства IEEE 1394 могут соединяться между собой “точка в точку”(point-to-point).

Как работает IEEE 1394? Процесс инициализации интерфейса начинается со сброса шины. При этом выясняется, один или несколько портов в системе имеется, и к каким из них подключены родительские и дочерние устройства. По этим данным строится дерево и определяется корневой узел сети.

Рис. 2. Дерево узлов IEEE 1394


Каждое из IEEE 1394-устройств получает идентификационный номер и данные, на каких скоростях могут работать его прямые соседи. Используется 64-битная прямая адресация (48 бит на узел и 16 для идентификации шины), позволяющая реализовать иерархическую адресацию для 63 узлов на 1023 шинах. По завершении инициализации начинает работать арбитраж, следящий за тем, чтобы работающие устройства друг другу не мешали. Поэтому устройство, готовое начать передачу, сначала посылает сигнал запроса своему родительскому устройству в дереве. Это устройство, получив запрос, формирует сигал запрета своим дочерним устройствам и передает запрос дальше, своему родительскому устройству и так далее, пока запрос не дойдет до корневого устройства. В свою очередь корневое устройство формирует сигнал, разрешающий передачу устройству, выигравшему арбитраж по времени, т.е. тому, запрос от которого получен первым. При этом устройство, проигравшее арбитраж, ждет, пока шина не освободится.

По сигналу разрешения начинается работа на уровне компоновки, где формируются пакеты данных по 512 байт с интервалами между ними и определяется их адресация. 160 бит в каждом пакете занимает заголовок, куда входит информация об отправителе и получателе пакетов, а также о циклическом коде CRC исправления ошибок. Передача данных начинается по получению ответа о готовности запрашиваемого устройства к приему информации.

В течении времени до 0,75 мс после отправки каждого пакета данных ожидается получение подтверждения об их получении в виде байтовой посылки. Далее следует интервал > 1 мс, разделяющий пакеты, и т. д.

Каждому устройству сети IEEE 1394 предоставляется возможность передавать данные один раз в течение каждого промежутка времени, распределяемого по всем узлам. Если этого времени оказывается недостаточно, передача завершается на следующих циклах. Так сделано для того, чтобы передача длинной информации одного из источников не могла блокировать работу остальных.

Изохронная передача данных применяется, например, в мультимедийных приложениях, когда приоритетом является минимум задержки на получение информации по сравнению с возможной потерей или ошибками какой-то ее части. В изохронном режиме данные передаются пакетами длительностью по 125 мс, т.е. чем выше скорость, тем больше данных может быть передано за это время. Пакеты следуют друг за другом, не ожидая байтов подтверждения получения. Для идентификации пакетов изохронной и асинхронной передачи промежуток между ними в первом случае короче, чем во втором. Это позволяет комбинировать и различать изохронные и асинхронные данные в каждом сеансе. На изохронные данные выделено до 85 % канала передачи, из которых устройство может занимать не более 65 %.

Интерфейсом IEEE1394 допускается одновременная передача информации на разных скоростях от разных устройств, причем способности их общения на какой-либо из скоростей определяются автоматически. Это делает интерфейс весьма дружественным, так как пользователю не нужно заботиться о правильности подключения устройств.

Кабели и разъемы. Для работы интерфейса на высоких скоростях потребовались кабели с временем распространения сигнала, не превосходящим допустимых пределов. Для IEEE 1394 это 144 нс, после чего принимается решение о недоступности адресуемого устройства. Устройство кабеля для IEEE 1394 поясняется рисунке 3.

Рис. 3. Разрез кабеля FireWire

Диаметр этого кабеля равен 6 мм, и он содержит три витые пары проводников диаметром 0,87 мм:, одна из которых типа 22 AWG предназначена для питания от 8 до 30 В внешней нагрузки до 1,5 А, а две другие - раздельно экранированные пары сигнальных проводов типа 28 AWG. Все проводники с изолирующим заполнением заключены в экранирующую фольгу и оболочку из поливинилхлорида. Таким образом, кабель имеет сложную конструкцию, и изготовить его самостоятельно вряд ли возможно.

Рис. 4. Разъемы IEEE 1394 (6 контактов)
А) блочный б) кабельный

На фотографиях разъемов IEEE 1394 (рис. 4), заимствованных у компьютерной игры Nintendo Gameboy, видно, что контакты здесь находятся в середине разъемов и по бокам защищены от доступа металлическим ободком и изолирующей прокладкой у кабельного разъема. Пара проводов, предназначенная для питания внешних устройств, например сканера, не требуется при работе с цифровыми видеокамерами, имеющими собственное питание.

Рис. 5. Кабель IEEE 1394 i-Link

Для такого применения IEEE 1394 разработаны однорядные 4-контактные разъемы и кабели, вид одного из которых, i-Link Sony, показан на фотографии (рис. 5). Длина этого кабеля 96 см.

IEEE 1394 a. Хотя шина FireWire оказалась очень удобной, работы по ее совершенствованию продолжаются. Так, 2000 году был утвержден стандарт IEEE 1394а с дополнениями, целесообразность которых выяснилась в процессе эксплуатации. В частности, введено время ожидания 1/3 секунды на сброс шины, пока не закончится переходной процесс установки надежного подсоединения или отсоединения устройства. Без этого иногда возникал не один, а целая серия сбросов шины по подключению нового устройства. Практика показала, что устройства IEEE 1394 могут быть несовместимыми, если пакеты в серии передаются с разной скоростью. По IEEE 1394а эта проблема решена добавлением сигнала скорости в каждый пакет, если скорость его передачи отличается от предыдущей. Предусмотрены также возможности программного отключения порта FireWire, включения аппаратуры и перевода ее в дежурный режим. Большое внимание разработчики уделили повышению эффективности шины за счет уменьшения общей длительности технологических промежутков, разделяющих пакеты записи. С этой целью по IEEE 1394а:

· Повторные байты подтверждения получения не ожидаются, после первого обнаружения такого байта передача продолжается без прерываний.

· Введена возможность неоднократного запроса на передачу одного устройства в одном цикле, если другим устройствам шина не нужна.

· Уменьшено время на сброс шины . По IEEE 1394 передающее устройство не обнаруживает сигнал сброса, пока не закончится передача текущего пакета данных. Поэтому сигнал сброса поддерживался в течение времени, большего, чем максимальное время передачи одного пакета. Если же сигнал сброса формируется по признаку выигрыша устройством арбитража, в этом нет необходимости, и по IEEE 1394a сброс шины выполняется по завершению передачи этого устройства.

· Предусмотрены возможности прикрепления пакетов информации к уже передающимся . За счет этого достигается экономия на времени арбитража.

IEEE 1394 b. Этот стандарт, первая версия которого принята в 2002 году, относится к последовательной шине с увеличенной до 800 Мб/с и 1,6 Гб/с пропускной способностью. В перспективе пропускная способность может возрасти и до 3,2 Гб/с. Основой интерфейса IEEE 1394b является кодирование 8В10В в соответствии с алгоритмами, применяемыми в оборудовании для гигабайтных сетей, и оптоволоконные линии связи. Введено также измерение времени отклика. Введение такого измерения позволило узнавать время поступления ответа и увеличить длину кабелей. По IEEE1394b она может достигать 100 метров, правда для этого должен применяться стеклянный оптоволоконный кабель. При использовании пластикового оптоволокна максимальная длина кабеля уменьшается до 50 метров, а пропускная способность до 200 Мб/с. Изменились и разъемы: теперь это 9-контактные двухрядные разъемы. Вид разъемов на кабельном переходнике 9↔4 контактов показан на рисунке 6.

Рис. 6. Кабельный переходник IEEE 1394

Этот переходник и ему аналогичный 9↔6 контактов обеспечивает кабельную совместимость шины IEEE 1394b с предшествующими версиями IEEE 1394. В новом стандарте предусмотрено два режима передачи данных: β-режим, когда общаются устройства, поддерживающие IEEE 1394b, и режим обратной совместимости, при котором возможно подключение к шине устройств IEEE 1394a и максимальная скорость автоматически уменьшается до 400 Мб/с.

Из других особенностей IEEE 1394b следует отметить новый способ арбитража. Если в предшествующих стандартах функцию арбитража выполняло корневое устройство, то теперь такую функцию выполняет любое устройство, постоянно посылающее сигналы запроса на передачу. Новый метод арбитража называется Bus Owner/Supervisor/Selector (BOSS). Его логическая схема показана на схеме, а принцип работы заключается в следующем.

Рис. 7. Арбитраж BOSS IEEE 1394b

Устройство, готовое к передаче данных, постоянно посылает сигналы запроса, но передача данных блокируется, пока на соответствующей шине присутствуют сигналы, передаваемые другим устройством. Как только последние прекращаются, по этой шине начинают передаваться сигналы ждущего устройства, в свою очередь блокирующего режимы передачи других устройств. Очевидно, что для работы системы арбитража BOSS шина данных должна быть двунаправленной. Поэтому такой арбитраж работает только в среде IEEE 1394b. Если в нее входит хотя бы одно другое устройство, для арбитража применяется ранее рассмотренный метод.

USB 2.0 и IEEE 1394а. Все современные компьютеры оснащены портами USB 2.0, которые являются быстродействующей версией получивших массовое распространение портов USB 1.1. Основная сфера применения USB 2.0 осталась прежней. Это подключение периферийных устройств типа мышек, цифровых фотокамер, картридеров и других устройств, не требующих гарантированно постоянной пропускной способности. USB 2.0 как и USB 1.1 использует 4-контактные разъемы, полностью совместимые между собой. Единственное отличие в подключении USB 2.0 и USB 1.1 заключается в том, что новый стандарт требует экранированных кабелей. Теоретическая скорость по USB 2.0 составляет 480 Мб/с, максимальная передаваемая мощность на питание внешних устройств - 2,5 Вт. Общение устройств стандарта USB 2.0 происходит по схеме Master/Slave, т. е. все потоки данных управляются компьютером, что замедляет работу интерфейса. Длина кабеля для соединения двух устройств по шине USB 2.0 не должна превышать 5 метров. Преимуществами USB 2.0 является большая распространенность, совместимость с USB 1.1 и дешевизна.

С продвижением USB 2.0 на рынке стали появляться устройства, например, внешние жесткие диски со сдвоенным интерфейсом или одни и те же модели с разными интерфейсами. Казалось бы, по USB 2.0 они должны работать быстрее, чем по IEEE 1394a, но на практике, при прочих равных условиях производительность по FireWire 400 получается лучше, причем почти без проблем с “горячим” подключением. Вероятно, новая версия USB будет работать стабильней, но IEEE 1394a к тому времени несколько устареет и будет заменяться на IEEE 1394b. Кроме того, архитектура USB 2.0 по гибкости несопоставима с IEEE 1394, особенно при работе с мультимедийной аппаратурой.

Таким образом, шина USB 2.0 эффективна для компьютерной периферии, низкоскоростной и со средними требованиями к пропускной способности. Она дешева и достаточно производительна для большинства задач. Шина FireWire гораздо гибче и отлично подходит для работы с мультимедиа. Цифровые видеокамеры и телевизоры, DVD-проигрыватели и игровые приставки - все это при наличии портов FireWire легко соединить между собой, причем не обязательно вокруг компьютера.

FireWire - компьютерный лексикон обогатился именно таким термином благодаря развитию информационных технологий в середине 90-х гг.. И наверняка это название не ускользнуло от внимания ни одного пользователя, не говоря уже о компьютерных специалистах. В чем же причина большой популярности, которой пользовалась эта технология, и что она представляет собой сегодня?

Стандарт FireWire появился на свет в качестве версии стандарта высокоскоростной последовательной шины IEEE 1394, предназначенной для подключения периферийных устройств к персональному компьютеру. Автором данной реализации являлась небезызвестная компания Apple. Основным преимуществом FireWire являлось то, что она обеспечивала подключение до 63 устройств и передачу данных со скоростью до 400 Мбит/c. По сути, стандарт IEEE 1394 является описанием последовательной шины, а также средств, обеспечивающих соединение между одним или большим количеством периферийных устройств и процессором компьютера.

Устройства, оснащенные FireWire, а также другими реализациями IEEE 1394, обладают следующими особенностями:

  • Порт с простым разъемом, расположенным на задней панели компьютера и на периферийных устройствах различных типов.
  • Возможность простым путем объединять устройства в цепочки различными способами без использования терминаторов.
  • Использование тонкого последовательного кабеля, выгодно отличающегося от толстого параллельного кабеля параллельного порта.
  • Высокая скорость передачи данных, позволяющая иметь дело с мультимедийными приложениями (200 Мбит/c и выше).
  • Возможность горячего подключения и отключения устройств.
  • Возможность соединения напрямую нескольких устройств без подключения их к компьютеру.
  • Обеспечение питания по шине.

Первоначально предполагалось, что различные реализации IEEE 1394 станут заменой для всех параллельных и последовательных интерфейсов, таких, как , последовательный порт COM () и внешний SCSI.

Принцип работы интерфейса

Существуют два уровня, на котором работает интерфейс FireWire, один из которых представляет собой шину внутри компьютера, а другой предназначен для обеспечения соединения между компьютером и устройством при помощи последовательного кабеля. Первые версии стандарта обеспечивали для внутренней шины скорость передачи данных в 12.5, 25 и 50 Мбит/c, а интерфейс кабеля при этом поддерживал скорости в 100, 200 и 400 Мбит/c. При работе IEEE 1394 способен переключаться на любую из доступных скоростей при возникновении необходимости.

Функции внутренней последовательной шины заключаются также в обеспечении общего использования пространства памяти подключенными к ней устройствами. Каждое устройство может использовать 64-битные адреса, что обеспечивает гибкость при конфигурировании устройств в цепочках и организацию деревьев устройств, подключенных к одному разъему.

IEEE 1394 обеспечивает два типа передачи данных – асинхронный и изохронный. Асинхронный способ больше подходит для традиционных приложений, которые загружают данные и затем их сохраняют. При этом способе инициализируется передача данных, которая затем может быть прервана после того, как в буфере окажется необходимое количество данных. Изохронный метод поддерживает постоянную заранее установленную скорость передачи данных. Для мультимедиа-приложений данный способ уменьшает потребность в использовании буферизации и облегчает вывод непрерывного контента.

Также в стандарте IEEE 1394 содержится требование к максимальной длине кабеля, который может соединять два устройства в цепочке – 4,5 м. В том случае, если в цепь подключено несколько устройств, то расстояние между компьютером и самым дальним элементом подобной цепочки может быть гораздо большим.

История и настоящее технологии

Со времени появления интерфейса было разработано несколько версий IEEE 1394. В самой последней версии, S3200, скорость передачи данных достигла уровня в 3,2 Гбит/c. Однако данная технология так и не стала стандартной для мира персональных компьютеров, и тому было несколько причин.

На момент своего появления технология IEEE 1394 считалась гораздо более многообещающей, чем похожая технология USB, которая в своей ранней версии могла поддерживать скорость передачи данных всего лишь до 12 Мбит/c. Однако в том, что последняя в итоге оказалась более распространенной, сыграла свою роль более высокая стоимость устройств, поддерживающих FireWire. Недостатком FireWire также является слабая совместимость между различными версиями стандарта, которая выражается в частности в том, что порт для старых версий интерфейса имеет разъем, отличающийся от разъема порта для новых версий.

Кроме того, широкому распространению технологии помешала лицензионная политика фирмы Apple, ограничивающая продажи устройств, оснащенных ею. В настоящее время большинство современных материнских плат ПК уже не имеет в своем составе порт FireWire, и данная шина используется лишь в некоторых специализированных системах топ-уровня.

Заключение

Несмотря на высокую производительность и гибкие возможности конфигурирования, порт IEEE 1394 так и не стал универсальным портом для подключения скоростных устройств. Тем не менее, до сих пор существует немало материнских плат, которые оснащены разъемами для подключения устройств FireWire, а также периферийных устройств, поддерживающих данную технологию.

Важность взаимодействия между различными компонентами и устройствами в компьютерной технике сложно переоценить. Без такого взаимодействия просто не было бы самой компьютерной техники. Но, с самого начала развития компьютеров каждый производитель решал (а кое-где и продолжает решать) эти проблемы по-своему. Как грибы после дождя росло количество всевозможных шин и разъёмов, по которым перегонялись данные, как внутри компьютера, так и снаружи. Но, если такое разнообразие решений внутри железной коробки шло (и идёт) во благо, стимулируя технический прогресс, то с периферией всё происходит наоборот. Море разных шин и разъёмов, которыми периферия может подключаться к компьютерам не выгодно никому - ни производителям самих компьютеров, ни производителям периферии. Стало ясно, что нужны универсальные шины. И они появились. К сожалению, общий беспорядок(когда каждый тянул одеяло на себя), не миновал и эту область. Поэтому, в середине девяностых годов, взглянув на заднюю стенку компьютера, можно было увидеть кучу разнообразных разъёмов: COM, LPT, VGA, PS/2 и некоторые другие. Каждый из этих разъёмов имел свои недостатки, требовал от разработчиков отдельной реализации и требовал свою долю отнюдь не безграничных компьютерных ресурсов. Необходимость действительно универсального разъёма назрела, и разработчики с энтузиазмом принялись за работу. Так, например, небезызвестная фирма Intel с середины девяностых годов начала агрессивно проталкивать на рынок своё детище - USB (Universal Serial Bus). По сравнению с существовавшими на то время разъёмами, USB стал подлинным прорывом, обеспечивая казалось бы, всё, о чём можно было мечтать. Но это только казалось:-) В тени шумихи вокруг USB тогда мало кто заметил рождение ещё одного формата, использующего последовательную шину (Serial Bus), который умел не меньше (а то и больше), чем его широко разрекламированный конкурент. Это IEEE 1394.

С чего всё начиналось

История IEEE 1394, теперь известного также как FireWire и как i-Link, началась ещё в 1986 году, когда члены Microcomputer Standards Committee (Комитет по Стандартам Микрокомпьютеров) захотели объединить существовавшие в то время различные варианты последовательной шины (Serial Bus). Новый проект был призван объединить существовавшие на то время наработки: IEEE 1014 VME, IEEE 1296 Multibus II, и IEEE 896 FutureBus+®. Задачей разработчиков стало создание универсального I/O (Input/Output) внешнего интерфейса, пригодного как для работы с мультимедиа, так и для работы с накопителями данных (Mass Storage Device), не говоря уже о более простых вещах - вроде принтеров, сканеров, и тому подобного. Результатом труда разработчиков стал окончательно утверждённый 12 декабря 1995 года 10 мегабайтный документ под названием 1394-1995.pdf, который описывал IEEE 1394. В названии стандарта нет никакого тайного смысла - просто это был 1394 по счёту стандарт, выпущенный комитетом. Интерфейс, который описывался в этом документе был воистину революционным. Он обеспечивал просто невероятные по тем временам скорости и удобство. Ведущую роль в разработке стандата сыграла, была Apple, которая дала ему имя FireWire, поэтому нет ничего удивительного в том, что она сразу же сделал ставку на использование этого стандарта в своих компьютерах (как обычно, Apple пошёл своим путём, и, пока пользователи PC заглядывали в рот Intel с недавно появившемся USB, сделал ставку на FireWire. Хотя и USB не был забыт. Настоящей лебединой песней для IEEE 1394 стало появление любительских DV камер. Ещё при их разработке стало ясно, что, кроме IEEE 1394 в качестве внешнего интерфейса для них ничего не подходит. Поэтому, Digital VCR Conference (DVC) приняла решение использовать IEEE 1394 как стандартный интерфейс для цифровых камер. Первой ласточкой стала Sony c DCR-VX1000 и DCR-VX700 цифровыми камерами, которые впервые имели IEEE 1394 выход. Но, вскоре за Sony подтянулись и другие производители. И сегодня IEEE 1394 практически монополизировал этот быстро развивающийся рынок. Сегодня любая, произведённая сегодня DV камера в обязательном порядке оснащается IEEE 1394 интерфейсом.

Свою лепту в развитие IEEE 1394 внесла и Texas Instruments, организовавшая массовое производство действительно дешёвых микросхем для реализации IEEE 1394 интерфейса, что сыграло огромную роль в бурном росте количества IEEE 1394 контролёров в персональных компьютерах.

Несмотря на такой успех нового стандарта (он оказался востребованным ещё до выхода окончательной спецификации), разработчики не стояли на месте. Уже в 2000 году вышла 1394a-2000 версия протокола, сразу же с энтузиазмом воспринятая производителями. А сегодня разрабатывается P1394b.

Что же такого хорошего в IEEE 1394?

Как уже говорилось, разработчики опирались на выпущенные ранее стандарты, и в IEEE 1394 вошло всё лучшее, что существовало на тот момент. Из главных особенностей IEEE 1394 можно отметить:

  • Последовательная шина вместо параллельного интерфейса позволила использовать кабеля малого диаметра и разъёмы малого размера.
  • Поддержка горячего подключения и отключения всего чего угодно.
  • Питание внешних устройств через IEEE 1394 кабель.
  • Высокая скорость
  • Возможность строить сети из различных устройств и самой различной конфигурации.
  • Простота конфигурации и широта возможностей. Через IEEE 1394 может работать самое различное оборудование, причём пользователю не придётся мучаться вопросом, как это всё правильно подключить.
  • Поддержка асинхронной и синхронной передачи данных.
На последнем пункте необходимо остановиться поподробнее.

Асинхронная передача . Asybnchronous, от греческого Asyn - другой и Chronous - время. Это означает, что данные обязательно будут доставлены в целости и сохранности, пусть и не всегда в срок. Получение каждого пакета проверяется и подтверждается, если пакет не дошёл, передача будет повторена заново.

Синхронная передача . Isochronous, от греческого Iso - тот же, такой же и Chronous - время. Это означает, что скорость и непрерывность потока важнее, чем сохранность данных. Если пакет пришёл с ошибкой, или не пришёл вообще, это даже не проверяется, не говоря уже о том, чтобы переслать пакет заново. Этот тип передачи отлично подходит для мультимедийных приложений, где потеря какой-либо части информации менее критична, чем большая задержка.

Как это всё работает?

IEEE 1394 делится на несколько уровней. Выглядит это так:

Внизу находится физический уровень (Physical Layer). Аппаратная составляющая, которая отвечает за перевод сигналов, полученных по кабелям в понятную компьютеру форму (и наоборот - за перевод данных в электрические сигналы, идущие по кабелям). Эта же часть отвечает за управление физическим каналом, т.е. определяет, должно устройство занимать канал прямо сейчас, или должно подождать. Кроме того, этот же уровень обеспечивает интерфейс для кабелей и разъёмов и отвечает за следующие процессы:

Интерфейс среды (Media Interface) - отвечает за состояние сигнала, передаваемого по кабелям.

Арбитраж (Arbitration) - различные IEEE 1394 устройства, включенные в сеть разбираются между собой, кто и в каком порядке может действовать.

Кодирование/Декодирование (Encode/Decode) - перевод данных в электрические сигналы, которые могут передаваться по кабелям и обратно.

Уровнем выше расположен уровень канала (Link Layer). Сюда доставляются уже готовые пакеты данных. Именно этот уровень отвечает за пересылку данных вверх и вниз, тут происходят следующие процессы:

Приёмник пакетов (Packet Receiver) - организует и отвечает за приём пакетов данных.

Передатчик пакетов (Packet Transmitter) - организует и отвечает за передачу пакетов данных.

Контроль циклов (Cycle Control) - пакеты передаются не поодиночке, а циклами. Здесь и осуществляется контроль над этими циклами.

Эти два уровня реализованы в "железе", т.е. выполняются аппаратно. Они полностью отвечают за формирование сигнала из данных, формирование данных из сигнала, и приём/передачу в нужное время и в нужное место. Поэтому, только этих двух уровней и хватает при синхронной передаче, когда никакого контроля над тем что передаётся и получается не требуется. При асинхронной передаче это не так, и там в действие вступает:

Сетевой уровень (Transaction Layer). На этом уровне происходит проверка полученных данных. Если всё нормально (ни один пакет не потерялся или не повредился), данные отправляются потребителю. Если обнаружена ошибка - возвращаемся на физический уровень и повторяем всё сначала, пока данные не будут получены без ошибок.

Все уровни (в том числе и первые два) контролируются firmware, и этот процесс называется менеджмент последовательной шины (Serial Bus management).

Такие процессы происходят в каждом IEEE 1394 устройстве, и два любых устройства образовывают между собой соединение типа точка-точка (point-to-point). Но, кроме этого, IEEE 1394 позволяет объединять множество таких устройств и соединений в одну логическую сеть. Для этого физический уровень (physical layer) позволяет иметь больше одного физического интерфейса на одном устройстве.

Рассмотрим подробнее, как разные устройства в одной логической сети разбираются, кто, когда, и что должен делать.

Инициализация сети происходит в несколько этапов:

Сброс (reset) - происходит каждый раз, когда требуется. Причиной для сброса может стать, например, физическое изменение конфигурации сети (подключили новое устройство или отключили старое). Со сброса шины и начинается процесс инициализации сети. Конфигурация, сформировавшаяся при этом, остаётся действительной и неизменной до следующего сброса шины.

Идентификация дерева (Tree identification) - подключенные устройства выясняют, какие из них родительские, а какие дочерние, и формируют логическое дерево. Определяется корневое устройство для всего дерева.

Примечание: Первое, что определяет устройство после включения, это сколько подключенных портов оно имеет. Один (leaf) или несколько (branch). Затем определяется родительские (parent) и дочерние (child) устройства (какое к какому подключено). На основе этих данных строится дерево и определяется корневое устройство.


Самоидентификация (Self identification) - каждое из устройств получает свой собственный ID узла внутри дерева, и выясняет на каких скоростях могут работать его непосредственные соседи. Топология полностью определена. Для адресации используются принципы, описанные в IEEE 1212. Это означает 64 битную прямую адресацию (48 бит на узел, остальные 16 используются дли идентификации шины), что позволяет организовать иерархическую адресацию для 63 узлов на 1023 шинах. Единственное ограничение - между двумя устройствами, которые хотят общаться между собой, должно быть не более 16 "хопов" (сегментов).

Инициализация сети завершена, в действие вступает нормальный арбитраж - рабочий режим работы сети. Устройства обмениваются данными, а корневое устройство следит за тем, чтобы они друг другу не мешали. Происходит это так:

Устройство, которое хочет начать передачу, вначале посылает запрос своему родительскому устройству. Родительское устройство, получив запрос, запрещает передачу всем остальным дочерним (в один момент обрабатывается только один запрос) и, в свою очередь, передаёт запрос дальше, своему родительскому устройству, где всё повторяется. В итоге запрос доходит до корневого устройства, которое, в свою очередь, разрешает передачу тому устройству, чей запрос пришёл первым. Всем остальным передача запрещается. Таким образом, если два устройства одновременно пошлют запрос на передачу данных, то ответ будет зависеть от того, чей запрос первым достигнет корневого устройства. Оно выигрывает арбитраж и получает право начать передачу. Проигравшее устройство. не получив разрешения на передачу, вынуждено ждать, пока выигравшее не освободит шину.


Всё это происходит на физическом уровне (physical layer). После того, как разрешение на передачу данных получено и требуется начать передачу данных, в дело вступает уровень канала (link layer). Как уже говорилось, именно он формирует пакеты и определяет - когда и сколько пакетов должно отсылаться. Передача данных начинается с запроса готовности к приему устройства, для которого предназначены данные, и, получив подтверждение готовности, начинает передачу. Данные идут пакетами, между которыми есть промежутки (gap). Типичный пакет данных 256 байт, или 2048 бит, из которых 160 бит приходится на заголовок. Таким образом, общая эффективность (сколько в пакете действительно данных, а не служебной информации) весьма высока и чем больше пакет, тем выше эффективность). В заголовок входит информация об отправителе, получателе и CRC. После пакета идёт небольшой промежуток, длиной меньше 0.75 msec (acknowledge gap), после чего получатель должен выслать 8-ми битовый блок данных, подтверждающий, что пакет получен в целости и сохранности (ack packet). Потом следует более длинный промежуток, длинной больше 1 msec, разделяющий пакеты (subaction gap). И так далее - пакет, acknowledge gap, подтверждающий байт (ack), subaction gap.

Для того, чтобы одно устройство, начав передавать данные, не заняло весь канал, не оставив соседям никаких шансов начать передачу, пока оно не закончит, введено понятие fairness interval. В течении одного fairness interval каждое устройство в шине получает одну возможность передать свои данные. После того как разрешение получено (арбитраж выигран), и порция данных передана, устройство должно ждать конца fairness interval и начала следующего цикла, прежде чем оно вновь получит возможность передать следующую порцию данных. Заканчивается fairness interval так называемым reset gap, который длиннее subaction gap, и вызывает сброс всей шины.

Для синхронной передачи используется несколько другая методика. Данные передаются "выстрелами", длина каждого 125 мsec. Таких выстрелов производится столько, сколько позволяет канал. Даже на одинарной (98.304 Mbit/sec) скорости за один такой цикл передаётся до 1000 байт. Чем выше скорость, тем больше данных успевает пройти. При этом, при синхроной передаче абсолютно не важно, получило принимающее устройство данные или нет. Пакеты просто идут один за другим, разделённые subaction gap, никаких ack packet никто не ждёт. Для того, чтобы принимающее устройство смогло разобраться, где синхронные, а где асинхронные данные, subaction gap при синхронной передаче короче. Это позволяет комбинировать в одном сеансе синхронные данные с асинхронными. Однако, в синхроном режиме одному устройству никогда не позволят захватить весь доступный канал. На синхроные данные может приходится не более 85% доступного канала, причём одно устройство не может занять больше 65%.

Как всё это выглядит?

IEEE 1394 позволяет передавать данные на скорости 98.304 Mbit/sec. Кроме этого, возможна передача в 2-x (196.608 Mbit/sec) и 4-x (393.216 Mbit/sec) режимах.

Первоначально появились чипы, которые способны работать только на 100 Мбитах (хотя спецификация позволяла и больше), но 200 и 400-мегабитные чипы не заставили себя долго ждать. Несмотря на такой кажущийся беспорядок, пользователи не должны испытывать ни малейших неудобств (это было одно из обязательных условий, которое ставилось перед разработчиками). Поэтому IEEE 1394 позволяет в одной сети использовать самые разные устройства одновременно. Причём, пользователю не придётся беспокоиться о том, что он может неправильно их подключить. Подключать можно что угодно, и в каких угодно сочетаниях, железки сами разберутся, кто с кем и на какой скорости может "разговаривать".

Для работы на таких высоких скоростях потребовались соответствующие кабели. Кабель для IEEE 1394 весьма сложная система, и спаять его самостоятельно (что возможно для USB) вряд ли возможно. Данные передаются по двум витым парам, каждая из которых отдельно экранирована. Для пущей надёжности, дополнительно экранируется и весь кабель. Кроме двух сигнальных пар, в кабеле предусмотрены две питающие жилы, которые могут обеспечить любое внешнее устройство током силой до 1.5 А и напряжением до 40 V. В разрезе кабель выглядит так:


Выбору разъёма, к которому должны подключаться IEEE 1394 устройства, было уделено самое пристальное внимание, ведь от разъёма в немалой степени зависит то, насколько удобно будет пользоваться новым интерфейсом. Разъём должен быть небольшим, но в то же время прочным, должен обеспечивать надёжное соединение, но в то же время легко соединяться-отсоединяться даже вслепую. Всем требованиям удовлетворил разъём, используемый в Nintendo GameBoy.

Как видно из фотографии, все контакты выведены в середину разъёма, а снаружи защищены толстым ободком из твёрдой пластмассы. Надёжность этой схемы доказана многими GameBoy, беспощадно растерзанными детьми разных возрастов.

Но даже такой продвинутый и удобный разъём не всех удовлетворил. В самом деле, зачем нам тянуть за собой две питающих жилы там, где подключенное устройство имеет собственное питание. Действительно незачем, решили разработчики и на свет появился новый, четырёхконтактный разъём. Этот новый разъём хоть и не обеспечивал такого надёжного соединения как традиционный шестиконтактный, зато позволял сэкономить место, что немаловажно на портативных устройствах. Кроме этого, кабель без двух дополнительных жил, ответственных за питание, можно сделать ещё тоньше и дешевле. Особо "по вкусу" четырёхконтактные разъёмы пришлись производителям компактных DV камер, и именно их можно увидеть на большинстве таких камер.

Производители материнских плат включают в свои последние решения поддержку обоих разъёмов:

Как это всё развивалось, и что мы имеем сегодня

Ничего идеального в мире нет, и IEEE 1394 не получился идеальным. Поэтому, выпустив первую версию стандарта в 1995 году, команда разработчиков не стала почивать на лаврах, а продолжила работу над следующими версиями стандарта. Так, уже в 2000 году вышла 1394а версия стандарта.

История

На выставке Comdex’93 было впервые продемонстрировано небывалое по тем временам достижение: компьютер в одном окне показывал видеоклип с жесткого диска, а в другом - полномасштабную видеозапись в реальном времени, которая считывалась с цифровой видеокамеры. Процессор компьютера при этом не тратил вычислительные ресурсы на показ видео в реальном времени, поскольку в видеопамять по шине 1394 поступала уже сформатированная картинка.

Изобретателем нового высокоскоростного последовательного интерфейса является фирма Apple. Еще в 1986 году она предложила использовать подобный метод при построении системной шины, а также внешнего и внутреннего интерфейса для подключения отдельных компонентов и высокоскоростных периферийных устройств для компьютеров Macintosh. FireWire (такое название дала ему фирма Apple) вначале разрабатывался как высокоскоростной последовательный вариант SCSI. Взяв за основу относительно медленную шину, инженеры Apple сначала увеличили скорость передачи данных до 50 Мбит/с, а затем еще в два раза.

Основными требованиями при разработке этого интерфейса были следующие: двунаправленная скорость передачи до 400 Мбит/с (в настоящее время готовятся к выходу устройства, работающие на скоростях до 800 Мбит/с), а также возможность «горячего» подключения, то есть подсоединения внешних устройств без перезагрузки системы. Общее число подключенных устройств в одном бридже может достигать 63.

Решение Apple «открыть» стандарт привело к сотрудничеству с заинтересованными в таком проекте разработчиками из Texas Instruments, Stewart Connector, Molex, Adaptec и Western Digital (впоследствии к ним присоединился IBM, представитель которого и возглавил работы над всем проектом).

В стандарте кабелей FireWire существует два варианта кабелей с общим экраном: 6-проводной со скоростью обмена до 400 Мбит/с и 4-проводной (без проводов питания) со скоростью обмена до 100 Мбит/с. Они заканчиваются небольшими компактными разъемами.

Техническое описание этой шины в виде стандарта IЕЕЕ-1394 (IEEE, Institute of Electrical and Electronics Engineers) вышло в 1990 году. А к моменту публикации окончательного варианта стандарта на шину IEEE-1394 максимальная скорость обмена данных по шине достигла 400 Мбит/с.

Массовое распространение новинка получила главным образом после заключения в конце апреля 1995 года лицензионного соглашения между фирмами Apple и Adaptec, в результате чего вскоре появились контроллеры Adaptec IEEE-1394, а чуть позже - и цифровые DV-камеры фирмы Sony с вариантом соединения по FireWire-интерфейсу (i.Link). Таким образом, данный интерфейс начал широко применяться в области цифрового видео, хотя основным его назначением и областью его развития и совершенствования были и остаются компьютерные технологии.

Зачем нужен новый интерфейс

Прежде всего, посмотрите на заднюю стенку своего компьютера. Там можно найти множество всяких разъемов: последовательный порт для модема, принтерный порт для принтера, разъемы для клавиатуры, мыши и монитора, SCSI-интерфейс, предназначенный для подключения внешних носителей информации и сканеров, разъемы для подключения аудио и MIDI устройств, а также для устройств захвата и работы с видеоизображениями. Это изобилие сбивает с толка пользователей и создает беспорядок из соединительных кабелей. Причем, нередко производители ноутбуков используют и другие типы коннекторов.

Новый интерфейс призван избавить пользователей от этой мешанины и к тому же имеет полностью цифровой интерфейс. Таким образом, данные с компакт-дисков и цифровых магнитофонов смогут передаваться без искажений, потому что в настоящее время эти данные сначала конвертируются в аналоговый сигнал, а затем обратно оцифровываются устройством-получателем сигнала. Кабельное телевидение, радиовещание и видео CD передают данные также в цифровом формате.

Цифровые устройства генерируют большие объемы данных, необходимые для передачи качественной мультимедиа-информации. Например:

Высококачественное видео Цифровые данные = (30 frames / second) (640 x 480 pels) (24-bit color / pel) = 221 Mbps

Видео среднего качества Цифровые данные = (15 frames / second) (320 x 240 pels) (16-bit color / pel) = 18 Mbps

Высококачественное аудио Цифровые данные = (44,100 audio samples / sec) (16-bit audio samples) (2 audio channels for stereo) = 1.4 Mbps

Аудио среднего качества Цифровые данные = (11,050 audio samples / sec) (8-bit audio samples) (1 audio channel for monaural) = 0.1 Mbps

Обозначение Mbps - мегабит в секунду.

Для решения всех этих проблем и высокоскоростной передачи данных была разработана шина IEEE 1394 (Firewire).

Преимущества

Горячее подключение - возможность переконфигурировать шину без выключения компьютера

Различная скорость передачи данных - 100, 200 и 400 Мбит/с в стандарте IEEE 1394/1394a, дополнительно 800 и 1600 Мбит/с в стандарте IEEE 1394b и 3200 Мбит/с в спецификации S3200.

Гибкая топология - равноправие устройств, допускающее различные конфигурации (возможность «общения» устройств без компьютера)

Высокая скорость - возможность обработки мультимедиа-сигнала в реальном времени

Поддержка изохронного трафика

Поддержка атомарных операций - сравнение/обмен, атомарное увеличение (операции семейства LOCK - compare/swap, fetch/add и т. д.).

Открытая архитектура - отсутствие необходимости использования специального программного обеспечения

Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До полутора ампер и напряжение от 8 до 40 вольт.

Подключение до 63 устройств.

Шина IEEE 1394 может использоваться для:

Создания компьютерной сети.

Подключения аудио и видео мультимедийных устройств.

Подключения принтеров и сканеров.

Подключения жёстких дисков, массивов RAID.

Основные сведения

Шесть контактов FireWire подсоединены к двум проводам, идущим к источнику питания, и двум витым парам сигнальных проводов. Каждая витая пара и весь кабель в целом экранированы.

Провода питания рассчитаны на ток до 1,5 А при напряжении от 8 до 40 В, поддерживают работу всей шины, даже когда некоторые устройства выключены. Они также делают ненужными кабели питания во многих устройствах. Не так давно инженеры Sony разработали еще более тонкий четырехпроводный кабель, в котором отсутствуют провода питания. (Они намерены добавить свою разработку к стандарту.) Этот так называемый AV-разъем будет связывать небольшие устройства, как "листья" с "ветками" 1394.

Гнездо разъема имеет небольшие размеры. Ширина его составляет 1/10 ширины гнезда разъема SCSI, у него всего шесть контактов (у SCSI - 25 или 50 разъемов).

К тому же кабель 1394 тонкий - приблизительно в три раза тоньше, чем кабель SCSI. Секрет тут прост - ведь это последовательная шина. Все данные посылаются последовательно, а не параллельно по разным проводам, как это делает шина SCSI.

Устройство может иметь до 4 портов (разъёмов). В одной топологии может быть до 64 устройств. Максимальная длина пути в топологии - 16. Топология древовидная, замкнутые петли не допускаются.

При присоединении и отсоединении устройства происходит сброс шины, после которого устройства самостоятельно выбирают из себя главное, пытаясь взвалить это «главенство» на соседа. После определения главного устройства становится ясна логическая направленность каждого отрезка кабеля - к главному или же от главного. После этого возможна раздача номеров устройствам. После раздачи номеров возможно исполнение обращений к устройствам.

Во время раздачи номеров по шине идет трафик пакетов, каждый из которых содержит в себе количество портов на устройстве, а также ориентацию каждого порта - не подключен/к главному/от главного, а также максимальную скорость каждой связи (2 порта и отрезок кабеля). Контроллер 1394 принимает эти пакеты, после чего стек драйверов строит карту топологии (связей между устройствами) и скоростей (наихудшая скорость на пути от контроллера до устройства).

Операции шины делятся на асинхронные и изохронные.

Асинхронные операции - это запись/чтение 32-битного слова, блока слов, а также атомарные операции. Асинхронные операции используют 24-битные адреса в пределах каждого устройства и 16-битные номера устройств (поддержка межшинных мостов). Некоторые адреса зарезервированы под главнейшие управляющие регистры устройств. Асинхронные операции поддерживают двухфазное исполнение - запрос, промежуточный ответ, потом позже окончательный ответ.

Изохронные операции - это передача пакетов данных в ритме, строго приуроченном к ритму 8 КГц, задаваемому ведущим устройством шины путем инициации транзакций «запись в регистр текущего времени». Вместо адресов в изохронном трафике используются номера каналов от 0 до 31. Подтверждений не предусмотрено, изохронные операции есть одностороннее вещание.

Изохронные операции требует выделения изохронных ресурсов - номера канала и полосы пропускания. Это делается атомарной асинхронной транзакцией на некие стандартные адреса одного из устройств шины, избранного как «менеджер изохронных ресурсов».

Помимо кабельной реализации шины, в стандарте описана и наплатная (реализации неизвестны).

Топология

Стандарт 1394 определяет общую структуру шины, а также протокол передачи данных и разделения носителя. Древообразная структура шины всегда имеет "корневое" устройство, от которого происходит ветвление к логическим "узлам", находящимся в других физических устройствах.

Корневое устройство отвечает за определенные функции управления. Так, если это ПК, он может содержать мост между шинами 1394 и PCI и выполнять некоторые дополнительные функции по управлению шиной. Корневое устройство определяется во время инициализации и, будучи однажды выбранным, остается таковым на все время подключения к шине.

Сеть 1394 может включать до 63 узлов, каждый из которых имеет свой 6-разрядный физический идентификационный номер. Несколько сетей могут быть соединены между собой мостами. Максимальное количество соединенных шин в системе - 1023. При этом каждая шина идентифицируется отдельным 10-разрядным номером. Таким образом, 16-разрядный адрес позволяет иметь до 64449 узлов в системе. Поскольку разрядность адресов устройств 64 бита, а 16 из них используются для спецификации узлов и сетей, остается 48 бит для адресного пространства, максимальный размер которого 256 Терабайт (256х10244 байт) для каждого узла.

Конструкция шины удивительно проста. Устройства могут подключаться к любому доступному порту (на каждом устройстве обычно 1 - 3 порта). Шина допускает "горячее" подключение - соединение или разъединение при включенном питании. Нет также необходимости в каких-либо адресных переключателях, поскольку отсутствуют электронные адреса. Каждый раз, когда узел добавляется или изымается из сети, топология шины автоматически переконфигурируется в соответствии с шинным протоколом.

Однако есть несколько ограничений. Между любыми двумя узлами может существовать не больше 16 сетевых сегментов, а в результате соединения устройств не должны образовываться петли. К тому же для поддержки качества сигналов длина стандартного кабеля, соединяющего два узла, не должна превышать 4,5 м.

Протокол

Интерфейс позволяет осуществлять два типа передачи данных: синхронный и асинхронный. При асинхронном методе получатель подтверждает получение данных, а синхронная передача гарантирует доставку данных в необходимом объеме, что особенно важно для мультимедийных приложений.

Протокол IEEE 1394 реализует три нижних уровня эталонной модели Международной организации по стандартизации OSI: физический, канальный и сетевой. Кроме того, существует "менеджер шины", которому доступны все три уровня. На физическом уровне обеспечивается электрическое и механическое соединение с коннектором, на других уровнях - соединение с прикладной программой.

На физическом уровне осуществляется передача и получение данных, выполняются арбитражные функции - для того чтобы все устройства, подключенные к шине Firewire, имели равные права доступа.

На канальном уровне обеспечивается надежная передача данных через физический канал, осуществляется обслуживание двух типов доставки пакетов - синхронного и асинхронного.

На сетевом уровне поддерживается асинхронный протокол записи, чтения и блокировки команд, обеспечивая передачу данных от отправителя к получателю и чтение полученных данных. Блокировка объединяет функции команд записи/чтения и производит маршрутизацию данных между отправителем и получателем в обоих направлениях.

"Менеджер шины" обеспечивает общее управление ее конфигурацией, выполняя следующие действия: оптимизацию арбитражной синхронизации, управление потреблением электрической энергии устройствами, подключенными к шине, назначение ведущего устройства в цикле, присвоение идентификатора синхронного канала и уведомление об ошибках.

Чтобы передать данные, устройство сначала запрашивает контроль над физическим уровнем. При асинхронной передаче в пакете, кроме данных, содержатся адреса отправителя и получателя. Если получатель принимает пакет, то подтверждение возвращается отправителю. Для улучшения производительности отправитель может осуществлять до 64 транзакций, не дожидаясь обработки. Если возвращено отрицательное подтверждение, то происходит повторная передача пакета.

В случае синхронной передачи отправитель просит предоставить синхронный канал, имеющий полосу частот, соответствующую его потребностям. Идентификатор синхронного канала передается вместе с данными пакета. Получатель проверяет идентификатор канала и принимает только те данные, которые имеют определенный идентификатор. Количество каналов и полоса частот для каждого зависят от приложения пользователя. Может быть организовано до 64 синхронных каналов.

Шина конфигурируется таким образом, чтобы передача кадра начиналась во время интервала синхронизации. В начале кадра располагается индикатор начала и далее последовательно во времени следуют синхронные каналы 1, 2… На рисунке изображен кадр с двумя синхронными каналами и одним асинхронным.

Оставшееся время в кадре используется для асинхронной передачи. В случае установления для каждого синхронного канала окна в кадре шина гарантирует необходимую для передачи полосу частот и успешную доставку данных.

Внешний вид современного персонального компьютера радует глаз. Серенькие китайские «тазики» давно канули в Лету. Фирмы-производители корпусов соревнуются, предлагая покупателю ультрасовременный дизайн на любой вкус, но если посмотреть на заднюю стенку «системника», создается впечатление, что за последние 10-15 лет ничего не изменилось: та же путаница кабелей, множество разъемов самых разных форм и размеров…

В декабре 1995 года был утверждён стандарт под названием IEEE-1394 (IEEE – Institute of Electrical and Electronic Engineers, 1394 – порядковый номер стандарта). Новый стандарт сулил фантастические по тем временам скорости обмена и удобство подключения оборудования.

Такое положение дел – следствие идеологической ошибки, допущенной на самых ранних этапах развития персоналок. Тогда никому и в голову не приходила идея о необходимости создания единого программно-аппаратного интерфейса для связи ПК с периферийным оборудованием. Для клавиатуры использовали разъем DIN, для принтера – LPT, для мыши – COM, причем разъемы COM существовали в двух конструктивах. Потом для подключения мыши и клавиатуры стали использовать разъемы mini-DIN (PS/2), свои разъемы устанавливались на звуковых картах для джойстиков и на SCSI-контроллерах. Словом, подключение периферийного оборудования к ПК стало для пользователей причиной изрядной головной боли, а для производителей периферии сложившаяся ситуация грозила падением объема продаж и снижением доходов. Со всей остротой встал вопрос о создании единого программно-аппаратного интерфейса для подключения к ПК любого периферийного оборудования.

В середине 90-х годов фирма Intel объявила о создании USB – Universal Serial Bus и начала активно продвигать свою разработку на рынок, однако первой была все-таки не она.

Для цифровых видеокамер IEEE-1394 оказался единственно возможным внешним интерфейсом.

Еще в 1986 году Комитет по стандартам микрокомпьютеров поставил перед своими специалистами задачу по созданию универсального I/O (Input/Output) внешнего интерфейса, пригодного как для работы с мультимедиа, так и для работы с накопителями данных и другой периферией вроде принтеров и сканеров. В результате почти десятилетней работы в декабре 1995 года был утверждён стандарт под названием IEEE-1394 (IEEE – Institute of Electrical and Electronic Engineers, 1394 – порядковый номер стандарта). Новый стандарт сулил фантастические по тем временам скорости обмена и удобство подключения оборудования. Пожалуй, главный вклад в разработку нового стандарта внесла американская фирма Apple, которая традиционно считается законодателем мод в области ПК. Вскоре Apple зарегистрировала товарный знак «FireWire» и начала использовать новый стандарт в своих компьютерах. В апреле 1997 года поддержка FireWire впервые появилась в составе операционной системы Mac OS, а массовое появление периферии с интерфейсом FireWire началось в 1999 году, когда он стал стандартным компонентом всех профессиональных компьютеров Power Macintosh G3 и G4, а с осени – потребительских систем iMac DV.

Распространению FireWire в значительной степени способствовало то обстоятельство, что для цифровых видеокамер IEEE-1394 оказался единственно возможным внешним интерфейсом, и было принято решение использовать IEEE-1394 как стандартный интерфейс для них. Первыми цифровыми камерами с FireWire были модели DCR-VX1000 и DCR-VX700 фирмы Sony, но вскоре, оценив преимущества нового интерфейса, его стали использовать и другие производители. В настоящее время все современные цифровые видеокамеры имеют интерфейс IEEE-1394.

Что представляет собой FireWire

FireWire – это по сути высокоскоростная последовательная шина, обеспечивающая «горячее» подключение до 63 устройств с полной поддержкой принципа Plug-and-Play. Передача данных осуществляется по тонкому и гибкому кабелю длиной до 4,5 метров со скоростью 50 МБ/с (400 Мбит/с).


Интерфейс IEEE-1394 условно разбит на три уровня: физический уровень, уровень компоновки данных и уровень обработки.

Главными особенностями IEEE-1394 являются:

  • Высокая скорость передачи данных;
  • Поддержка «горячего» («fire», то есть без отключения питания и/или перезагрузки операционной системы) подключения периферийного оборудования;
  • Возможность питания подключаемых устройств от блока питания компьютера через IEEE-1394 кабель;
  • Возможность строить сети различной конфигурации из самых разных устройств. Это означает, что оборудование с интерфейсом IEEE-1394 можно соединять не только с ПК, но и друг с другом, причем конфигурирование сети выполняется автоматически;
  • Использование последовательной шины вместо параллельного интерфейса. Благодаря этому стало возможным использовать тонкие (диаметром всего лишь 6 мм) кабели и миниатюрные разъемы;
  • Поддержка асинхронной и синхронной передачи данных. Синхронная передача данных, как правило, применяется в мультимедийных приложениях, где временные задержки недопустимы, а асинхронная – при передаче файлов, где потеря даже одного пакета является критичной.

Интерфейс IEEE-1394 условно разбит на три уровня: физический уровень, уровень компоновки данных и уровень обработки (см. рис 1).


Рис. 1 Функциональная схема интерфейса IEEE 1394

Физический уровень с помощью устройств интерфейса носителей, кодирования-декодирования сигнала и арбитража шины обеспечивает преобразование и передачу электрических сигналов по кабелям и управление каналом, то есть определение последовательности доступа к нему подключенных устройств.

Уровень компоновки данных с помощью приемника и передатчика пакетов, а также устройства управления циклом обеспечивает пересылку данных по сети FireWire-устройств.

Физический уровень и уровень компоновки данных являются аппаратными (Hardware) и представляют собой специализированные микросхемы.

На уровне обработки происходит проверка наличия и целостности полученных пакетов. Если какой-либо пакет не принят или принят с ошибками, осуществляется возврат на физический уровень и повторное получение данных.

Если к ПК подключено более одного FireWire-устройства, автоматически создается логическая сеть

Если к ПК подключено более одного FireWire-устройства, автоматически создается логическая сеть по следующему алгоритму.

При подключении или отключении какого-либо FireWire-устройства происходит инициализация сети, которая начинается со сброса шины. Затем по определенному алгоритму строится логическое дерево и определяется корневой узел сети. Одно из устройств будет являться родительским, а остальные – дочерними, причем для каждого порта строится свое дерево. На этапе самоидентификации каждое устройство получает свой идентификационный номер (ID) в пределах дерева. Одновременно определяются скорости передачи информации, которые может обеспечить каждое устройство.


Рис. 2. Дерево узлов IEEE 1394

После окончания инициализации сеть переходит в рабочий режим. Арбитраж работы в сети осуществляет родительское устройство. Дочернее устройство, пославшее запрос на канал первым, выигрывает арбитраж и получает доступ к каналу. Одновременно остальным дочерним устройствам доступ к нему запрещается. Для того чтобы какое-нибудь одно устройство монопольно не захватило канал, введены специальные интервалы равнодоступности (fairness interval). В течение одного интервала каждое устройство получает однократную возможность передачи данных. После передачи порции данных доступ устройства к шине блокируется. Чтобы вновь получить доступ к шине, ему необходимо дождаться конца интервала равнодоступности и начала следующего цикла.

По сигналу разрешения начинается работа на уровне компоновки, где формируются пакеты данных по 512 байт с интервалами между ними, и определяется их адресация. 160 бит в каждом пакете занимает заголовок, куда входит информация об отправителе и получателе пакетов, а также о циклическом коде CRC исправления ошибок. Передача данных начинается по получению ответа о готовности запрашиваемого устройства к приему информации.

В течение времени до 0,75 мс после отправки каждого пакета данных ожидается получение подтверждения об их получении в виде байтовой посылки. Далее следует интервал > 1 мс, разделяющий пакеты, и т. д.

Синхронная передача данных применяется, в мультимедийных приложениях, когда приоритетом является минимум задержки на получение информации по сравнению с возможной потерей или ошибками какой-то ее части.

Синхронная передача данных применяется, как уже говорилось, в мультимедийных приложениях, когда приоритетом является минимум задержки на получение информации по сравнению с возможной потерей или ошибками какой-то ее части. В этом режиме данные передаются пакетами длительностью по 125 мс, т.е. чем выше скорость, тем больше данных может быть передано за это время. Пакеты следуют друг за другом, не ожидая байтов подтверждения получения. Для идентификации пакетов синхронной и асинхронной передачи промежуток между ними в первом случае короче, чем во втором. Это позволяет комбинировать и различать синхронные и асинхронные данные в каждом сеансе. На синхронные данные выделено до 85% канала передачи, из которых устройство может занимать не более 65%.

Интерфейсом IEEE1394 допускается одновременная передача информации на разных скоростях от разных устройств, причем способности их общения на какой-либо из скоростей определяются автоматически.

Интерфейсом IEEE1394 допускается одновременная передача информации на разных скоростях от разных устройств, причем способности их общения на какой-либо из скоростей определяются автоматически. Это делает интерфейс весьма дружественным, так как пользователю не нужно заботиться о правильности подключения устройств.

Как уже говорилось, при синхронной передаче данных проверка целостности информации не выполняется, поэтому пакеты механически следуют один за другим.

Кабели и разъемы

Поскольку скорость передачи информации весьма высока, для IEEE-1394 используют специальные кабели (см. рис. 3). Диаметр такого кабеля равен 6 мм, он содержит три витые пары проводников диаметром 0,87 мм, одна из которых типа 22 AWG предназначена для питания напряжением от 8 до 30 В и током до 1,5 А внешней нагрузки, а две другие – раздельно экранированные пары сигнальных проводов типа 28 AWG. Все шесть жил кабеля закрыты общим плетеным металлическим экраном и защищены изоляцией из ПВХ.


Рис. 3. Разрез кабеля FireWire

После долгих поисков удалось подобрать прочный и компактный разъем, который можно подключать вслепую. Его взяли от игровой приставки Nintendo GameBoy. По конструкции разъем напоминает отечественный разъем типа РША: силовые и сигнальные контакты размещены по центру и защищены прочным прямоугольным пластмассовым кожухом, два угла которого скошены, чтобы исключить неправильное подключение (рис. 4, 5).

Для устройств, не использующих питание по кабелю FireWire, в частности для цифровых видеокамер, предусмотрели облегченный четырехжильный кабель с миниатюрным разъемом. Длина такого кабеля равна 96 см.

Для устройств, не использующих питание по кабелю FireWire, в частности для цифровых видеокамер, предусмотрели облегченный четырехжильный кабель с миниатюрным разъемом. Длина такого кабеля равна 96 см. Как правило, материнские платы компьютеров, поддерживающие FireWire, имеют в комплекте планку с обоими типами разъемов (рис. 6).


Рис. 6. Кабель IEEE 1394 i-Link

IEEE 1394a

При переносе FireWire с «Маков» на платформу РС появились неприятные проблемы, связанные с совместимостью «железа». Поэтому в 2000 году была принята новая редакция стандарта – IEEE 1394a. Стандарт стал более четким, в него были внесены усовершенствования, улучшившие производительность. В частности, было введено время ожидания 1/3 секунды на сброс шины до окончания переходного процесса подключения или отключения устройств. Без этого иногда возникал не один, а целая серия сбросов шины по подключению нового устройства.

Практика показала, что устройства IEEE 1394 могут оказаться несовместимыми, если пакеты в серии передаются с разной скоростью. В IEEE 1394а эта проблема решена путем добавления сигнала скорости в каждый пакет, если скорость его передачи отличается от предыдущей.

Практика показала, что устройства IEEE 1394 могут оказаться несовместимыми, если пакеты в серии передаются с разной скоростью. В IEEE 1394а эта проблема решена путем добавления сигнала скорости в каждый пакет, если скорость его передачи отличается от предыдущей. Предусмотрены также возможности программного отключения порта FireWire, включения аппаратуры и перевода ее в дежурный режим. Большое внимание разработчики уделили повышению эффективности шины за счет уменьшения общей длительности технологических промежутков, разделяющих пакеты записи. С этой целью по IEEE 1394а:

  • Повторные байты подтверждения получения не ожидаются, после первого обнаружения такого байта передача продолжается без остановок;
  • Введена возможность неоднократного запроса на передачу от одного устройства в одном цикле, если другим устройствам шина не нужна;
  • Уменьшено время на сброс шины. В IEEE 1394 передающее устройство не обнаруживает сигнал сброса, пока не закончится передача текущего пакета данных. Поэтому сигнал сброса поддерживался в течение времени, большего, чем максимальное время передачи одного пакета. Если же сигнал сброса формируется по признаку выигрыша устройством арбитража, в этом нет необходимости, и в IEEE 1394a сброс шины выполняется по завершению передачи этого устройства;
  • Предусмотрены возможности прикрепления пакетов информации к уже передающимся пакетам, за счет чего достигается экономия на времени арбитража.

IEEE 1394b

Эта версия стандарта, принятая в 2002 году, рассчитана на последовательную шину с увеличенной до 800 Мб/с и 1,6 Гб/с пропускной способностью. В перспективе пропускная способность может возрасти и до 3,2 Гб/с. Основой интерфейса IEEE 1394b является кодирование 8В10В в соответствии с алгоритмами, применяемыми в оборудовании для гигабайтных сетей и в оптоволоконных линиях связи. Введено измерение времени отклика, что позволило работать со стеклянными оптоволоконными кабелями длиной до 100 метров. При использовании пластикового оптоволокна максимальная длина кабеля уменьшается до 50 метров, а пропускная способность до 200 Мб/с. Изменились и разъемы: теперь это 9-контактные двухрядные разъемы. Вид разъемов на кабельном переходнике 9↔4 контактов показан на рисунке 7.


Рис. 7. Кабельный переходник IEEE 1394

Этот переходник и ему аналогичный 9↔6 контактов обеспечивает кабельную совместимость шины IEEE 1394b с предшествующими версиями IEEE 1394. В новом стандарте предусмотрено два режима передачи данных: β‑режим, когда общаются устройства, поддерживающие IEEE 1394b, и режим обратной совместимости, при котором возможно подключение к шине устройств IEEE 1394a и максимальная скорость автоматически уменьшается до 400 Мб/с.

Из других особенностей IEEE 1394b следует отметить новый способ арбитража. Если в предшествующих стандартах функцию арбитража выполняло корневое устройство, то теперь такую функцию выполняет любое устройство, постоянно посылающее сигналы запроса на передачу. Новый метод арбитража называется Bus Owner/Supervisor/Selector (BOSS). Его логическая схема показана на рисунке 8, а принцип работы заключается в следующем.


Рис. 8. Арбитраж BOSS IEEE 1394b

В новом стандарте предусмотрено два режима передачи данных: β-режим, когда общаются устройства, поддерживающие IEEE 1394b, и режим обратной совместимости, при котором возможно подключение к шине устройств IEEE 1394a и максимальная скорость автоматически уменьшается до 400 Мб/с.

Устройство, готовое к передаче данных, постоянно посылает сигналы запроса, но передача данных блокируется, пока на соответствующей шине присутствуют сигналы, передаваемые другим устройством. Как только последние прекращаются, по этой шине начинают передаваться сигналы ждущего устройства, в свою очередь блокирующего режимы передачи других устройств. Очевидно, что для работы системы арбитража BOSS шина данных должна быть двунаправленной. Поэтому такой арбитраж работает только в среде IEEE 1394b. Если в нее входит хотя бы одно другое устройство, для арбитража применяется ранее рассмотренный метод.

USB 2.0 и IEEE 1394а

Все современные компьютеры оснащены портами USB 2.0, которые являются быстродействующей версией получивших массовое распространение портов USB 1.1. Основная сфера применения USB 2.0 осталась прежней. Это подключение периферийных устройств типа мышей, цифровых фотокамер, картридеров и других устройств, не требующих гарантированно постоянной пропускной способности.

Все современные компьютеры оснащены портами USB 2.0, которые являются быстродействующей версией получивших массовое распространение портов USB 1.1. Основная сфера применения USB 2.0 осталась прежней. Это подключение периферийных устройств типа мышей, цифровых фотокамер, картридеров и других устройств, не требующих гарантированно постоянной пропускной способности. USB 2.0, как и USB 1.1, использует 4-х контактные разъемы, полностью совместимые между собой. Единственное отличие в подключении USB 2.0 и USB 1.1 заключается в том, что новый стандарт требует экранированных кабелей. Теоретическая скорость по USB 2.0 составляет 480 Мб/с, максимальная передаваемая мощность на питание внешних устройств – 2,5 Вт. Общение устройств стандарта USB 2.0 происходит по схеме Master/Slave, т. е. все потоки данных управляются компьютером, что замедляет работу интерфейса. Длина кабеля для соединения двух устройств по шине USB 2.0 не должна превышать 5 метров. Преимуществами USB 2.0 является большая распространенность, совместимость с USB 1.1 и дешевизна.

Теоретическая скорость по USB 2.0 составляет 480 Мб/с, максимальная передаваемая мощность на питание внешних устройств – 2,5 Вт.


Преимуществами USB 2.0 является большая распространенность, совместимость с USB 1.1 и дешевизна.

С продвижением USB 2.0 на рынке стали появляться устройства, например, внешние жесткие диски со сдвоенным интерфейсом или одни и те же модели с разными интерфейсами. Казалось бы, по USB 2.0 они должны работать быстрее, чем по IEEE 1394a, но на практике, при прочих равных условиях производительность по FireWire 400 получается лучше, причем почти без проблем с «горячим» подключением. Вероятно, новая версия USB будет работать стабильней, но и IEEE 1394a к тому времени несколько устареет и будет заменяться на IEEE 1394b. Кроме того, архитектура USB 2.0 по гибкости несопоставима с IEEE 1394, особенно при работе с мультимедийной аппаратурой.

Таким образом, шина USB 2.0 эффективна для компьютерной периферии, низкоскоростной и со средними требованиями к пропускной способности. Она дешева и достаточно производительна для большинства задач. Шина FireWire гораздо гибче и отлично подходит для работы с мультимедиа. Цифровые видеокамеры и телевизоры, DVD-проигрыватели и игровые приставки – все это при наличии портов FireWire легко соединить между собой, причем не обязательно вокруг компьютера.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: