Напряжению обратно пропорциональна сопротивлению. Закон Ома для «чайников»: понятие, формула, объяснение

Закон Ома для участка цепи: сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

Формула закона: I =. Отсюда запишем формулыU = IR и R = .

Рис.1. Участок цепи Рис.2. Полная цепь

Закон Ома для полной цепи: сила тока I полной электрической цепи равнаЭДС (электродвижущей силе) источника тока Е , деленной на полное сопротивление цепи (R + r). Полное сопротивление цепи равно сумме сопротивлений внешней цепи R и внутреннего r источника тока.Формула закона I =
. На рис. 1 и 2 приведены схемы электрических цепей.

3. Последовательное и параллельное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно . Смешанное соединение сочетает оба эти соединения.

Сопротивление,при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлением этих проводников.

Последовательное соединение

Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.

Как следует из первого правила Кирхгофа , при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).

1. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова: I 1 = I 2 = I 3 = I

Рис. 1.Последовательное соединение двух проводников.

2. Согласно закону Ома, напряженияU 1 иU 2 на проводниках равны U 1 = IR 1 , U 2 = IR 2 , U 3 = IR 3 .

Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.

U = U 1 + U 2 + U 3

Позакону Ома, напряжения U 1, U 2 на проводниках равныU 1 = IR 1 , U 2 = IR 2 , В соответствии вторым правилом Кирхгофа напряжение на всем участке:

U = U 1 + U 2 = IR 1 + IR 2 = I(R 1 + R 2 )= I·R. Получаем: R = R 1 + R 2

Общее напряжение U на проводниках равно сумме напряжений U 1 , U 2 , U 3 равно: U = U 1 + U 2 + U 3 = I · (R 1 + R 2 + R 3 ) = IR

где R ЭКВ эквивалентное сопротивление всей цепи. Отсюда: R ЭКВ = R 1 + R 2 + R 3

При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: R ЭКВ = R 1 + R 2 + R 3 +…

Этот результат справедлив для любого числа последовательно соединенных проводников.

Из закона Омаследует: при равенстве сил тока при последовательном соединении:

I = , I = . Отсюда = или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.

При последовательном соединении n одинаковых проводников общее напряжение равно произведению напряжению одного U 1 на их количество n :

U ПОСЛЕД = n · U 1 . Аналогично для сопротивлений: R ПОСЛЕД = n · R 1

При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.

Закон Ома для полной цепи

Ie Dt=I2RDt+I2rDt, e=IR+Ir

Для всех зарядов:

Правило ленца:

34.

Электроли́ты -

Электро́лиз -



Законы Фарадея:

36. Электрический ток в вакууме

Описание



Термоэлектронная эмиссия

магнитным.

Основные свойства поля:

Транзистор

Фоторези́стор

Терморезистор

Закон Фарадея:

,

Правило буравчика:

Парамагнетики:

Диамагнетики:

41. Электромагнитная индукция

Закон Фарадея:

Правило Ленца:

42. Самоиндукция -

Сила тока I прямо пропорциональна напряжению U и обратно пропорциональна электрическому сопротивлению R участка цели.

30. Физический смысл удельного сопротивления в СИ: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 м².

Выражается в Ом·mm²/м

Обозначается символом ρ

Зависимость сопротивления проводника от его физических размеров,рода вещества и от температуры: Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры; изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

где ρ0, ρt - удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R0, Rt - сопротивления проводника при 0 °С и t °С, α - температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К-1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура).

31. Правила расчёта эквивалентного сопротивления напряжения и силы тока при последовательном и параллельном соединении потребители тока: В последовательное соединение в цепях переменного тока кроме резисторов могут входить реактивные элементы - индуктивности и емкости.

Пользуясь понятием потенциала, падение напряжения на последовательном соединении (рис. 1) можно представить суммой падений напряжений на отдельных элементах

Последовательное соединение не содержит узлов, поэтому по всем его элементам протекает одинаковый ток. Пусть этот ток равен i=Imsinwt, тогда, с учетом выражений для падения напряжения на реактивных элементах, выражение (1) преобразуется к виду

Таким образом, в случае заданного значения частоты последовательное соединение можно представить последовательным соединением резистора, реактивного элемента и источника ЭДС, параметры которых определяются по выражениям (3), (4), (6) и (7). Резистор, реактивный элемент и источник ЭДС являются минимальным набором элементов, с помощью которых можно представить последовательное соединение. При наличии в цепи реактивных элементов обоих типов (индуктивности и емкости) в минимальном наборе элементов (минимальной эквивалентной схеме) будет присутствовать только один из них.

При отсутствии каких-либо элементов в исходной схеме, например резисторов или источников ЭДС, будут отсутствовать и соответствующие компоненты эквивалентного представления.

32. Роль источника в электрической цепи : 1. Источник тока в электрической цепи осуществляет генерацию тока, не зависящего от сопротивления нагрузки.

2. Электродвижущая сила (ЭДС) - характеристика способности сторонних сил создавать большую или меньшую разность потенциалов на полюсах источника тока. Физический смысл ЭДС - электродвижущая сила равна работе сторонних сил по перемещению единичного заряда.

Природа сторонних сил: Природа сторонних сил может быть самой разной, но она должна быть «сторонней» - не электростатической. Отсюда следует, что

Сторонние силы не действуют на электрический заряд. В зависимости от их физической природы сторонние силы могут действовать на другие свойства заряженных частиц - массу, форму, размер, плотность, их коллективные свойства - концентрацию и пр.

Подавляющее большинство сторонних сил имеет не «полевой» характер. Поэтому описывать действие этих сил как проявление некоторого «поля сторонних сил» нежелательно. Если это представление все же используется, то необходимо учитывать, что «пробными телами» в этих «полях» служат не электрические, а другие «заряды» (см. текст к формуле (1)).

Действие сторонних сил всегда сопровождается генерацией электрической энергии - образованием разности потенциалов на некоторых разнесенных (проводящих) телах - «клеммах» генератора, на которых электрические заряды концентрируются. Поэтому

Сторонние силы «работают» лишь внутри генератора. Вне генератора на заряженные частицы действуют электростатические (потенциальные) силы.

Закон Ома для полной цепи

AСТ=Ie D t - работа сторонних сил, так как q=IDt,

AСТ=I2RDt+I2rDt - полная работа сторонних сил.

Ie Dt=I2RDt+I2rDt, e=IR+Ir

Сила тока в замкнутой цепи прямо пропорционально ЭДС источника тока и обратно пропорциональна сумме внешнего и внутреннего сопротивления.

33. Формулы для работы тока на участке цепи и мощности электрического тока:

Для единичного заряда на участке A-B:

Для всех зарядов:

Поскольку ток есть ничто иное, как количество зарядов в единицу времени, то есть

по определению, в результате получаем:

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формулам:

Правило ленца: возникающие в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока которым он вызван.

Основные причины короткого замыкания и возгорания в бытовых условиях:

эксплуатация мощной техники, подключенной к розеткам, которые установлены в помещениях с повышенной влажностью;

плохой контакт штепселя с розеткой, приводящий в процессе использования к образованию высоких температур;

установка электротехнического оборудования, не соответствующего мощности используемых приборов;

прямой контакт проводов из разнородных материалов, который приводит к нагреванию смежных участков даже при нормальных электрических нагрузках;

скачок нагрузки в электросети;

плохая изоляция электропроводки;

наличие в домах грызунов, разрушающих электроизоляцию

34. Условия прохождения тока в жидкостях: Жидкости, как и твердые тела, могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам - растворы и расплавы электролитов: кислот, щелочей и солей. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов и др.

Электроли́ты - вещества, расплавы или растворы которых проводят электрический ток вследствие диссоциации на ионы, однако сами вещества не проводят электрический ток.

Электролитическая диссоциация - процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении.

Электро́лиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Законы Фарадея: Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорционально эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

35. Электрический ток в газах - это направленное движение ионов и электронов.

Электрический ток в газах называется газовым разрядом.

Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к катоду, и потока, направленного к аноду.

В газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов или расплавов электролитов.

Таким образом, проводимость газов имеет ионно-электронный характер.

Несамостоятельный разряд - это разряд, который зависит от наличия ионизатора.

Все газовые разряды делятся на два основных вида:

1. Несамостоятельный газовый разряд возникает в приборе при действии внешних (сторонних) ионизаторов. Этот разряд в свою очередь разделяется на несколько подвидов:

а) тихий разряд (возникает при воздействии на прибор ряда естественных ионизаторов: космических лучей, радиации земной коры, активной деятельности солнца и т. д.);

36. Электрический ток в вакууме

Движение заряженных свободных частиц, полученных в результате эмиссии, в вакууме под действием электрического поля

Описание

Для получения электрического тока в вакууме необходимо наличие свободных носителей. Получить их можно за счет испускания электронов металлами - электронной эмиссии (от латинского emissio - выпуск).

Как известно, при обычных температурах электроны удерживаются внутри металла, несмотря на то, что они совершают тепловое движение. Следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Это силы, возникающие вследствие притяжения между электронами и положительными ионами кристаллической решетки. В результате в поверхностном слое металлов появляется электрическое поле, а потенциал при переходе из внешнего пространства внутрь металла увеличивается на некоторую величину Dj. Соответственно потенциальная энергия электрона уменьшается на eDj.

Термоэлектронная эмиссия - это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергиям) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным.

В основе принципа действия полупроводникового диода - свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном - при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт.

37. Вокруг проводника с током в пространстве возникает поле наз-е магнитным.

Основные свойства поля:

Магнитное поле порождается электрическим полем

Магнитное поле определяется под действием на электрический ток

Вектор магнитной индукции и линии магнитной индукции:

В – (вектор магнитной индукции) это кол-ая характеристика магнитного поля.

За направление В принимается направ-е от южного полюса S к северному N магнитной стрелки к N сводно устанавливающийся в магнитном поле.

38. Электрический ток через контакт полупроводников p и n-типа.

При образовании контакта полупроводников p и n-типа происходит диффузия, часть электронов перейдут а полупроводник в n-типа. Возникшее эл поле препятствует перемещению.

Диод- это прибор для выпрямления эл тока.

Транзистор состоит из 2-х полупроводников p-типа между ними прослойка из примеси n-типа толщина прослоек примерно Мкм в транзисторе 3 выхода, из каждой части. Транзистор подключается в сеть так, что левый p n переход яв-ся прямым.

Фоторези́стор - полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом.

Важнейшие параметры фоторезисторов:

интегральная чувствительность - отношение изменения напряжения на единицу мощности падающего излучения (при номинальном значении напряжения питания);

порог чувствительности - величина минимального сигнала, регистрируемого фоторезистором, отнесённая к единице полосы рабочих частот.

Терморезистор - полупроводниковый резистор, электрическое сопротивление которого существенно зависит от температуры.

39. Взаимодействие параллельных токов

Закон Фарадея:

,

где µ - магнитная характеристика среды, называемая магнитной проницаемостью.

Направление токов влияет на силу взаимодействия.

По аналогии с электростатикой, где сила определяет напряженность, а напряженность - индукцию, в магнетизме напряженность и индукция - силовые характеристики. Принято в электростатике основной силовой характеристикой считать напряженность, а в магнетизме - индукцию.

Правило буравчика:

Если ток направлен по закрутке буравчика, то шляпка вращается по силовой линии. В каждой точке пространства направление силовых линий совпадает с направление касательной. Таким образом, силовые линии магнитного поля являются замкнутыми.

40. Существует несколько типов взаимодействия материалов с магнитным полем, в том числе:

Ферромагнетики и ферримагнетики: материалы которые, обычно, и считаются «магнитными»; они притягиваются к магниту достаточно сильно, так что притяжение ощущается. Только эти материалы могут сохранять намагниченность и стать постоянными магнитами. Ферримагнитные материалы, сходны, но слабее, чем ферромагнетики. Различие между ферро- и ферримагнитными материалами, связаны с их микроскопической структурой.

Парамагнетики: вещества, такие, как платина, алюминий, и кислород которые слабо притягиваются к магниту. Этот эффект в сотни тысяч раз слабее, чем притяжение ферромагнитных материалов, поэтому оно может быть обнаружено только с помощью чувствительных инструментов, либо с помощью очень сильных магнитов.

Диамагнетики: вещества, намагничивающиеся против направления внешнего магнитного поля. По сравнению с парамагнитными и ферромагнитными веществами, диамагнитные вещества, такие как углерод, медь, вода и пластики ещё слабее отталкиваются от магнита. Проницаемость диамагнитных материалов меньше проницаемости вакуума. Все вещества, не обладающие одним из других типов магнетизма, являются диамагнитными; к ним относится большинство веществ. Силы, действующие на диамагнитные объекты от обычного магнита, слишком слабы. Однако в сильных магнитных полях сверхпроводящих магнитов диамагнитные материалы, например, кусочки свинца, могут парить. Ну, а поскольку углерод и вода являются веществами диамагнитными, то в мощном магнитном поле могут парить даже и органические объекты. Например, живые лягушки и мыши.

41. Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Закон Фарадея: Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур.

Правило Ленца: возникающие в замкнутом котуре индуктивный ток своим магнитным полем противодействует тому изменению магнитного потока которым он вызван.

Если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет электродвижущая сила, называемая ЭДС индукции. ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями. Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током. Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией. Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

42. Самоиндукция - возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру.

Индукти́вность (или коэффициент самоиндукции) - коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.Возникающая при этом ЭДС называется ЭДС самоиндукции

Мы начинаем публикацию материалов новой рубрики “” и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду ток, напряжение и сопротивление 😉 Кроме того, мы не обойдем стороной закон, который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно.

Итак, давайте начнем с понятия напряжения .

Напряжение.

По определению напряжение – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля – это скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:

В пространстве действует постоянное электрическое поле, напряженность которого равна E . Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:

В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:

И в итоге получаем формулу, связывающую напряжение и напряженность:

В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи – это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, “напряжение в резисторе” – не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и “землей” . Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию “земля” 🙂 Так вот “землей” в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).

Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения . Единицей измерения является Вольт (В) . Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт , необходимо совершить работу, равную 1 Джоулю . С этим вроде бы все понятно и можно двигаться дальше 😉

А на очереди у нас еще одно понятие, а именно ток .

Ток, сила тока в цепи.

Что же такое электрический ток ?

Давайте подумаем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны…Рассмотрим проводник, к которому приложено определенное напряжение :

Из направления напряженности электрического поля (E ) мы можем сделать вывод о том, что title="Rendered by QuickLaTeX.com" height="16" width="60" style="vertical-align: -4px;"> (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:

Где e – это заряд электрона.

И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотическим движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток 🙂

Ток – это упорядоченное движение заряженных частиц под воздействием электрического поля.

Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.

Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E . И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы 🙂

Для того, чтобы оценить ток в цепи придумали такую величину как сила тока. Итак, сила тока (I ) – это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер . Сила тока в проводнике равна 1 Амперу , если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон .

Мы уже рассмотрели понятия силы тока и напряжения , теперь давайте разберемся каким образом эти величины связаны. И для этого нам предстоит изучить, что же из себя представляет сопротивление проводника .

Сопротивление проводника/цепи.

Термин “сопротивление ” уже говорит сам за себя 😉

Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться ) прохождению электрического тока.

Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S :

Сопротивление проводника зависит от нескольких факторов:

Удельное сопротивление – это табличная величина.

Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:

Для нашего случая будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м , а площадь поперечного сечения равна 0.2 кв. мм . Тогда:

Как вы уже поняли из примера, единицей измерения сопротивления является Ом 😉

С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи .

И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:

Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.

Рассмотрим простейшую электрическую цепь:

Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:

Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:

Как видите, все несложно 🙂

Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч! 🙂

Зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока . То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток , в свою очередь – это упорядоченное движение частиц под действием электрического поля .

Зависимость силы тока и напряжения

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением . Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току . Сопротивление связано с силой тока обратно пропорционально. Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз. И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

где I – сила тока,
U – напряжение,
R – сопротивление.

Применение закона Ома

Закон Ома – один из основополагающих законов физики . Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

U=IR и R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

Сила тока в участке цепи прямо пропорциональна напряжению, и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Закон Ома записывается формулой:

Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).

Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков.

Закон Ома определяет связь трех фундаментальных величин: силы тока, напряжения и сопротивления. Он утверждает, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Ток течет из точки с избытком электронов в точку с дефицитом электронов. Путь, по которому следует ток, называется электрической цепью. Все электрические цепи состоят из источника тока , нагрузки и проводников . Источник тока обеспечивает разность потенциалов , которая позволяет течь току. Источником тока может быть батарея, генератор или другое устройство. Нагрузка оказывает сопротивление протеканию тока . Это сопротивление может быть высоким или низким, в зависимости от назначения цепи. Ток в цепи течет через проводники от источника к нагрузке . Проводник должен легко отдавать электроны. В большинстве проводников используется медь.

Путь электрического тока к нагрузке может проходить через три типа цепей: последовательную цепь, параллельную или последовательно-параллельную цепи.Ток электронов в электрической цепи течет от отрицательного вывода источника тока, через нагрузку к положительному выводу источника тока.

Пока этот путь не нарушен, цепь замкнута и ток течет.

Однако если прервать путь, цепь станет разомкнутой и ток не сможет по ней идти.

Силу тока в электрической цепи можно изменять, изменяя либо приложенное напряжение, либо сопротивление цепи. Ток изменяется в таких же пропорциях, что и напряжение или сопротивление. Если напряжение увеличивается, то ток также увеличивается. Если напряжение уменьшается, то ток тоже уменьшается. С другой стороны, если сопротивление увеличивается, то ток уменьшается. Если сопротивление уменьшается, то ток увеличивается. Это соотношение между напряжением, силои тока и сопротивлением называется законом Ома.

Закон Ома утверждает, что ток в цепи (последовательной, параллельной или последовательно-параллельной) прямо пропорционален напряжению и обратно пропорционален сопротивлению

При определении неизвестных величин в цепи, следуйте следующим правилам:

  1. Нарисуйте схему цепи и обозначьте все известные величины.
  2. Проведите расчеты для эквивалентных цепей и перерисуйте цепь.
  3. Рассчитайте неизвестные величины.

Помните: закон Ома справедлив для любого участка цепи и может применяться в любой момент. По последовательной цепи течет один и тот же ток, а к любой ветви параллельной цепи приложено одинаковое напряжение.

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока в проводнике пропорциональна напряжению, приложенному к его концам. Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника. Закон Ома был открыт в 1826 году.

Ниже приведены анимации схем иллюстрирующих закон Ома. Обратите внимание, что (на первой картинке) Амперметр (А) является идеальным и имеет нулевое сопротивление.

Данная анимация показывает как меняется ток в цепи при изменении приложенного напряжения.

Следующая анимация показывает как меняется сила тока в цепи при изменении сопротивления.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: