Виды и способы хранения информации. Реферат: Хранение информации

Хранение и накопление информации вызвано многократным ее использованием, применением постоянной информации, необходимостью комплектации первичных данных до их обработки.

Хранение информации осуществляется на машинных носителях в виде информационных массивов, где данные располагаются по установленному в процессе проектирования группировочному признаку.

Поиск данных — ϶ᴛᴏ выборка нужных данных из хранимой информации, включая поиск информации, подлежащей корректировке или замене запроса на нужную информацию.

Основной принцип хранения информации можно сформулировать следующим образом: сохраненная информация всегда имеет форму «следа», оттиска на каком-нибудь носителе.

Тип носителя роли не играет. Это может быть камень, дерево, бумага, магнитная лента или фотопленка. След в форме некᴏᴛᴏᴩого знака-буквы на камне, дереве, бумаге может быть нанесен непосредственно человеческой рукой, вооруженной резцом, кистью или карандашом. Стоит заметить, что он виден невооруженным взглядом и может быть легко прочитан.

Использование в качестве носителей информации фотопленки, магнитной ленты и лазерного диска требует специальных устройств - преобразователей информации. Так, для записи информации на фотопленку требуется фотоаппарат, а для считывания информации - проектор. Магнитная запись и считывание информации осуществляется с помощью более сложного устройства - магнитофона.

Характерной чертой всех данных типов носителей будет необходимость в специальных технических устройствах как для записи, так и для считывания информации. Это означает возможность механизации и автоматизации процессов записи и чтения информации, делает их независимыми от присутствия человека.

Для хранения больших массивов информации применяются разнообразные запоминающие устройства. Очень большие массивы информации хранятся на внешних запоминающих устройствах (ВЗУ) К ним ᴏᴛʜᴏϲᴙтся запоминающие устройства на:

  • дисках (ЗУД);
  • магнитном барабане (МБ);
  • магнитных лентах (МЛ);
  • перфорационных лентах (ПЛ);
  • магнитных картах (МК) и т.п.

Приведенные ВЗУ ᴏᴛʜᴏϲᴙтся к классу ЗУ с перемещением носителя информации. Достоинством таких ЗУ, наряду с большой емкостью, будет низкая стоимость хранения единицы информации, а недостатком - наличие механических узлов перемещения, накладывающим ограничения на скорость работы. С позиции организации хранения информации ВЗУ подразделяются на ЗУ с несменяемым носителем, или ЗУ со сменным носителем (МБ, МК), позволяющими создавать библиотеки и архивы с практически неограниченным объемом данных. Перемещение носителя при считывании может быть непрерывным (МБ, ЗУД) или стартстопным (МЛ, ПЛ), при кᴏᴛᴏᴩом оно происходит только во время обращения к ВЗУ. Выборка блоков информации из ЗУ при ϶ᴛᴏм производится по принципу последовательного или произвольного обращения. В последнем случае блок информации с произвольным адресом выбирается за постоянный промежуток времени. По организации связи различают ВЗУ, работающие под управлением машины (подключающиеся к ней автоматически без вмешательства оператора) и неуправляемые машиной (требующие участия оператора в установке блоков с хранимой информацией) Перспективы ВЗУ, использующие фотооптический способ с высокоскоростным сканированием, способ термопластической записи с применением записи с оптическим воспроизведением и др.

Запоминающее устройство на дисках — ϶ᴛᴏ ЗУ, в кᴏᴛᴏᴩом в качестве накопителя используется магнитный диск. Стоит заметить, что оно состоит из накопителя (пакет дисков), блока выборки (набор магнитных головок с пневматическим или гидравлическим приводом и электронная система преобразования кода адреса в ϲᴏᴏᴛʙᴇᴛϲᴛʙующее перемещение головок), блока записи-считывания числа (набор усилителей воспроизведения и записи) и блока местного управления. Скорость работы ЗУ определяется скоростью вращения дисков и принятой системой выборки. Среднее время обращения к ЗУД составляет 15 — 150 мс, а емкость —10 7 — 8-10 10 бит. Используется в качестве внешнего запоминающего устройства для хранения больших объемов информации и больших библиотек программ.

Запоминающее устройство на магнитном барабане — ϶ᴛᴏ ЗУ, в кᴏᴛᴏᴩом в качестве накопителя информации применяют магнитный барабан (МБ) Стоит сказать, для реализации обращения к ЗУ на МБ используется дорожка синхронизирующих маркеров, нанесенная на МБ, в процессе изготовления. Маркерные сигналы, считываемые магнитной головкой, после усиления подаются на счетчик адресов, устанавливаемый в нулевое положение перед приходом первого синхронизирующего маркера. Содержимое счетчика сравнивается с содержимым регистра адреса. В момент совпадения показателя счетчика с кодом адреса, заданным командой, выдается сигнал обращения, по кᴏᴛᴏᴩому производится запись или считывание числа. Время обращения к ЗУ на МБ определяется временем оборота МБ и составляет десятки миллисекунд. На поверхности МБ размещается до 10 7 — 10 8 бит информации. ЗУ на МБ используют в основном в качестве внешнего запоминающего устройства.

Сегодня совершенствование компьютера как универсального средства обработки информации привело к созданию целого ряда устройств, специально предназначенных для хранения информации в электронной форме.

Нужно помнить, такие современные материалы, как фотопленка и магнитная лента, способны удовлетворить большинству требований, но они не лишены недостатков. Общеизвестно, что со временем фотоснимки темнеют, прослушивание грампластинок сопровождается потрескиванием, а магнитные записи после многократного проигрывания начинают «шуметь». Сегодня самый распространенный способ хранения информации - магнитная запись . Но и она может быть испорчена под воздействием температуры или магнита.

Для хранения информации в автоматизированных системах, управляемых компьютером, все реже могут быть использованы магнитные ленты, их место заняли магнитные диски. Принцип записи информации на магнитный диск такой же, как и на магнитную ленту. Различие исключительно в том, что запись на магнитную ленту производится последовательно, одна за другой, и так же считывается, а на магнитном диске запись последовательна, а считывание можно проводить в любом порядке.

Магнитный диск представляет собой тонкий и гибкий пластмассовый диск, покрытый с двух сторон магнитным порошком, подобным используемому в магнитных лентах. Это позволяет записывать информацию на обе его поверхности, чем достигается двукратное повышение его информационной емкости. Чтобы при работе с диском его не надо было переворачивать, запись и чтение осуществляется двумя магнитными головками (каждая со ϲʙᴏей стороны диска) Этот вид носителя получил название «гибкий магнитный диск» , а устройство для чтения и записи информации не него - дисковод .

Но наряду с удобством (легкость, компактность, долговечность) ему присущи и недостатки: повышенная температура разрушает записанную информацию, тонкий материал требует осторожного обращения, влажность затрудняет считывание. Еще в середине 60-х годов появилась идея создания диска из жесткого материала и помещенного в замкнутый объем, из кᴏᴛᴏᴩого откачан воздух (при ϶ᴛᴏм ни нагрев, ни влажность ему уже не страшны) Такой диск получил название "жесткий диск" (hard disk ) или винчестер .

Для увеличения информационной емкости винчестер делают из нескольких дисков, расположенных на одной оси, а размеры магнитных головок уменьшают, добиваясь получения более узких магнитных дорожек, записываемых на диске. Это позволяет в десятки и сотни раз увеличить количество информации, записываемой на такой диск, при повышенной надежности ее хранения.

При этом увеличение информационной емкости винчестера по сравнению с гибким магнитным диском лишает его мобильности. Материал опубликован на http://сайт
Жесткий диск гораздо тяжелее гибкого диска, сложнее в подключении и его неудобно переносить с одного компьютера на другой. По϶ᴛᴏму сегодня для хранения больших объемов информации используют винчестер, а для передачи небольших порций информации с одного компьютера на другой - гибкий магнитный диск.

Со временем объем информации, с кᴏᴛᴏᴩой работает человек и кᴏᴛᴏᴩую ему надо передать другому человеку, возрастал, пока не превысил информационную емкость гибкого магнитного диска как мобильного (переносного) средства хранения информации. Это привело сначала к "возрождению" кассет с магнитной лентой как мобильных носителей информации (их большая емкость, несмотря на неудобство поиска и считывания информации, дает им преимущество по сравнению с гибкими дисками), а затем к созданию нового типа носителя - лазерного диска .

Лазерный диск - трехслойный диск, изготовленный из стекла или прочной пластмассы. В нем между двумя тонкими защитными слоями пластмассы (стекла) помещен тонкий слой металлической фольги из серебра или даже из золота. Запись информации на такой диск осуществляется лучом лазера, пробегающим по спиральной дорожке от края диска к его центру и выжигающим в металлической фольге микроскопические «дырочки». Информация кодируется количеством «дырочек» и их расположением на спиральной дорожке. Лазерный луч очень тонок, и ширина дорожки получается в десятки раз тоньше человеческого волоса. Это позволяет получить плотность записи информации, недостижимую для магнитных дисков. Считывание информации осуществляется слабым лучом лазера. Выжженные и сохранившиеся участки фольги по-разному отражают луч. Отраженный луч улавливается фотоэлементом и расшифровывается. Лазерные диски иначе называют оптическими , поскольку запись и чтение информации осуществляются с помощью света.

Но записать информацию на лазерный диск можно всего один раз, ведь металлическая фольга уже «испорчена». Это означает, что в отличие от магнитного диска, диск лазерный не позволяет перезаписывать информацию и пригоден только для считывания. По϶ᴛᴏму он не способен заменить магнитные диски и ленты. При этом для хранения неизменяемой информации нет более удобного носителя.

В последние годы найдены материалы, сочетающие в себе достоинства магнитного и оптического носителей и позволяющие перезаписывать информацию, хранящуюся на диске.
Стоит отметить, что основными достоинствами магнитооптических дисков будут большая информационная емкость, компактность, мобильность, возможность перезаписи хранящейся информации.

1.6.5 Хранение информации

Хранение и накопление информации вызвано ее многократным использованием, применением постоянной информации, необходимостью комплектации первичных данных до их обработки; осуществляется на машинных носителях в виде информационных массивов, где данные располагаются по установленному в процессе проектирования группировочному признаку.

Хранение информации – это ее запись во вспомогательные запоминающие устройства на различных носителях для последующего использования.

Хранение является одной из основных операций, осуществляемых над информацией, и главным способом обеспечения ее доступности в течение определенного промежутка времени.

В результате реализации такого алгоритма документ, независимо от формы представления поступивший в информационную систему, подвергается обработке и после этого отправляется в хранилище (базу данных), где помещается на соответствующую "полку" в зависимости от принятой системы хранения. Результаты обработки передаются в каталог.

Этап хранения информации может быть представлен на следующих уровнях: внешнем, концептуальном (логическом), внутреннем, физическом.

Рис. 1.16. Алгоритм процесса подготовки информации к хранению

Внешний уровень отражает содержательность информации и представляет способы (виды) представления данных пользователю в ходе их хранения.

Концептуальный уровень определяет порядок организации информационных массивов и способы хранения информации (файлы, массивы, распределенное хранение, сосредоточенное и др.).

Внутренний уровень представляет организацию хранения информационных массивов в системе ее обработки и определяется разработчиком.

Физический уровень хранения означает реализацию хранения информации на конкретных физических носителях.

Способы организации хранения информации связаны с ее поиском – операцией, предполагающей извлечение хранимой информации.

Хранение и поиск информации являются не только операциями над ней, но и предполагают использование методов осуществления этих операций. Информация запоминается так, чтобы ее можно было отыскать для дальнейшего использования. Возможность поиска закладывается во время организации процесса запоминания. Для этого используют методы маркирования запоминаемой информации, обеспечивающие поиск и последующий доступ к ней и применяемые для работы с файлами, графическими базами данных и т. д.

Маркер (mark, marker) – метка на носителе информации, обозначающая начало или конец данных либо их части (блока).

В современных носителях информации используются маркеры:

Адреса (адресный маркер) – код или физическая метка на дорожке диска, указывающие на начало адреса сектора;

Группы – маркер, указывающий начало или конец группы данных;

Дорожки (начала оборота) – отверстия на нижнем диске пакета магнитных дисков, указывающие физическое начало каждой дорожки пакета.

Конца файла – метка, используемая для указания окончания считывания последней записи файла;

Ленты (ленточный маркер) – управляющая запись или физическая метка на магнитной ленте, обозначающая признак начала или конца блока данных или файла;

Сегмента – специальная метка, записываемая на магнитной ленте для отделения одного сегмента набора данных от другого.

Хранение информации в ЭВМ связано с процессом ее арифметической обработки и с принципами организации информационных массивов, поиска, обновления, представления информации и др.

Важным этапом автоматизированного этапа хранения является организация информационных массивов.

Массив (от англ. array) – упорядоченное множество данных.

Информационный массив – система хранения информации, включающая представление данных и связей между ними, т. е. принципы их организации.

С учетом этого рассматриваются следующие структуры организации информационных массивов: линейная, многомерная.

В свою очередь, линейная структура данных делится на строки, одномерные массивы, стеки, очереди, деки и др.

Строка – это представление данных в виде элементов, располагающихся по признаку непосредственного следования, т. е. по мере поступления данных в ЭВМ.

Одномерный массив – это представление данных, отдельные элементы которых имеют индексы, т. е. поставленные им в соответствие целые числа, рассматриваемые как номер элемента массива.

Индекс обеспечивает поиск и идентификацию элементов, а следовательно, и доступ к заданному элементу, что облегчает его поиск по сравнению с поиском в строке.

Идентификация – процесс отождествления объекта с одним из известных объектов.

Стек – структура данных, учитывающая динамику процесса ввода-вывода информации, использующая линейный принцип организации хранения, реализующий процедуру обслуживания "последним пришел – первым ушел" (первым удаляется последний поступивший элемент).

Очередь – структура организации данных, при которой для обработки информации выбирается элемент, поступивший ранее всех других.

Дека – структура организации данных, одновременно сочетающая рассмотренные виды.

Нелинейные структуры хранения данных используют многомерные структуры (массивы) следующих видов: деревья, графы, сети.

Элемент многомерного массива определяется индексом, состоящим из набора чисел. Формой представления прямоугольного массива является матрица, каждое значение которой определяется индексом требуемого элемента массива. Так, в двухмерном массиве элементы обозначаются двумя индексами, а в трехмерном – тремя.

Массивы по своей структуре близки к файлам и отличаются от последних двумя основными признаками:

Каждый элемент массива может быть явно обозначен, и к нему имеется прямой доступ;

Число элементов массива определяется при его описании.

Организация хранения данных в многомерном массиве может быть представлена в виде логических структур информационных массивов. В этих массивах структуры данных компонуются в виде записей, располагающихся различным образом. С учетом этого выделяют следующие основные структуры информационных массивов: последовательную, цепную, ветвящуюся, списковую.

В последовательной структуре информационного массива записи располагаются последовательно, нахождение требуемой записи осуществляется путем просмотра всех предшествующих. Включение новой записи в информационный массив требует смещения всех записей, начиная с той, которая добавляется. Обновление информационных массивов при последовательной структуре требует перезаписи всего массива.

В цепной структуре информационные массивы располагаются произвольно. Для логической связи отдельных записей необходима их адресация, т. е. каждая предыдущая запись логически связанного информационного массива должна содержать адрес расположения последующей записи. Если с определенного уровня, значения в записях повторяются в различных сочетаниях, то в целях экономии памяти возможен переход от цепной структуры к ветвящейся.

В ветвящейся структуре информационного массива сначала размещается запись, отображающая признак объекта с небольшим числом значений, далее они повторяются в записях в различных сочетаниях. Это дает возможность перейти от некоторой основной записи к другим в зависимости от запроса, не повторяя основную запись.

Чтобы устранить повторяющиеся записи и соответствующие им поля из памяти, их удаляют из основного массива и объединяют в дополнительный небольшой информационный массив. В нем записи упорядочиваются по какому-либо признаку без повторений, тогда в основном массиве вместо удаленного информационного поля указываются адреса записей, размещенных в дополнительном массиве. Данная структура является удобной при реорганизации информационной базы, поскольку повторяющиеся записи легко могут быть заменены, так как хранятся в дополнительном массиве, основной массив подвергается при этом незначительным изменениям. Однако эта структура требует дополнительного объема памяти.

Списковая структура информационных массивов характеризуется наличием списка, который содержит набор данных, определяющих логический порядок организации информационного массива.

Список включает имя и адрес поля данных. В памяти ЭВМ элементы списка физически разнесены, но связаны друг с другом логически за счет адресных ссылок.

Поле данных в зависимости от характера хранимой информации может быть выражено двоичным разрядом, словом фиксированной либо переменной длины, а также набором отдельных слов.

Формализовано список может быть реализован в виде таблицы, где имена списка и поля данных сопоставлены с адресами, выбранными произвольно по мере наличия свободных мест в запоминающем устройстве. В случае необходимости повторений какой-либо информации рекомендуется многократно обращаться по адресу, который может входить в несколько списков, т. е. применить механизм многократных адресных ссылок.

Списковая структура с механизмом адресных ссылок может быть представлена в виде графа древовидной структуры. В нем каждый элемент списка включает в себя маркерное поле, поле данных и адресное поле. Маркерное поле предупреждает, имеется ли ссылка на другой список или она отсутствует. В зависимости от этого в маркерном поле ставится знак минус или плюс.

Списки так же могут быть показаны ориентированными графами с полями, в которых возможна ссылка вперед и назад. Возникает так называемый симметричный список, и появляется возможность движения в структуре данных в разных направлениях.

Рассмотренные списковые структуры информационных массивов имеют следующие особенности:

Высокую логическую простоту;

Относительно большое количество времени доступа, обусловленное адресным обращением к данным, при котором к каждому элементу списка необходимо иметь ссылку;

Значительное возрастание объема памяти запоминающего устройства по сравнению с последовательной структурой организации информационных массивов, обусловленное адресным обращением к данным.

С учетом рассмотренных структур формирования информационных массивов можно представить ряд способов организации массивов (рис. 1.17) в запоминающих устройствах ЭВТ.

Рис. 1.17. Способы организации массивов информации в запоминающем устройстве ЭВТ

На физическом уровне любые записи информационного поля представляют в виде двоичных символов. Обращение к памяти большого объема требует большой длины адреса. Если память имеет емкость 2n слов, то для поиска таких слов потребуются n-разрядные адреса. В микропроцессорах восьмиразрядные слова дают возможность обращаться к 256 ячейкам памяти, что оказывается недостаточно для хранения информации в автоматизированных системах. Если непосредственно обращение к любой ячейке невозможно, переходят к страничной организации памяти.

В этом случае выбирают область памяти емкостью 2n слов и называют страницей, обращение к которой осуществляется командой, содержащей n-разрядное адресное поле. В микропроцессорах обычно используют страницы размером 256 слов.

Принципы адресации, объемы памяти, количественные характеристики зависят от функционального назначения запоминающих устройств, разделяющимся по уровням функциональной иерархии на сверхоперативные, оперативные, постоянные, полупостоянные, внешние, буферные.

С хранением информации связаны следующие понятия: носитель информации (память), внутренняя память, внешняя память, хранилище информации.

Носитель информации – это физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг), которую можно назвать оперативной (быстрой) памятью или внутренней памятью, поскольку ее носитель находится внутри нас.

Другие носители информации можно назвать внешними (по отношению к человеку), например бумага, которая, непригодна в обычных (не специальных) условиях для длительного хранения информации: на нее оказывают вредное воздействие температурные условия.

Для ЭВТ по материалу изготовления различают бумажные, металлические, пластмассовые, комбинированные и другие носители; по принципу воздействия и возможности изменения структуры выделяют магнитные, полупроводниковые, диэлектрические, перфорационные, оптические и др.; по методу считывания различают контактные, магнитные, электрические, оптические. Хранение информации осуществляется на специальных носителях.

Особое значение при построении информационного обеспечения имеют характеристики доступа к информации, записанной на носителе, которые бывают прямого и последовательного доступа. Пригодность носителя для хранения информации оценивается такими параметрами, как время доступа, емкость памяти и плотность записи. Хранение больших объемов информации оправдано только при условии, если поиск нужной информации можно осуществить достаточно быстро, а сведения получить в доступной форме.

Хранилище информации – это определенным образом организованная информация на внешних носителях, предназначенная для длительного хранения и постоянного использования, например архивы документов, библиотеки, справочники, картотеки. Основной информационной единицей хранилища является определенный физический документ: анкета, книга, дело, досье, отчет и пр. Под организацией хранилища понимается наличие определенной структуры, т. е. упорядоченность, классификация хранимых документов. Она необходима для удобства ведения хранилища: пополнения новыми документами, удаления ненужных, поиска информации и т. д.

Основные свойства хранилища информации: объем хранимой информации, надежность хранения, время доступа (т. е. время поиска нужных сведений), наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памяти, принято называть данными. Для описания хранения данных используют те же понятия: носитель, хранилище данных, организация данных, время доступа, защита данных. Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами данных и банками данных.

Таким образом, хранение информации представляет собой процесс передачи информации во времени, связанный с обеспечением неизменности состояния материального носителя.


Вычислительной техники, а также принципы функционирования этих средств и методы управления ими. Из этого определения видно, что информатика очень близка к технологии, поэтому ее предмет нередко называют информационной технологией. Предмет информатики составляют следующие понятия: а) аппаратное обеспечение средств вычислительной техники; б) программное обеспечение средств вычислительной техники...





... » (Zero Administration Initiative), которая будет реализована во всех следующих версиях Windows. SMS- сервер управления системами У SMS две задачи - централизовать управление сетью и уп­ростить распространение программного обеспечения и его модернизацию на клиентских системах. SMS подойдет и ма­лой, и большой сети - это инструмент управления сетью на базе Windows NT, эффективно использующий...

Информатика и ИКТ 10-11 класс Семакин, Информатика 10-11 класс Семакин, Хранение информации, Использование магнитных носителей информации, Использование оптических дисков и флэш-памяти

Из базового курса вам известно:
Человек хранит информацию в собственной памяти, а также в виде записей на различных внешних (по отношению к человеку) носителях: на камне, папирусе, бумаге, магнитных и оптических носителях и пр. Благодаря таким записям, информация передается не только в пространстве (от человека к человеку), но и во времени — из поколения в поколение.
Рассмотрим способы хранения информации более подробно.
Информация может храниться в различных видах: в виде записанных текстов, рисунков, схем, чертежей; фотографий, звукозаписей, кино- или видеозаписей. В каждом случае применяются свои носители.
Носитель — это материальная среда, используемая для записи и хранения информации.
Практически носителем информации может быть любой материальный объект. Информацию можно сохранять на камне, дереве, стекле, ткани, песке, теле человека и т. д. Здесь мы не станем обсуждать различные исторические и экзотические варианты носителей. Ограничимся современными средствами хранения информации, имеющими массовое применение.
Использование бумажных носителей информации
Носителем, имеющим наиболее массовое употребление, до сих пор остается бумага. Изобретенная во II веке н. э. в Китае, бумага служит людям уже 19 столетий.
Для сопоставления объемов информации на разных носителях будем пользоваться единицей — байтом, считая, что один знак текста «весит» 1 байт . Нетрудно подсчитать информационный объем книги, содержащей 300 страниц с размером текста на странице примерно 2000 символов. Текст такой книги имеет объем примерно 600 000 байтов, или 586 Кб. Средняя школьная библиотека, фонд которой составляют 5000 томов, имеет информационный объем приблизительно 2861 Мб = 2,8 Гб.
Что касается долговечности хранения документов, книг и прочей бумажной продукции, то она очень сильно зависит от качества бумаги, красителей, используемых при записи текста, условий хранения. Интересно, что до середины XIX века (с этого времени для производства бумаги начали использовать древесину) бумага делалась из хлопка и текстильных отходов — тряпья. Чернилами служили натуральные красители. Качество рукописных документов того времени было довольно высоким, и они могли храниться тысячи лет. С переходом на древесную основу, с распространением машинописи и средств копирования, с началом использования синтетических красителей срок хранения печатных документов снизился до 200-300 лет.
На первых компьютерах бумажные носители использовались для цифрового представления вводимых данных. Это были перфокарты: картонные карточки с отверстиями, хранящие двоичный код вводимой информации. На некоторых типах ЭВМ для тех же целей применялась перфорированная бумажная лента.
Использование магнитных носителей информации
В XIX веке была изобретена магнитная запись . Первоначально она использовалась только для сохранения звука. Самым первым носителем магнитной записи была стальная проволока диаметром до 1 мм. В начале XX столетия для этих целей использовалась также стальная катаная лента. Тогда же (в 1906 г.) был выдан и первый патент на магнитный диск . Качественные характеристики всех этих носителей были весьма низкими. Достаточно сказать, что для производства 14-часовой магнитной записи устных докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км, или около 100 кг проволоки.
В 20-х годах XX века появляется магнитная лента сначала на бумажной, а позднее — на синтетической (лавсановой) основе, на поверхность которой наносится тонкий слой ферромагнитного порошка. Во второй половине XX века на магнитную ленту научились записывать изображение, появляются видеокамеры, видеомагнитофоны.
На ЭВМ первого и второго поколений магнитная лента использовалась как единственный вид сменного носителя для устройств внешней памяти. Любая компьютерная информация на любом носителе хранится в двоичном (цифровом) виде. Поэтому независимо от вида информации: текст это, или изображение, или звук — ее объем можно измерить в битах и байтах. На одну катушку с магнитной лентой, использовавшейся в лентопротяжных устройствах первых ЭВМ, помещалось приблизительно 500 Кб информации.
С начала 1960-х годов в употребление входят компьютерные магнитные диски: алюминиевые или пластмассовые диски, покрытые тонким магнитным порошковым слоем толщиной в несколько микрон. Информация на диске располагается по круговым концентрическим дорожкам. Магнитные диски бывают жесткими и гибкими, сменными и встроенными в дисковод компьютера.
Последние традиционно называют винчестерскими дисками.
Винчестер компьютера — это пакет магнитных дисков, надетых на общую ось. Информационная емкость современных винчестерских дисков измеряется в гигабайтах (десятки и сотни Гб). Наиболее распространенный тип гибкого диска диаметром 3,5 дюйма вмещает около 1,4 Мб данных. Гибкие диски в настоящее время выходят из употребления.
В банковской системе большое распространение получили пластиковые карты. На них тоже используется магнитный принцип записи информации, с которой работают банкоматы, кассовые аппараты, связанные с информационной банковской системой.
Использование оптических дисков и флэш-памяти
Применение оптического, или лазерного, способа записи информации начинается в 1980-х годах. Его появление связано с изобретением квантового генератора — лазера, источника очень тонкого (толщина порядка микрона) луча высокой энергии. Луч способен выжигать на поверхности плавкого материала двоичный код данных с очень высокой плотностью. Считывание происходит в результате отражения от такой « перфорированной» поверхности лазерного луча с меньшей энергией («холодного» луча). Благодаря высокой плотности записи, оптические диски имеют гораздо больший информационный объем, чем однодисковые магнитные носители. Информационная емкость оптического диска составляет от 190 Мб до 700 Мб. Оптические диски называются компакт-дисками (CD).
Во второй половине 1990-х годов появились цифровые универсальные видеодиски DVD (Digital Versatile Disk) с большой емкостью, измеряемой в гигабайтах (до 17 Гб). Увеличение их емкости по сравнению с CD-дисками связано с использованием лазерного луча меньшего диаметра, а также двухслойной и двусторонней записи. Вспомните пример со школьной библиотекой. Весь ее книжный фонд можно разместить на одном DVD.
В настоящее время оптические диски (CD и DVD) являются наиболее надежными материальными носителями информации, записанной цифровым способом. Эти типы носителей бывают как однократно записываемыми — пригодными только для чтения, так и перезаписываемыми — пригодными для чтения и записи.
В последнее время появилось множество мобильных цифровых устройств: цифровые фото- и видеокамеры, МРЗ-плееры, карманные компьютеры, мобильные телефоны, устройства для чтения электронных книг, GPS-навигаторы и др. Все эти устройства нуждаются в переносных носителях информации. Но поскольку все мобильные устройства довольно миниатюрные, то и к носителям информации для них предъявляются особые требования. Они должны быть компактными, обладать низким энергопотреблением при работе, быть энергонезависимыми при хранении, иметь большую емкость, высокие скорости записи и чтения, долгий срок службы. Всем этим требованиям удовлетворяют флэш-карты памяти. Информационный объем флэш-карты может составлять несколько гигабайтов.
В качестве внешнего носителя для компьютера широкое распространение получили так называемые флэш-брелоки (их называют в просторечии «флэшки»), выпуск которых начался в 2001 году. Большой объем информации, компактность, высокая скорость чтения/записи, удобство в использовании — основные достоинства этих устройств. Флэш-брелок подключается к USB-порту компьютера и позволяет скачивать данные со скоростью около 10 Мб в секунду.
В последние годы активно ведутся работы по созданию еще более компактных носителей информации с использованием так называемых нанотехнологий, работающих на уровне атомов и молекул вещества. В результате один компакт- диск , изготовленный по нанотехнологии, сможет заменить тысячи лазерных дисков. По предположениям экспертов приблизительно через 20 лет плотность хранения информации возрастет до такой степени, что на носителе объемом примерно с кубический сантиметр можно будет записать каждую секунду человеческой жизни.
Система основных понятий

Хранение информации

Носители информации

Нецифровые

Цифровые (компьютерные)

Исторические:

пергамент,

шелк и др.

Современные:

Магнитные

Оптические

Флэш-носители

Ленты Диски Карты

Флэш- Флэш- карты брелоки

Факторы качества носителей

Вместимость - плотность хранения дан-ных, объем данных

Надежность хранения - максимальное время сохранности дан-ных, зависимость от условий хранения

Наибольшей вместимостью и надежностью на сегодня обладают оптические носители CD и DVD

Перспективные виды носителей:

носители на базе нанотехнологий


Хранение информации - это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга - библиотека, картина - музей, фотография - альбом). Способы хранения информации Этот процесс такой же древний, как и жизнь человеческой цивилизации. Уже в древности человек столкнулся с необходимостью хранения информации: зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер. С рождением письменности возникло специальное средство фиксирования и распространения мысли в пространстве и во времени. Родилась документированная информация - рукописи и рукописные книги, появились своеобразные информационно-накопительные центры - древние библиотеки и архивы. Постепенно письменный документ стал и орудием управления (указы, приказы, законы). Вторым информационным скачком явилось книгопечатание. С его возникновением наибольший объем информации стал храниться в различных печатных изданиях, и для ее получения человек обращается в места их хранения (библиотеки, архивы и т.д.). В жизни человека процесс длительного хранения информации играет большую роль и подвергается постоянному совершенствованию. Когда объем накапливаемой информации возрастает настолько, что ее становится просто невозможно хранить в памяти, человек начинает прибегать к помощи различного рода записных книжек, указателей и т.д. Различная информация требует разного времени хранения:

    проездной билет надо хранить только в течение поездки;

    программу телевидения - текущую неделю;

    школьный дневник - учебный год;

    аттестат зрелости - до конца жизни;

    исторические документы - несколько столетий.

ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней. Хранение очень больших объемов информации оправдано только при условии, если поиск нужной информации можно осуществить достаточно быстро, а сведения получить в доступной форме. Информационная система - это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации. Наличие таких процедур - главная особенность информационных систем, отличающих их от простых скоплений информационных материалов. Например, личная библиотека, в которой может ориентироваться только ее владелец, информационной системой не является. В публичных же библиотеках порядок размещения книг всегда строго определенный. Поэтому поиск и выдача книг, а также размещение новых поступлений представляют собой стандартные, формализованные процедуры. Человек по-разному подходит к хранению информации. Все зависит от того сколько ее и как долго ее нужно хранить. Если информации немного ее можно запомнить в уме. Нетрудно запомнить имя своего друга и его фамилию. А если нужно запомнить его номер телефона и домашний адрес мы пользуемся записной книжкой. Когда информация запомнена (сохранена) ее называют данные. Для записи данных в книжку требуется больше времени, чем на то чтобы их запомнить. Востребовать данные из записной книжки или из тетрадки тоже не так просто как вспомнить, но если в голове информация не сохранилась, то и записная книжка и тетрадка оказываются более надежными источниками данных. Хранение информации Самые долговременные средства для хранения данных - это книги. В них данные хранятся сотни лет. Благодаря книгам информация распространяется не только в пространстве, но и во времени. Вы знаете что по древним рукописным книгам, созданным сотни и тысячи лет назад, можно приобретать знания и сегодня. Информация в книгах хранится столь долю потому что есть специальные организации которым поручено собирать все выходящие книги и надежно их хранить. Такие организации нам известны - это библиотеки и музеи. Любое знание, занесенное в книгу обязательно кем-то сохраняется для других поколений, для этого в каждом государстве есть специальные законы.

В памяти человека хранится информация обо всём, что он видел, слышал, чувствовал или испытывал. Люди хранят информацию на разных носителях и для хранения информации создают библиотеки и медиатеки. Зачем всё это? Хранение информации - это одно из действий с информацией, необходимое, прежде всего, для обеспечения жизнедеятельности и безопасности человека. Обратимся к истории. Давным-давно человек не умел добывать огонь и пользоваться им. Когда во время летней засухи возникали лесные пожары, люди обратили внимание на огонь и поняли, что огонь - это горячо! Если отойти подальше, то тепло, приятно. Люди сохранили в своей памяти информацию о свойствах огня и о том, как можно использовать огонь, чего при этом надо опасаться. Люди стали греться у огня, готовить на огне еду, обогревать и освещать огнём свой дом, но всегда при этом старались обеспечить свою безопасность. Только благодаря способности человека долго хранить в своей памяти информацию, его можно научить читать, писать и считать. Если бы у человека не было памяти, он не смог бы найти свой дом после прогулки, свои вещи в доме, приготовить пищу. Он не знал бы имён своих родителей и друзей и многое-многое другое. Информация, которая хранится в памяти отдельного человека, недоступна другим людям. Если то, что знает человек, он выразит каким-либо образом: звуками устной речи, письменно или рисунком, информацией смогут воспользоваться другие люди. Представленная на носителе информация уже не «связана» с памятью отдельного, конкретного человека. Сохранённой, то есть представленной на носителе, информацией может пользоваться любой человек. Важно, что представленную на носителе инфор­мацию можно хранить и передавать другим людям. Как тем, кто находится далеко, так и тем, кто будет жить после нас. Информацию, представленную на носителе рисунком, числами или текстом, можно долго хранить и передавать на большие расстояния. В каждом доме есть фотоальбом, в котором хра­нятся фотографии родных и близких людей. Тексты и рисунки сохраняют в записных книжках, книгах, журналах, дневниках. Про журнал, записную книжку, дневник или книгу можно сказать - это хранилище за­кодированной информации. Книги предназначены для длительного хранения информации. Книги хранят в библиотеках. В библиотеке обыч­но хранится много книг. Библиотеки бывают домаш­ние и школьные, городские и районные, детские и технические. Библиотека - это хранилище книг, то есть хранилище закодированной информации. В настоящее время люди научились хранить не только тексты и рисунки. Появились способы кодиро­вания и хранения звуковой и видеоинформации. Уже существуют книги, учебники, справочники, энциклопедии, которые изготовлены не из бумаги, а, напри­мер, в виде магнитных и лазерных дисков. Диски хранятся не в библиотеке, а в медиатеке. Медиатека - это хранилище электронных книг, справочников, энциклопедий, компьютерных игр, обучающих программ. Компьютер тоже хранит информацию в своей па­мяти. Закодировать и хранить в памяти компьютера в виде цифровых данных можно и звуки, и изображе­ния, и тексты, и числа, и видеофильмы. Во время работы компьютера информация хранится в его внутренней памяти. Прежде чем выклю­чить компьютер, следует сохранить информацию на дисках (во внешней памяти), иначе она пропадёт.

Главное, что мы должны понять и запомнить

1. Хранение информации - это одно из действий с информацией. 2. Человек хранит информацию в своей памяти для обеспечения своей жизнедеятельности и безопасности. Память человека обеспечивает его способность учиться и работать. 3. Книги предназначены для длительного хранения информации. 4. Компьютер - это очень удобный инструмент для хранения закодированной информации. 5. Закодировать и хранить в памяти компьютера можно и звуки, и изображения, и тексты, и числа, и видеофильмы.

Человек в своей памяти хранит информацию об окружающей действительности в виде различных образов: зрительных, звуковых, вкусовых и т.д. Для долговременного хранения информации, ее накопления и передачи из поколения в поколение используются материальные носители информации. Материальная природа носителей информации может быть различной:

    молекулы ДНК, которые хранят генетическую информацию;

    бумага, на которой хранятся тексты и изображения;

    магнитная лента, на которой хранится звуковая информация;

    микросхемы памяти,

    магнитные и лазерные диски, на которых хранятся программы и данные в компьютере и т.д.

Носители информации характеризуются информационной емкостью, т.е. количеством информации, которое они могут хранить. Наиболее информационно емкими являются молекулы ДНК, которые имеют очень малый размер и плотно упакованы. Это позволяет хранить огромное количество информации (до 10 21 бит в 1 см 3), что позволяет организму развиваться из одной единственной клетки, содержащей всю необходимую генетическую информацию. Современные микросхемы памяти позволяют хранить в 1 см 3 до 10 10 бит информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции. Однако, если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден. На каждом гибком магнитном диске может храниться книга объемом около 600 страниц, а на жестком магнитном диске целая библиотека, включающая десятки тысяч книг.

Носитель информации - материальный объект, предназначенный для хранения информации.

Носители информации можно различать не только по материалу, из которого они изготовлены, но и по способу их изготовления (например, рукописные, машинописные и т.д.), по специфике предназначения (микрофотокопии; чертежи; книги для слепых, напечатанные шрифтом Брайля).

Если спилить дерево, то по кольцам на стволе можно определить, сколько ему лет, дождливым или засушливым был каждый год его жизни и многое другое. Значит, дерево хранит информацию обо всей своей жизни. Давным-давно, когда на Земле жили первобытные люди, возникла необходимость хранить различные сведения о способах охоты, земледелия. Для этого люди использовали рисунки, зарубки на палках, узелки на веревках. По этой информации мы и узнаем, как они жили. С появлением письменности человек стал хранить информацию на папирусе, глиняных табличках, берестяных свитках, бумаге. Современный человек для хранения информации использует фотопленку, киноленту, магнитные ленты и диски, лазерные диски и другие носители. Технические устройства и другие приспособления, на которых хранится информация, называются информационными носителями. Всем знаком информационный носитель – книга. Записная книжка, дневник, в который ученик записывает расписание уроков и домашние задания, - тоже информационные носители. Дверной косяк, на котором родители ежегодно отмечают рост своего ребенка, - тоже информационный носитель. Вы уже знаете, что иметь дело с хранением информации приходится очень часто, но информацию недостаточно просто сохранить, надо сделать так, чтобы потом, когда она понадобится, ее можно было быстро найти. Для этого люди придумали организацию хранения информации. Вот, например, вы решили сохранить адреса и телефоны одноклассников. Как лучше поступить? Правильно, нужно записать фамилии в записную книжку на странички, помеченные буквами – указателями в алфавитном порядке. Если хранить информацию в таком порядке, то очень быстро можно найти нужную фамилию, ведь алфавит мы хорошо знаем. Как найти нужное место в книге? Можно, конечно, просто перелистывать книгу страница за страницей, пока не найдется нужная страница, но этот способ займет много времени. Гораздо быстрее посмотреть оглавление. А какой способ использован для записи учеников в классном журнале? В расписании поездов указано, в какой город и в какое время уходит каждый поезд. В каком порядке надо расположить эту информацию, чтобы было удобно пассажиру? А как будет удобнее диспетчеру железнодорожного вокзала? В каком порядке располагаются слова в словаре? В телефонной книге названия учреждений тоже расположены в определенном порядке. В каком? Какие же существуют способы организации информации? Это таблицы, схемы, каталоги и др. Со схемами и таблицами вы уже работали на уроках. Посещая детскую библиотеку и читальный зал, видели библиотечные каталоги, в которых карточки расположены в алфавитном порядке. На карточки заносятся различные сведения, например: автор, название книги, год выпуска книги и др. Существуют и компьютерные электронные каталоги. Одну и ту же информацию можно представить различными способами

Современные способы хранения информации можно разделить на две группы – способы хранения на физических носителях и способы хранения, основанные на облачных технологиях.

К существующим физическим носителям информации можно отнести оптические диски, твердотельные носители и магнитные жесткие диски. Оптические диски позволяют хранить ограниченный объем информации, имеют низкую скорость записи, чувствительны к механическим повреждениям, воздействию температур. Самыми распространенными носителями информации являются твердотельные носители информации (флеш-карты, карты памяти, твердотельные жесткие диски). Они характеризуются высокой скоростью записи, малыми размерами и устойчивостью к механическим повреждениям, объемы ранимой информации намного больше, чем у оптических дисков, но пока уступают объемам, хранимым на жестких магнитных дисках. Магнитные жесткие диски отличаются высокой скоростью записи информации, высокой надежностью хранения данных и большими объемами памяти, однако, они очень чувствительны к механическому воздействию.

В последнее время набирают популярность облачные технологии хранения данных. Информация хранится на многочисленных, распределённых в сети серверах, при этом пользователи не видят структуру серверов, они работают в облаке – одном большом виртуальном сервере.

Одним из популярных облачных хранилищ данных является Google Drive (https://drive.google.com), которое позволяет хранить 30 типов файлов, предоставляет инструменты для работы с документами в режиме он-лайн. Объем бесплатного пространства составляет 15Гб, дополнительно можно приобрести от 100Гб (1,99$ в месяц) до 30Тб (299.99$ в месяц). Кроме доступа к сервису через веб-интерфейс, есть возможность доступа через клиенты для Windows, Mac OS и Android, iOS.

Облачное хранилище OneDrive (http://onedrive.com) от компании Microsoft интегрировано с Office365, что позволяет непосредственно из приложения создавать, редактировать, сохранять файлы Excel, OneNote, PowerPoint и Word в облаке. Сервис дает возможность бесплатного хранения 5Гб, платное хранилище от 50Гб за $1,99 в месяц, что в два раза дороже, чем Google Drive.

Dropbox (http://www.dropbox.com) - облачное хранилище данных, предоставляющее бесплатно 2Гб пространства, но позволяющее увеличить этот объем до 48Гб путем выполнения ряда условий (приглашение друга, просмотр обзора о Dropbox, установка программы Dropbox на компьютер, размещение файлов в папке Dropbox, установка Dropbox на других компьютерах, к которым имеется доступ, предоставление общего доступа друзьям и коллегам, установка приложения на мобильные устройства). Платное хранилище имеет объем 1Тб и стоит €9.99 в месяц. Преимуществом Dropbox является простота в использовании и высокая скорость работы. Для того, чтобы поместить файлы в облако, достаточно положить файлы в папку Dropbox на компьютере, открыть к ней доступ и синхронизировать с нужным устройством. При редактировании файлов, размещенных ранее в облаке, копируется на сервер только изменена часть. Dropbox дает возможность восстановить данные после того, как они были удалены с сервера, а так же просмотреть историю изменения файлов за 30 дней. Для обеспечения конфиденциальности Dropbox предлагает инструмент BoxCryptor, который шифрует файлы перед передачей в облако.

Самым бюджетным облачным хранилищем является Mega (https://mega.co.nz). Стартовый бесплатный объем составляет 50Гб, а 4Тб в месяц стоит 8.33$. Особенностью этого хранилища является забота о конфиденциальности. Данные шифруются в браузере, передаются в облако, ключи дешифрования не публикуются в открытом доступе, а передаются между доверяющими друг другу пользователями.

Яндекс.Диск (http://disk.yandex.ru/) – облачное хранилище, предоставляющее бесплатно 10Гб, дающее возможность расширить бесплатный объем до 60Гб путем участия в акциях. За 0.5$ в месяц можно приобрести дополнительных 10Гб, стоимость 1Тб составляет примерно 3.5$. Яндекс.Диск интегрирован в офисный пакет Microsoft Office, а так же дает возможность автоматической загрузки фото и видеофайлов с цифровых камер и внешних носителей информации.

Облако@mail.ru (https://cloud.mail.ru/) – облачное хранилище от Mail.ru, дающее возможность бесплатного хранения 25Гб, имеющее доступ через мобильные приложения для Android и iOS, клиент для Linux. В облако можно автоматически загружать фотографии с телефона через мобильные приложения.

Amazon Web Services (https://aws.amazon.com) - платформа облачных сервисов, поддерживающее различные варианты хранения данных (объектное хранилище, блочное хранилище, хранилище файловых систем, архивное хранилище, интегрированное хранилище), различные сетевые решения (виртуальное частное облако, прямое подключение, балансировка нагрузки), инструменты обработки данных и формирования баз данных, корпоративные приложения и мобильные сервисы. Пользование бесплатно платформой возможно в течении первых 12 месяцев, а потом будет взиматься плата за те сервисы, которые используются.

Дополнить список перечисленных облачных хранилищ можно следующими облачными системами Bitcasa (http://bitcasa.com), Yunpan360 (http://yunpan.360.cn/), 4shared (http://www.4shared.com), SugarSync (https://www.sugarsync.com), Box.net (http://box.net), iDrive (http://www.idrive.com), OpenDrive (http://www.opendrive.com), Syncplicity (http://www.syncplicity.com), MediaFire (http://www.mediafire.com/), Cubby (https://www.cubby.com/), ADrive (http://www.adrive.com/).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: