Объектно ориентированное программирование полиморфизм. Объектно-ориентированное программирование (ООП): полиморфизм

Программирование - это процесс разработки решений «живых», динамичных задач в виде жёстких конструкций кода, данных, функций и алгоритмов. Процедура формирования строгого синтаксиса из неопределенной семантики. Реальные задачи - известная большая проблема алгоритмизации: чтобы достигнуть нужного решения, задачу нужно поместить в точные синтаксические конструкции.

ООП дважды делало попытку «сломать» эту древнюю концепцию программирования, но «оковы» классического стиля кодирования данных и алгоритмов все еще крепки.

Уровень и квалификация

Компьютерное дело началось с вычислений, но скорость, с какой нарастает ускорение движения в сферу обработки информации, еще недостаточно велика, чтобы классическое программирование стало невозможным и перестало существовать.

Объективно также и то, что разработчик не настаивает, а заказчик не требует реального решения реальных задач. Обе стороны привыкли ограничиваться доступными инструментами и привычными возможностями.

Формы полиморфизма ООП, идеи инкапсуляции кода и наследование свойств (методов) лежат в сфере программирования, но никак не в сфере решаемой задачи.

Показательный пример - библиотека PHPOffice/PHPWord. Для её использования нужна квалификация разработчика, нужно создавать собственную систему объектов, но текущий уровень заказчика (требования заказчика) - это тривиальная композиция, которую программист перекрывает своей разработкой (иначе требования не удовлетворить). Ситуация вроде такой:

В данном случае применение библиотеки - задача форматирования документов, например, диплом или диссертация должны быть оформлены по стандарту. Заказчик предъявил свои требования, а программист пошел своим путем гораздо дальше.

Выполнен полный разбор документа, его сборка в нужном формате, исполнена работа с таблицами любого уровня вложенности, слияние и разделение ячеек, печать в любом направлении и пр.

Полиморфизм и ООП

Лучшего определения для полиморфизма не придумать, как сослаться на историю развития идеи объектно-ориентированного программирования, столь популярную ныне, столь часто используемую, но нереализованную в сути своей до сих пор.

  • инкапсуляция;
  • полиморфизм;
  • наследование.

Некоторые добавляют ещё: абстракция, и чаще всего именно этот, причем действительно основной момент, используют как фундамент для описания сущности ООП.

Итак, мнения об ООП полиморфны: описывают одно, сконструированы по-разному, или, наоборот, описывают разное, но базируются на четырех одинаковых позициях.

Демократическое начало не свойственно области информационных технологий, но следует отдать должное: сочетание и совместное существование множества мнений об одном и том же - это реальный полиморфизм в действии.

Популярные определения полиморфизма

ООП - очередной этап развития информационных технологий. С этим мало кто спорит, но его основные аксиомы и положения так разнятся в части семантики, что не заслуживают внимания вне их совокупности.

  1. Полиморфизм в программировании - это способность предоставлять один и тот же интерфейс для различных базовых форм (типов данных).
  2. Полиморфизм - возможность объектов иметь различную реализацию.
  3. Полиморфизмом называется способность функции...
  4. Классика (от создателя С/С++): «один интерфейс - много реализаций».
  5. Параметрический полиморфизм подразумевает...
  6. Полиморфизм - положение теории типов...
  7. Абстракция невозможна без инкапсуляции и наследования, как невозможен полиморфизм без наследования...

Можно согласиться, что всё это относится к одному и тому же: но форма выражения мысли, сущность и содержание - не подобны. Но что-то общее всё же есть.

Сущность: разработчик - заказчик

Классическая разработка программ предполагает наличие программиста и задачи (клиент, заказчик). Программист исследует задачу, формализует её и делает код, который приводит к решению. Заказчик отрицает всё предложенное или только его часть, указывая на недоработки, и программист делает свою работу вновь.

Такой круговорот процесса решения задачи наводит на мысль, что здесь явно совмещены две совершенно разные сущности:

  • компьютер не может сам решить задачу;
  • нужна программа, чтобы компьютер мог «понять» и «решить» задачу.

Задача - сфера компетенции заказчика, программа - это алгоритм «адаптации» задачи к возможностям компьютера - сфера компетенции программиста. Роль последнего заключается в «адаптации» компьютера к требованиям задачи, а это лишнее!

Предлагает абстрагироваться . Есть объекты - это сфера заказчика; есть реализация объектов - это сфера программиста. Никакой «технологической» связи между заказчиком и разработчиком. Идея кардинальная, не реализованная по сей день, но что-то уже стабильно работает.

Окна, кнопки и другие объекты

История the Air Art Technology, Object Magazine, Turbo Vision, Graph Vision - это уже история. Мало кто помнит эти реализации ООП, они практически не используются и забыты, но оконный интерфейс Windows знаком миллионам пользователей, а объекты в средах PHP, JavaScript и других языках интернет-технологий применяются сотнями тысяч разработчиков кода, о них знают миллионы посетителей веб-ресурсов.

Вероятно, это единственно правильный путь, по которому должно было развиваться ООП: инкапсуляция, наследование, полиморфизм для разработчика, но не для пользователя. Характерно, что именно эта позиция была основной при разработке визуального оформления (интерфейса) программного обеспечения Windows, прикладных программ типа Turbo Vision и Graph Vision.

Концепция, положенная в основу продуктов типа the Air Art Technology и Object Magazine, существенно отличалась. Здесь абстрактный объект был самым первым предком информационной структуры, инкапсулировал на абстрактном уровне код обработки информации. Объекты окон, кнопок, элементов визуального оформления здесь были вторичны.

В первом варианте (Windows & etc.) парадигма ООП: инкапсуляция, наследование, полиморфизм обозначалась на уровне абстрактного предка, а реализация кода формировалась на уровне каждого конкретного потомка по ветке наследования согласно нужным структуре и содержанию.

Во втором варианте (the Air Art Technology и Object Magazine) важен уровень абстрактного объекта. Что будет у конкретного потомка - не суть, главное, чтобы его ветка наследования удовлетворяла требованиям всех родителей вниз до корневой абстракции.

Объект и система объектов: алгоритм

Идеальная объектно-ориентированная концепция может манипулировать только объектами и системами объектов.

В современных языках программирования под объектом (классом) обычно понимают описание объекта и экземпляр объекта, причем, чтобы воспользоваться описанием объекта, языки позволяют программисту работать со статическими объектами, в то время как динамический объект - описания, со своим уникальным содержанием и структурой, но использующий те же методы (свойства) описания.

Текущая практика относит понятие объекта к инструменту, то есть к языку программирования, интерфейсу, доступу к базе данных, соединению по сети, но нет ничего, что указывает на интересы заказчика, на решаемую задачу.

Это идеально для простого ООП: полиморфизм дает возможность делать, в частности, разнообразные элементы дизайна, но управлять ими одним и тем же кодом. Но здесь не идет речи об объектах задачи, которая вовсе не рассматривается как предмет для объектно-ориентированного анализа.

Программисты приняли ООП как средство для повышения качества и производительности своей работы, но не уступили ни капли «своей территории» заказчику. Основные понятия ООП - инкапсуляция, наследование, полиморфизм - остались в сфере разработки, а не трансплантировались в сферу задачи.

Объект и система объектов: задача и решение

Компьютер - программист - задача. Среднее звено лишнее. Идеально должно существовать только два, относительно зависимых, контура: (компьютер - программист) - задача. То есть, пользователь, заказчик или посетитель имеет инструмент для решения своей задачи. Как реализован инструмент, заказчика не волнует.

В идеале это просто компьютер, который способен понять, что хочет заказчик, и сделать то, что он хочет. Как это будет выглядеть: локальная программа или сайт, доступный через браузер, специальная программа распределенной обработки информации, информационная система для заказчика - не важно.

Существенно, что между задачей и компьютером нет лишнего звена, но первое понимаемо и решаемо вторым. Для достижения такой цели компьютер и заказчик должны быть связаны одной системой объектов, причем смысл, структуру и содержание каждого объекта определяет заказчик, а методы и свойства объектов реализует программист.

Идеально, когда работа заказчика по созданию нужной ему системы объектов и работа по реализации методов и свойств этих объектов разнесены во времени. Чем дальше отстоит реализация системы объектов (программист) от её смыслового наполнения (заказчик), тем качественнее процесс.

Ничто не мешает заказчику и программисту взаимодействовать в процессе решения задачи, но важно четкое разделение семантики. Каждый должен заниматься своим делом, программист не обязан осваивать область применения задачи, а заказчик не должен разбираться в коде и уж, тем более, стороны не должны давать друг другу советы в том, что их не касается.

Традиционное и объектное программирование

Базовые постулаты ООП: инкапсуляция, наследование, полиморфизм в том виде, в котором они стали привычны и востребованы, приводят к заметному улучшению качества и надежности кода, значительно ускоряют работу программиста и имеют массу других положительных качеств.

Но воз и ныне там: классическое программирование не уступает своих позиций, и многие объектно-ориентированные идеи реализованы классическим кодом.

Однако идеи ООП и рекурсия привели к адекватному влиянию на синтаксис классических операторов синтаксиса, на логику построения обычного кода, не имеющего никакого отношения к объектно-ориентированному стилю письма и мышления.

Списки и очереди преобразились, появилось понятие первого и последнего элемента массива, появились циклы «по каждому», а ссылочные варианты именования, использования и исполнения стали ещё более востребованными, чем раньше.

Собственно, сам факт, что переменные потеряли свое «чёткое» лицо (тип переменной может меняться по мере надобности, а описывать переменную вовсе нет необходимости) говорит, что классика, на самом деле, давно стала объектно-ориентированной и признала основные принципы ООП: инкапсуляция, наследование, полиморфизм как идеи, имеющие существенное значение.

Что в основе: объект или система

Абстракция, как основное концептуальное положение ООП, вне зависимости от того, где находится зона ответственности (реализация) объекта - на уровне первого абстрактного объекта или на уровне конкретного потомка, - оставляет открытым вопрос: с чего всё начинать, с объекта или с системы?

Если в основу положить объект, то он никогда не станет системой, поскольку система будет находиться внутри него, а сам он станет жёстким образом вполне конкретного начала. Здесь с абстракцией возникают проблемы: начальный объект точно фиксирует основное в решаемой задаче, то есть он уже не переносим на другую задачу.

Если в основу положить систему объектов, то получается система систем. Это трудно представить в отношении конкретной задачи, и с чего начинать разработку - тоже сложно понять. По большому счёту, полиморфизм ООП c его различиями в сущностях, формах реализации, количествах актуальных параметров в функциях даёт представление о системе, которая лежит в начале, как:

  • о вариантах решения задачи (например, меню);
  • о начальных условиях (применение задачи в разных условиях, данных);
  • о режимах работы (тестирование, настройка, работа).

Но это и подобное ему не даёт никаких оснований ставить в основу решения задачи систему объектов. Часто достаточно определить один единственный начальный объект.

История процесса решения задачи

Важнейшие принципы ООП: полиморфизм и абстракция - определяют приоритетом начальный объект как систему объектов. В споре, что должно быть раньше, курица или яйцо, здесь победа достается курице.

Нет никаких сомнений в том, что всё должно начинаться с абстрактного объекта, а не с системы объектов. Но если учесть фактор времени и приложить его на уровне каждого объекта, начиная с самого первого абстрактного, то противоречивая мысль положить в начало решения и объект, и систему является единственно разумной.

Если классическая концепция программирования в ходе решения задачи меняет данные, содержимое базы данных, изменяет файлы и пр., то в концепции ООП полиморфизм, инкапсуляция и фактор времени меняют содержание, структуру и свойства системы объектов решаемой задачи.

Программиста в ООП меньше всего интересует понятие файл, база данных, алгоритм, - это частности, здесь программист мыслит объектами, но объекты существуют во времени и изменяются в ходе достижения желаемого.

Таким образом, в начале лежит объект как система объектов и логика этой системы - шкала времени: запуск задачи, формирование первого объекта, ввод или сбор данных, формирование следующего объекта, но ничто не мешает первому объекту приступить к следующему решению.

Каждый уровень объектов выступает как самостоятельная система объектов, то есть, это один объект, но в контексте начавшегося процесса и значения времени - это система объектов на шкале времени. Для полноценной реализации ООП полиморфизм, наследование и фактор времени в совокупности обеспечивают динамику первого, то есть объект может не только меняться с течением времени, но и порождать объекты, не предусмотренные разработчиком, порожденные исполнением задачи по ходу процесса, проектируемые заказчиком.

Реальный полиморфизм ООП, пример

Сложность задач, которая по силам ООП, не сравнима с той, что доступна классическому варианту написания программ. Конечно, решить любую задачу всегда доступно обычным образом, но вопрос, сколько это будет «стоить» времени и сил, часто делает результат бесполезным.

Не так давно была разработана библиотека PHPOffice/PHPWord, но для того чтобы использовать её возможности, практически всегда приходится создавать собственную систему объектов. Например, простой файл *.docx:

представляет собой zip-архив множества файлов и папок в формате Office Open XML (OpenXML, OOXML). Каждый файл записан в тегами XML, причём при добавлении, изменении и удалении букв, слов, таблиц, списков и пр. элементов содержимое файлов начинает представлять собой последовательность тегов, которые не всегда содержат полные элементы, часто один элемент записывается множеством тегов.

Если представить этот файл в виде последовательности тегов, получится интересная картинка:

Легко заметить, что первый и единственный абзац документа представлен множеством тегов. Что касается таблицы и встроенных в неё таблиц, то объём описания всех элементов не поддается восприятию, но доступен объектно-ориентированному приложению.

На самом деле, на рисунке зеленое - это тестовый вывод тегов, желтое - параметры и тип тега, бежевое - содержание. Созданные объекты ориентированы на машинную обработку. Для человека становятся доступны только операции открытия файла документа, его форматирование и запись.

Решение простое и практичное, а вот реализация ориентирована больше на компьютер, нежели на человека, по причине объемности выполняемого функционала и сложных взаимосвязей между объектами.

Состояние области ООП

Развитие систем управления сайтами, технологий настройки и управления серверами, опыт разработки динамичных сайтов сделали объектно-ориентированное программирование доступным каждому. Проблема в том, как изменить свое мышление и привыкнуть мыслить на уровне объектов, а не в контексте последовательно исполняемого кода.

Обычно переход от классического программирования к объектно-ориентированному занимает два-три месяца, но затраты окупаются с лихвой. Потенциал современных языков программирования, в первую очередь PHP и JavaScript, удовлетворит самого искушенного разработчика.

Современное ООП - полиморфизм, наследование и возможности формирования свойств объектов - удобны и практичны, синтаксис языков и вспомогательные инструменты обеспечивают комфорт в работе и эффективность кода.

Перспективы объектной идеи

Сколько продержится классическое программирование и как будет развиваться ООП - сказать достаточно сложно. Судя по всему, разработчики инструментальных средств не планируют рассматривать контекст потребителя (пользователя, заказчика).

Инструментарий ООП - полиморфизм, наследование, инкапсуляция и абстракция - ориентируются на разработчика.

Современные информационные системы и веб-ресурсы стремятся отражать реальную действительность, обеспечивать функционирование реальных объектов и создавать среду для их функционирования, настолько простую, что она будет доступна потребителю, далекому от программирования, полностью погруженному в сферу своей компетенции.

Ок. Полиморфизм ни в коем случае нельзя рассматривать отдельно от других фундаментальных понятий - абстракция, инкапсуляция и наследование. Объект и подобные прилагаются из аксиом (хотя это-то тоже аксиомы).

Собственно, представим себе рядом стакан, кружку, чайник, кофемашину, велосипед и скейт. Что между ними всеми общего? Ну как минимум то, что они есть. То есть это - объекты, которые были созданы. Но как они были созданы? Скорее всего на заводе производителя по чертежам. Ок, чертежём назовём конструктор. Ну а класс? А что это такое? А его нет в нашей вселенной - эта сущность есть абстракция, что живёт лишь в наших мыслях. В реальном мире её нет и никогда не будет, такова уж физика - ей по барабану, что птицы и млекопитающие имеют дальних родственников - она лишь обеспечивает возможность естесственного отбора. А уж родственников друг другу находим мы, люди.

С объектами и классами разобрались, а что же там с нашими стаканами и велосипедами. Мы уже поняли, что всё это объект, то есть грубо можно все объекты наследовать от какого-нибудь суперпредка, суперкласса, что и реализовано в некоторых языках. Но что другого общего между скейтом и стаканом, например? Конечно, можно углубляться и считать, что они все из молекул, и они все из твёрдых веществ. Однако это всё бред и СПГС , так что ответ прост - да ничего. То есть это совершенно разные объекты с совершенно разным функционалом. Более того - естесственно компьютерные модели и иерархии будут сильно отличатся от физик и химий. И это нормально, вопрос об адекватностях моделей ставиться лишь когда модель неадекватна, а до тех пор пилить можно что угодно, лишь бы работало.

Вот. У нас есть супер-предок Object, от которого дефолтно наследуются все объекты. Допустим, то что объекты состоят из атомов и есть то, что наследуют все объекты. Но все дополнения и правки - полиморфизм. Так, из атомов мы слепили колёса и приделали на доску - ок, это скейт. На него можно встать и катиться, а сильно извернувшись и полетать в трёх метрах над землёй, прямо таки излучая своё яркое эго. В то время как стакан - это мы слепили из атомов плотную ёмкость, из которой вода не выливается под действием силы тяжести. И прямое применение стакана - налив воды опрокинуть его над ртом, чтобы вода вытекла прямо в желудок. Так делают настоящие пацаны, не заботясь об икоте или страхе утонуть, так что вот - полиморфизм.

Однако что с остальным? У нас ещё абстракция, инкапсуляция и наследование. Ок, начнём с наследования, так оно наиболее близко. Вот что у нас общего между стаканом и кружкой? Ну в оба можно налить воду, но у кружки есть ручка чтобы держаться. То есть можно придумать некий общий класс - ёмкость. Однако что это за класс? Можно например за этот класс взять стакан, тогда все ёмкости по дефолту стаканы, а всё остальное - видоизменённые стаканы. Но кому-то больше нравяться кувшины, например некоторые чики насят их на голове, считая что это удобно. Ну и пусть носят, но как-то же решить надо, что главнее и идеальнее. Так вот - недостяжимый идеал и есть главный - это называется абстрактный класс. То есть ёмкость, что невозможно создать, для которого нет полного чертежа. А все чертежи, что дополнили до полного - есть наследованные классы от класса ёмкость.

Тут мы подошли к абстракции. Вот такое иерархическое наследование приводит нас к, возможно главной, идее ООП. Вот мы взяли и выделили всё, куда можно налить воду в отдельный класс, нарисовали общий чертёж, но специально не доделали его, оставив зазор для будущих творцов, и назвали чертёж - ёмкость. Тысячи лет изобретатили всех миров создают свои ёмкости, одна лучше другой. Для разных людей - по разному, конечно. Но каждый раз группировать молекулы стекла определённым образом - непростая задача. Поэтому ремесленники пошли на хитрость, они создали тайный совет ремесленников мира и решили делиться друг с другом своими наработками. То есть создавать мелкие чертежи и объявлять классом, например, извлистой ручки в форме ленты Мёбиуса, например. Возможно такая ручка удобно только инопланетным существам, но чертёж создан и к нему можно ссылаться при создании своего чертежа. Таким образом мы абстрагируемся от низкоуровневой задачи "формирования ёмкостей посредством перемещения молекул" к "конструированию ёмкости посредством совмещения деталей, элементов". Это и есть абстракция.

Но мы подошли к последнему пункту - инкапсуляция. Она неразрывна с абстракцией, и по сути благодаря ей она и работает. Инкапсуляция - это своеборазный клей (или синяя изолента), которым склеивают разные чертежи в один. То есть совмещение деталей для создания своей - это и есть инкапсуляция. Причём при совмещении мы можем не описывать детали этого совмещения (то есть члены класса могут быть приватными), таким образом помогая абстрагироваться тем, кто этот чертёж использует. Вот посмотрим на чайник - что это такое? Это стакан (или кружка) к которому снизу (а может внутри по середине?) приклеен нагревательный элемент. Пустив по нему ток, согласно инкапсулированному в нагревательный элемент закону Ома, будет выделяться тепло и нагреваться вода. А кофемашина? Это куда более сложное устройство, с множеством насосов, ёмкостей, шлюзов, измельчителей и чайников. И всё склееное клеем. А может синей изолентой. Это снова инкапсуляция.

Таким образом, абстракция невозможна без инкапсуляции и наследовании, как невозможен полиморфизм без, собственно, наследования. Ну а полиморфизм невозможен ещё и без инкапсуляции, которая банально бесполезна без наследования и полиморфизма. Вот такие тут треугольники с пирогами. Жаль только про пирог наврали. И про день рожденье.

классы определяется не наборами атрибутов, а семантикой. Так, например, объекты "конюшня" и "лошадь" могут иметь одинаковые атрибуты: цена и возраст. При этом они могут относиться к одному классу , если рассматриваются в задаче просто как товар , либо к разным классам , если в рамках поставленной задачи будут использоваться по -разному, т.е. над ними будут совершаться различные действия.

Объединение объектов в классы позволяет рассмотреть задачу в более общей постановке. Класс имеет имя (например, "лошадь"), которое относится ко всем объектам этого класса . Кроме того, в классе вводятся имена атрибутов, которые определены для объектов . В этом смысле описание класса аналогично описанию типа структуры или записи ( record ), широко применяющихся в процедурном программировании; при этом каждый объект имеет тот же смысл, что и экземпляр структуры ( переменная или константа соответствующего типа).

Формально класс - это шаблон поведения объектов определенного типа с заданными параметрами, определяющими состояние . Все экземпляры одного класса (объекты , порожденные от одного класса ) имеют один и тот же набор свойств и общее поведение , то есть одинаково реагируют на одинаковые сообщения.

В соответствии с UML ( Unified Modelling Language - унифицированный язык моделирования ), класс имеет следующее графическое представление .

Класс изображается в виде прямоугольника, состоящего из трех частей. В верхней части помещается название класса , в средней - свойства объектов класса , в нижней - действия, которые можно выполнять с объектами данного класса (методы).

Каждый класс также может иметь специальные методы, которые автоматически вызываются при создании и уничтожении объектов этого класса :

  • конструктор (constructor) - выполняется при создании объектов ;
  • деструктор ( destructor ) - выполняется при уничтожении объектов .

Обычно конструктор и деструктор имеют специальный синтаксис , который может отличаться от синтаксиса, используемого для написания обычных методов класса .

Инкапсуляция

Инкапсуляция (encapsulation) - это сокрытие реализации класса и отделение его внутреннего представления от внешнего (интерфейса). При использовании объектно-ориентированного подхода не принято применять прямой доступ к свойствам какого-либо класса из методов других классов . Для доступа к свойствам класса принято задействовать специальные методы этого класса для получения и изменения его свойств.

Внутри объекта данные и методы могут обладать различной степенью открытости (или доступности). Степени доступности, принятые в языке Java, подробно будут рассмотрены в лекции 6. Они позволяют более тонко управлять свойством инкапсуляции .

Открытые члены класса составляют внешний интерфейс объекта . Это та функциональность, которая доступна другим классам . Закрытыми обычно объявляются все свойства класса , а также вспомогательные методы, которые являются деталями реализации и от которых не должны зависеть другие части системы.

Благодаря сокрытию реализации за внешним интерфейсом класса можно менять внутреннюю логику отдельного класса , не меняя код остальных компонентов системы. Это свойство называется модульность .

Обеспечение доступа к свойствам класса только через его методы также дает ряд преимуществ. Во-первых, так гораздо проще контролировать корректные значения полей, ведь прямое обращение к свойствам отслеживать невозможно, а значит, им могут присвоить некорректные значения.

Во-вторых, не составит труда изменить способ хранения данных. Если информация станет храниться не в памяти, а в долговременном хранилище, таком как файловая система или база данных, потребуется изменить лишь ряд методов одного класса , а не вводить эту функциональность во все части системы.

Наконец, программный код, написанный с использованием данного принципа, легче отлаживать. Для того чтобы узнать, кто и когда изменил свойство интересующего нас объекта , достаточно добавить вывод отладочной информации в тот метод объекта , посредством которого осуществляется доступ к свойству этого объекта . При использовании прямого доступа к свойствам объектов программисту пришлось бы добавлять вывод отладочной информации во все участки кода, где используется интересующий нас объект .

Наследование

Наследование (inheritance) - это отношение между классами , при котором класс использует структуру или поведение другого класса (одиночное наследование ), или других (множественное наследование ) классов . Наследование вводит иерархию "общее/частное", в которой подкласс наследует от одного или нескольких более общих суперклассов . Подклассы обычно дополняют или переопределяют унаследованную структуру и поведение .

В качестве примера можно рассмотреть задачу, в которой необходимо реализовать классы "Легковой автомобиль" и "Грузовой автомобиль". Очевидно, эти два класса имеют общую функциональность. Так, оба они имеют 4 колеса, двигатель, могут перемещаться и т.д. Всеми этими свойствами обладает любой автомобиль, независимо от того, грузовой он или легковой, 5- или 12-местный. Разумно вынести эти общие свойства и функциональность в отдельный класс , например, "Автомобиль" и наследовать от него классы "Легковой автомобиль" и "Грузовой автомобиль", чтобы избежать повторного написания одного и того же кода в разных классах .


Отношение обобщения обозначается сплошной линией с треугольной стрелкой на конце. Стрелка указывает на более общий класс ( класс-предок или суперкласс ), а ее отсутствие - на более специальный класс ( класс-потомок или подкласс ).

Использование наследования способствует уменьшению количества кода, созданного для описания схожих сущностей, а также способствует написанию более эффективного и гибкого кода.

В рассмотренном примере применено одиночное наследование . Некоторый класс также может наследовать свойства и поведение сразу нескольких классов . Наиболее популярным примером применения множественного наследования является проектирование системы учета товаров в зоомагазине.

Все животные в зоомагазине являются наследниками класса "Животное", а также наследниками класса "Товар". Т.е. все они имеют возраст, нуждаются в пище и воде и в то же время имеют цену и могут быть проданы.

Множественное наследование на диаграмме изображается точно так же, как одиночное, за исключением того, что линии наследования соединяют класс-потомок сразу с несколькими суперклассами .

Не все объектно-ориентированные языки программирования содержат языковые конструкции для описания множественного наследования .

В языке Java множественное наследование имеет ограниченную поддержку через интерфейсы и будет рассмотрено в лекции 8.

Полиморфизм

Полиморфизм является одним из фундаментальных понятий в объектно-ориентированном программировании наряду с наследованием и инкапсуляцией . Слово " полиморфизм " греческого происхождения и означает "имеющий много форм". Чтобы понять, что оно означает применительно к объектно-ориентированному программированию , рассмотрим пример.

Предположим, мы хотим создать векторный графический редактор, в котором нам нужно описать в виде классов набор графических примитивов - Point , Line , Circle , Box и т.д. У каждого из этих классов определим метод draw для отображения соответствующего примитива на экране.

Очевидно, придется написать код, который при необходимости отобразить рисунок, будет последовательно перебирать все примитивы, на момент отрисовки находящиеся на экране, и вызывать метод draw у каждого из них. Человек, не знакомый с полиморфизмом , вероятнее всего, создаст несколько массивов (отдельный массив для каждого типа примитивов) и напишет код, который последовательно переберет элементы из каждого массива и вызовет у каждого элемента метод draw . В результате получится примерно следующий код:

... //создание пустого массива, который может // содержать объекты Point с максимальным // объемом 1000 Point p = new Point; Line l = new Line; Circle c = new Circle; Box b = new Box; ... // предположим, в этом месте происходит // заполнение всех массивов соответствующими // объектами... for(int i = 0; i < p.length;i++) { //цикл с перебором всех ячеек массива. //вызов метода draw() в случае, // если ячейка не пустая. if(p[i]!=null) p[i].draw(); } for(int i = 0; i < l.length;i++) { if(l[i]!=null) l[i].draw(); } for(int i = 0; i < c.length;i++) { if(c[i]!=null) c[i].draw(); } for(int i = 0; i < b.length;i++) { if(b[i]!=null) b[i].draw(); } ...

Недостатком написанного выше кода является дублирование практически идентичного кода для отображения каждого типа примитивов. Также неудобно то, что при дальнейшей модернизации нашего графического редактора и добавлении возможности рисовать новые типы графических примитивов, например Text , Star и т.д., при таком подходе придется менять существующий код и добавлять в него определения новых массивов, а также обработку содержащихся в них элементов.

Используя полиморфизм , мы можем значительно упростить реализацию подобной функциональности. Прежде всего, создадим общий родительский

s_a_p 20 августа 2008 в 19:09

Полиморфизм для начинающих

  • PHP

Полиморфизм — одна из трех основных парадигм ООП. Если говорить кратко, полиморфизм — это способность обьекта использовать методы производного класса, который не существует на момент создания базового. Для тех, кто не особо сведущ в ООП, это, наверно, звучит сложно. Поэтому рассмотрим применение полиморфизма на примере.

Постановка задачи

Предположим, на сайте нужны три вида публикаций — новости, объявления и статьи. В чем-то они похожи — у всех них есть заголовок и текст, у новостей и объявлений есть дата. В чем-то они разные — у статей есть авторы, у новостей — источники, а у объявлений — дата, после которой оно становится не актуальным.

Самые простые варианты, которые приходят в голову — написать три отдельных класса и работать с ними. Или написать один класс, в которым будут все свойства, присущие всем трем типам публикаций, а задействоваться будут только нужные. Но ведь для разных типов аналогичные по логике методы должны работать по-разному. Делать несколько однотипных методов для разных типов (get_news, get_announcements, get_articles) — это уже совсем неграмотно. Тут нам и поможет полиморфизм.

Абстрактный класс

Грубо говоря, это класс-шаблон. Он реализует функциональность только на том уровне, на котором она известна на данный момент. Производные же классы ее дополняют. Но, пора перейти от теории к практике. Сразу оговорюсь, рассматривается примитивный пример с минимальной функциональностью. Все объяснения — в комментариях в коде.

abstract class Publication
{
// таблица, в которой хранятся данные по элементу
protected $table ;

// свойства элемента нам неизвестны
protected $properties = array();

// конструктор

{
// обратите внимание, мы не знаем, из какой таблицы нам нужно получить данные
$result = mysql_query ("SELECT * FROM `" . $this -> table . "` WHERE `id`="" . $id . "" LIMIT 1" );
// какие мы получили данные, мы тоже не знаем
$this -> properties = mysql_fetch_assoc ($result );
}

// метод, одинаковый для любого типа публикаций, возвращает значение свойства
public function get_property ($name )
{
if (isset($this -> properties [ $name ]))
return $this -> properties [ $name ];

Return false ;
}

// метод, одинаковый для любого типа публикаций, устанавливает значение свойства
public function set_property ($name , $value )
{
if (!isset($this -> properties [ $name ]))
return false ;

$this -> properties [ $name ] = $value ;

Return $value ;
}

// а этот метод должен напечатать публикацию, но мы не знаем, как именно это сделать, и потому объявляем его абстрактным
abstract public function do_print ();
}

Производные классы

Теперь можно перейти к созданию производных классов, которые и реализуют недостающую функциональность.

class News extends Publication
{
// конструктор класса новостей, производного от класса публикаций
public function __construct ($id )
{
// устанавливаем значение таблицы, в которой хранятся данные по новостям
$this -> table = "news_table" ;
parent :: __construct ($id );
}

Public function do_print ()
{
echo $this -> properties [ "title" ];
echo "

" ;
echo $this -> properties [ "text" ];
echo "
Источник: " . $this -> properties [ "source" ];
}
}

Class Announcement extends Publication
{
// конструктор класса объявлений, производного от класса публикаций
public function __construct ($id )
{
// устанавливаем значение таблицы, в которой хранятся данные по объявлениям
$this -> table = "announcements_table" ;
// вызываем конструктор родительского класса
parent :: __construct ($id );
}

// переопределяем абстрактный метод печати
public function do_print ()
{
echo $this -> properties [ "title" ];
echo "
Внимание! Объявление действительно до "
. $this -> properties [ "end_date" ];
echo "

" . $this -> properties [ "text" ];
}
}

Class Article extends Publication
{
// конструктор класса статей, производного от класса публикаций
public function __construct ($id )
{
// устанавливаем значение таблицы, в которой хранятся данные по статьям
$this -> table = "articles_table" ;
// вызываем конструктор родительского класса
parent :: __construct ($id );
}

// переопределяем абстрактный метод печати
public function do_print ()
{
echo $this -> properties [ "title" ];
echo "

" ;
echo $this -> properties [ "text" ];
echo "
" . $this -> properties [ "author" ];
}
}

Теперь об использовании

Суть в том, что один и тот же код используется для обьектов разных классов.

// наполняем массив публикаций объектами, производными от Publication
$publications = new News ($news_id );
$publications = new Announcement ($announcement_id );
$publications = new Article ($article_id );

Foreach ($publications as $publication ) {
// если мы работаем с наследниками Publication
if ($publication instanceof Publication ) {
// то печатаем данные
$publication -> do_print ();
} else {
// исключение или обработка ошибки
}
}

Вот и все. Легким движением руки брюки превращаются в элегантные шорты:-).

Основная выгода полиморфизма — легкость, с которой можно создавать новые классы, «ведущие себя» аналогично родственным, что, в свою очередь, позволяет достигнуть расширяемости и модифицируемости. В статье показан всего лишь примитивный пример, но даже в нем видно, насколько использование абстракций может облегчить разработку. Мы можем работать с новостями точно так, как с объявлениями или статьями, при этом нам даже не обязательно знать, с чем именно мы работаем! В реальных, намного более сложных приложениях, эта выгода еще ощутимей.

Немного теории

  • Методы, которые требуют переопределения, называются абстрактными. Логично, что если класс содержит хотя бы один абстрактный метод, то он тоже является абстрактным.
  • Очевидно, что обьект абстрактного класса невозможно создать, иначе он не был бы абстрактным.
  • Производный класс имеет свойства и методы, принадлежащие базовому классу, и, кроме того, может иметь собственные методы и свойства.
  • Метод, переопределяемый в производном классе, называется виртуальным. В базовом абстрактном классе об этом методе нет никакой информации.
  • Суть абстрагирования в том, чтобы определять метод в том месте, где есть наиболее полная информация о том, как он должен работать.
UPD: по поводу sql-inj и нарушения MVC — господа, это просто пример, причем пример по полиморфизму, в котором я не считаю нужным уделять значения этим вещам. Это тема для совсем других статей.

PHP, ООП, Инкапсуляция, Наследование, Полиморфизм

В этом уроке я расскажу Вам о трех основных понятиях Объектно-Ориентированного Программирования: об Инкапсуляции, Наследовании, Полиморфизме; И научу Вас применять их в разработке.

Инкапсуляция

Инкапсуляция - свойство языка программирования, позволяющее объединить и защитить данные и код в объект и скрыть реализацию объекта от пользователя (программиста). При этом пользователю предоставляется только спецификация (интерфейс ) объекта.

Иными словами при работе с грамотно спроектированным классом мы можем пользоваться только его методами, не вникая в то, как они устроены и как они работают с полями класса. Речь идет о ситуации, когда мы работаем с классом, разработанным другими программистами. Мы же просто пользуемся уже реализованным функционалом.

Приведем другой пример. Принципы инкапсуляции как скрытия внутренней реализации заложены в любой функции PHP. Возможно, вам уже известна функция strpos() для работы со строками из стандартной библиотеки PHP. Эта функция ищет в строке заданную последовательность символов и возвращает ее позицию в виде числа. Если задуматься над реализацией этой функции, то можно предположить, что нам потребуется в цикле просматривать каждый символ от начала строки на совпадение с начальным символом искомой последовательности и в случае такового сравнивать следующие два символа и т. д. Но нам как программистам нет необходимости задумываться над этим и вникать в тонкости реализации данной функции. Нам достаточно знать параметры , которые она принимает, и формат возвращаемого значения . Функция strpos() инкапсулирует в себе решение задачи поиска подстроки, предлагая нам лишь внешний интерфейс для ее использования.

Аналогичным образом правильно спроектированные классы скрывают свою внутреннюю реализацию, предоставляя внешним пользователям интерфейс в виде набора методов.

В языке PHP концепция инкапсуляции реализована в виде специальных модификаторов доступа к полям и методам классов. Об этом мы поговорим далее.

Наследование

Наследование - механизм объектно-ориентированного программирования, позволяющий описать новый класс на основе уже существующего (родительского), при этом свойства и функциональность родительского класса заимствуются новым классом.

Давайте приведем пример наследования из реальной жизни. В качестве класса можно взять геометрическую фигуру. При этом мы не уточняем, какой конкретно фигура должна быть. Какие свойства фигуры можно выделить? Предположим, она обладает цветом. Тогда в классе, описывающем фигуру, должно быть соответствующее поле строкового типа, задающее цвет фигуры. Также любая геометрическая фигура обладает площадью. Пусть площадь будет вторым свойством нашего класса.

Теперь предположим, что нашей программе требуется работать с конкретными геометрическими фигурами : квадратами и треугольниками , в том числе с их геометрическим положением на плоскости. Очевидно, что описание треугольников и квадратов с помощью класса Фигура будет недостаточным, потому что она не хранит информацию о геометрическом положении. Поэтому нам потребуется ввести еще два класса: Квадрат и Треугольник . При этом допустим, что в нашей программе нам также потребуются цвета и площади фигур. Эта ситуация как раз и требует использования наследования. Потому что любой квадрат и треугольник в программе заведомо является фигурой, т. е. имеет цвет и площадь. В то же время каждая фигура требует дополнительных данных (помимо цвета и площади) для своего описания, что решается вводом двух дополнительных классов для квадратов и треугольников , которые наследуются от класса Фигура .

Это значит, что в классах Квадрат и Треугольник нам не придется повторно задавать поля цвета и площади. Достаточно указать, что упомянутые классы наследуются от класса Фигура.

Теперь давайте рассмотрим еще один пример, более приближенный к реалиям веб-программистов. Сейчас в Интернете огромную популярность завоевали различные блоги. Фактически блог - это просто набор статей. И ключевой сущностью при разработке блога является именно статья.

А теперь давайте представим, что в нашем будущем блоге статьи могут иметь различные типы. Для начала остановимся на двух типах: обычная статья-заметка и новостная статья. Для новостной статьи важна дата ее публикации, ведь она несет в себе некоторую конкретную новость.

Чтобы реализовать эту ситуацию в PHP, нам потребуется определить два класса: класс для обычной статьи-заметки и класс для новостной статьи. При этом пусть новостная статья расширяет возможности обычной статьи, т. е. наследуется от нее. Для наследования классов в PHP используется ключевое слово extends .

Class { ... // содержимое класса } class { ... // содержимое класса }

Приведенный код определяет класс NewsArticle как наследника Article . Класс Article в свою очередь является родительским для класса NewsArticle . Это значит, что поля и методы класса Article будут также присутствовать в классе NewsArticle , и заново их определять не нужно.

С помощью наследования можно выстраивать целую иерархию классов, наследуя один от другого. В то же время у любого класса может быть только один родитель:


Иногда у нас может появиться необходимость переопределить один из методов родительского класса. Давайте еще раз приведем реализацию класса Article :

Class Article { ... // поля класса // Функция для вывода статьи function view() { echo "

$this->title

$this->content

"; } }

Предположим, что вывод новостной статьи должен отличаться от представления обычной статьи, и мы должны дополнительно выводить время публикации новости. При этом в классе Article уже существует метод view() , отвечающий за вывод статьи. Можно поступить двумя способами. В первом случае можно придумать новый метод в классе NewsArticle , например, с именем viewNews() специально для вывода новости. Однако правильнее использовать одинаковые методы для выполнения схожих действий в наследуемых классах. Поэтому будет лучше, если метод для вывода новости в классе NewsArticle будет называться так же, как и в родительском классе - view() . Для реализации такой логики в PHP существует возможность переопределять родительские методы, т. е. задавать в дочерних классах методыс названиями, совпадающими в родительских классах. Реализация этих методов в родительских классах в таком случае становится неактуальной для класса-потомка. Давайте приведем пример класса NewsArticle с переопределенным методом view() :

Class NewsArticle extends Article { $datetime; // дата публикации новости // Функция для вывода статьи function view() { echo "

$this->title

". strftime("%d.%m.%y", $this->datetime). " Новость

$this->content

"; } }

В приведенном коде используется функция strftime() , которая позволяет выводить даты в удобном виде. Для лучшего понимания кода ознакомьтесь со спецификацией этой функции в справочнике. Для нас же сейчас важно, чтобы вы обратили внимание на то, что класс NewsArticle , как и Article , определяет метод view() . Соответственно, все объекты этого класса будут использовать метод view() , объявленный в классе NewsArticle , а не в Article .

У вас может возникнуть вопрос: почему же все-таки важно переопределять некоторые методы вместо того, чтобы вводить новые методы у классов-потомков? Понимание этого придет вместе с пониманием следующей важнейшей концепции ООП.

Полиморфизм

Полиморфизм - взаимозаменяемость объектов с одинаковым интерфейсом.

Язык программирования поддерживает полиморфизм, если классы с одинаковой спецификацией могут иметь различную реализацию - например, реализация класса может быть изменена в процессе наследования. Это именно то, что мы видели в предыдущем примере со статьями.

Давайте рассмотрим следующий пример, который дает представление о сути полиморфизма :

Class A { function Test() { echo "Это класс A
"; } function Call() { $this->Test(); } } class B extends A { function Test() { echo "Это класс B
"; } } $a = new A(); $b = new B(); $a->Call(); // выводит: "Это класс A" $b->Test(); // выводит: "Это класс B" $b->

Обратите внимание на комментарии к трем последним строчкам. Попытайтесь самостоятельно объяснить такой результат . Желательно собственноручно реализовать и протестировать этот пример. Потратьте время на то, чтобы работа сценария стала вам полностью ясна, т. к. в этом небольшом примере заложен глубокий смысл ООП. Теперь давайте попробуем вместе разобрать предложенный код.

$a->Call(); // выводит: "Это класс A"

В этой строке происходит вызов метода Call() у объекта класса А . Как и определено в функции Call() класса A , происходит вызов метода Test() . Отрабатывает метод Test() у объекта класса A , и на экран выводится текст "Это класс А ".

$b->Test(); // выводит: "Это класс B"

В данной строке происходит вызов метода Test() у объекта класса B . Метод Test() класса B выводит на экран текст "Это класс В ".

$b->Call(); // выводит: "Это класс B"

Наконец, в последней строке происходит вызов класса Call() у объекта класса В . Но в реализации класса B мы не увидим такого метода, а это значит, что он наследуется от класса A , т. к. класс B - это потомок класса A . Что же мы видим в реализации метода Call() класса A ? Следующий код:

$this->Test();

Метод Call() вызывает метод Test() того объекта, в котором находится. Это значит, что отработает метод Test() объекта класса B . Именно этим объясняется результат, выведенный на экране.

В этом и заключается принцип полиморфизма . Классы могут иметь одинаковые методы , но разную их реализацию. Разрабатывая код сценария, мы можем знать лишь общую для группы классов спецификацию их методов, но не иметь представления, экземпляр какого именно класса будет использоваться в конкретный момент времени.

Понятия инкапсуляции, наследования и полиморфизма можно назвать тремя китами ООП . Понимание и грамотное применение принципов этих концепций - залог успеха разработки с применением ООП.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: