Паттерны проектирования. Как вы освоили шаблоны проектирования

Если вы когда-либо интересовались, что представляют собой шаблоны проектирования, то добро пожаловать. В этой статье я расскажу, что это такое, зачем они нужны, как их использовать, и приведу примеры наиболее распространенных шаблонов на PHP.

Что такое шаблоны проектирования?

Шаблоны проектирования - это проверенные и готовые к использованию решения часто возникающих в повседневном программировании задач. Это не класс и не библиотека, которую можно подключить к проекту, это нечто большее. Шаблон проектирования, подходящий под задачу, реализуется в каждом конкретном случае. Кроме того, он не зависит от языка программирования. Хороший шаблон легко реализуется в большинстве, если не во всех языках, в зависимости от выразительных средств языка. Следует, однако, помнить, что такой шаблон, будучи примененным неправильно или к неподходящей задаче, может принести немало проблем. Тем не менее, правильно примененный шаблон поможет решить задачу легко и просто.

Существует три типа шаблонов:

  • структурные;
  • порождающие;
  • поведенческие.

Структурные шаблоны определяют отношения между классами и объектами, позволяя им работать совместно.

Порождающие шаблоны предоставляют механизмы инициализации, позволяя создавать объекты удобным способом.

Поведенческие шаблоны используются для того, чтобы упростить взаимодействие между сущностями.

Зачем нужны шаблоны проектирования?

Шаблон проектирования, по своей сути, это продуманное решение той или иной задачи. Если вы столкнулись с известной задачей, почему бы не использовать готовое решение, проверенное опытом?

Пример

Давайте представим, что вам необходимо объединить два класса, которые выполняют различные операции в зависимости от ситуации. Эти классы интенсивно используются существующей системой, что не позволяет удалить один из них и добавить его функциональность во второй. Кроме того, изменение кода потребует его тщательного тестирования, поскольку такой рефакторинг ведет к неизбежным ошибкам. Вместо этого вы можете реализовать шаблоны «Стратегия» и «Адаптер» и с их помощью решить задачу.

Class StrategyAndAdapterExampleClass { private $_class_one; private $_class_two; private $_context; public function __construct($context) { $this->_context = $context; } public function operation1() { if($this->_context == "context_for_class_one") { $this->_class_one->operation1_in_class_one_context(); } else ($this->_context == "context_for_class_two") { $this->_class_two->operation1_in_class_two_context(); } } }

Просто, не правда ли? Давайте посмотрим поближе на шаблон «Стратегия».

Шаблон «Стратегия»

Стратегия - поведенческий шаблон, который позволяет выбрать поведение программы в процессе выполнения в зависимости от контекста путем инкапсуляции нескольких алгоритмов в разных классах.

В примере выше выбор стратегии основан на значении переменной $context , которое было в момент создания объекта. Если значение было "context_for_class_one" , программа будет использовать класс class_one . И наоборот.

Хорошо, но где это можно использовать?

Представьте, что вы разрабатываете класс, который может создать или обновить запись в базе данных. В обоих случаях входные параметры будут одни и те же (имя, адрес, номер телефона и т. п.), но, в зависимости от ситуации, он будет должен использовать различные функции для обновления и создания записи. Можно каждый раз переписывать условие if/else , а можно создать один метод, который будет принимать контекст:

Class User { public function CreateOrUpdate($name, $address, $mobile, $userid = null) { if(is_null($userid)) { // пользователя не существует, создаем запись } else { // запись есть, обновляем ее } } }

Обычно шаблон «Стратегия» подразумевает инкапсуляцию алгоритмов в классы, но в данном случае это излишне. Помните, что вы не обязаны следовать шаблону слово в слово. Любые варианты допустимы, если они решают задачу и соответствуют концепции.

Шаблон «Адаптер»

Адаптер - структурный шаблон, который позволяет использовать класс, реализующий нужные функции, но имеющий неподходящий интерфейс.

Также он позволяет изменить некоторые входные данные для совместимости с интерфейсом внутреннего класса.

Как его использовать?

Другое название адаптера - «Обертка». Он «оборачивает» новый интерфейс вокруг класса для его использования. Классический пример: вам надо создать класс предметной модели, имея классы объектов в базе данных. Вместо того, чтобы обращаться к табличным классам напрямую и вызывать их методы по одному, вы можете инкапсулировать вызовы этих методов в одном методе в адаптере. Это не только позволит повторно использовать набор операций, но и избавит вас от постоянного переписывания большого количества кода, если вам потребуется выполнить тот же набор действий в другом месте.

Сравните два примера.

Без адаптера
$user = new User(); $user->CreateOrUpdate(// параметры); $profile = new Profile(); $profile->CreateOrUpdate(// параметры);

Если нам придется использовать такой код повторно, мы будем вынуждены переписывать все это заново.

С использованием адаптера

Мы можем создать класс-обертку Account:

Class Account() { public function NewAccount(// параметры) { $user = new User(); $user->CreateOrUpdate(// часть параметров); $profile = new Profile(); $profile->CreateOrUpdate(// часть параметров); } } $account_domain = new Account(); $account_domain->NewAccount(// параметры);

Теперь мы можем использовать класс Account каждый раз и, кроме того, мы можем добавить в него дополнительные функции.

Шаблон «Метод-фабрика»

Фабрика - порождающий шаблон, который представляет собой класс с методом для создания различных объектов.

Основная цель этого шаблона - инкапсулировать процедуру создания различных классов в одной функции, которая в зависимости от переданного ей контекста возвращает необходимый объект.

Как его использовать?

Фабрика обычно используется для создания различных вариантов базового класса. Допустим, у вас есть класс кнопки - Button - и три варианта - ImageButton , InputButton и FlashButton . С помощью фабрики вы можете создавать различные варианты кнопок в зависимости от ситуации.

Сначала создадим три класса:

Abstract class Button { protected $_html; public function getHtml() { return $this->_html; } } class ImageButton extends Button { protected $_html = "..."; // HTML-код кнопки-картинки } class InputButton extends Button { protected $_html = "..."; // HTML-код обычной кнопки (); } class FlashButton extends Button { protected $_html = "..."; // HTML-код Flash-кнопки }

Теперь мы можем написать нашу фабрику:

Class ButtonFactory { public static function createButton($type) { $baseClass = "Button"; $targetClass = ucfirst($type).$baseClass; if (class_exists($targetClass) && is_subclass_of($targetClass, $baseClass)) { return new $targetClass; } else { throw new Exception("The button type "$type" is not recognized."); } } }

и использовать ее:

$buttons = array("image","input","flash"); foreach($buttons as $b) { echo ButtonFactory::createButton($b)->getHtml() }

На выходе должен получиться HTML со всеми типами кнопок. Таким образом мы получили возможность указать, кнопку какого типа мы хотим получить, и использовать код повторно.

Шаблон «Декоратор»

Декоратор - это структурный шаблон, который позволяет добавить новое поведение объекту в процессе выполнения программы в зависимости от ситуации.

Цель - в расширении поведения конкретного объекта без необходимости изменять поведение базового класса. Это позволит использовать несколько декораторов одновременно. Этот шаблон - альтернатива наследованию. В отличие от наследования, декоратор добавляет поведение в процессе выполнения программы.

Для реализации декоратора нам понадобится:

  1. Унаследовать класс-декоратор от базового.
  2. Добавить поле со ссылкой на базовый класс в декоратор.
  3. Передать ссылку на декорируемый объект в конструктор декоратора.
  4. Перенаправить методы из декоратора на декорируемый объект.
  5. Переопределить методы в декораторе, поведение которых необходимо изменить.

Как его использовать?

Предположим, что у нас есть объект, который должен иметь определенное поведение в определенной ситуации. Например, у нас есть HTML-ссылка для выхода из аккаунта, которая должна по-разному показываться в зависимости от того, на какой странице мы находимся. Это тот самый случай, когда нам помогут декораторы.

Сначала определимся, какие «декорации» нам нужны:

  • Если мы на заглавной странице и вошли в аккаунт, ссылка должна быть в h2 -теге.
  • Если мы на любой другой странице и вошли в аккаунт, ссылка должна быть подчеркнутой.
  • Если мы вошли в аккаунт, ссылка должна быть в strong -теге.

Теперь мы можем написать сами декораторы:

Class HtmlLinks { // методы для работы с любой HTML-ссылкой } class LogoutLink extends HtmlLinks { protected $_html; public function __construct() { $this->_html = "Logout"; } public function setHtml($html) { $this->_html = $html; } public function render() { echo $this->_html; } } class LogoutLinkH2Decorator extends HtmlLinks { protected $_logout_link; public function __construct($logout_link) { $this->_logout_link = $logout_link; $this->setHtml("" . $this->_html . ""); } public function __call($name, $args) { $this->_logout_link->$name($args); } } class LogoutLinkUnderlineDecorator extends HtmlLinks { protected $_logout_link; public function __construct($logout_link) { $this->_logout_link = $logout_link; $this->setHtml("" . $this->_html . ""); } public function __call($name, $args) { $this->_logout_link->$name($args); } } class LogoutLinkStrongDecorator extends HtmlLinks { protected $_logout_link; public function __construct($logout_link) { $this->_logout_link = $logout_link; $this->setHtml("" . $this->_html . ""); } public function __call($name, $args) { $this->_logout_link->$name($args); } }

Теперь мы можем использовать их так:

$logout_link = new LogoutLink(); if($is_logged_in) { $logout_link = new LogoutLinkStrongDecorator($logout_link); } if($in_home_page) { $logout_link = new LogoutLinkH2Decorator($logout_link); } else { $logout_link = new LogoutLinkUnderlineDecorator($logout_link); } $logout_link->render();

Обратите внимание, как можно использовать несколько декораторов на одном объекте. Все они используют функцию __call для вызова оригинального метода. Если мы войдем в аккаунт и перейдем на заглавную страницу, результат будет такой:

Logout

Шаблон «Одиночка»

Одиночка - порождающий шаблон, который позволяет убедиться, что в процессе выполнения программы создается только один экземпляр класса с глобальным доступом.

Его можно использовать как точку «координации» для других объектов, поскольку поля «Одиночки» будут одинаковы для всех, кто его вызывает.

Как его использовать?

Если вам необходимо передавать определенный экземпляр из класса в класс, вы можете передавать его каждый раз через конструктор или использовать «Одиночку». Допустим, у вас есть класс Session , который содержит данные о текущей сессии. Поскольку сессия инициализируется только один раз, мы можем реализовать его так:

Class Session { private static $instance; public static function getInstance() { if(is_null(self::$instance)) { self::$instance = new self(); } return self::$instance; } private function __construct() { } private function __clone() { } // прочие методы сессии... ... ... } // get a session instance $session = Session::getInstance();

Теперь мы можем получить доступ к сессии из различных участков кода, даже из других классов. Метод getInstance всегда будет возвращать одну и ту же сессию.

Заключение

В этой статье мы рассмотрели только наиболее часто встречающиеся шаблоны из множества. Если вы хотите узнать больше о шаблонах проектирования, вы найдете достаточно информации на Википедии . Для более полной информации обратите внимание на знаменитую книгу «Приемы объектно-ориентированного проектирования» «Банды четырех».

И последнее: при использовании того или иного шаблона убедитесь, что вы решаете задачу правильным способом. Как уже упоминалось, при неправильном использовании шаблоны проектирования могут доставить больше проблем, чем решить. Но при правильном - их пользу нельзя переоценить.

При создании программных систем перед разработчиками часто встает проблема выбора тех или иных проектных решений. В этих случаях на помощь приходят паттерны. Дело в том, что почти наверняка подобные задачи уже решались ранее и уже существуют хорошо продуманные элегантные решения, составленные экспертами. Если эти решения описать и систематизировать в каталоги, то они станут доступными менее опытным разработчикам, которые после изучения смогут использовать их как шаблоны или образцы для решения задач подобного класса. Паттерны как раз описывают решения таких повторяющихся задач.

Концепция создания программного обеспечения с использованием паттернов, несомненно, очень важная, но относительно молодая, быть может, поэтому до сих пор нет четкого определения, что же такое паттерн. Об этом свидетельствуют непрекращающиеся дискуссии в популярной литературе и на соответствующих форумах в сети.

Например, следует ли считать алгоритмы и структуры данных паттернами? По этому вопросу существуют противоположные мнения. Согласно одному из них, алгоритмы являются вычислительными паттернами, а хорошо известная фундаментальная монография Дональда Кнута "Искусство программирования" по сути, представляет собой каталог таких паттернов. Согласно другому мнению, алгоритмы не являются паттернами, так как решаемые ими проблемы слишком малы (оперируют такими понятиями как вычислительная сложность и потребление ресурсов), а область решения хорошо очерчена. Паттерны же решают проблемы большего масштаба, при этом паттерн дает не конкретное решение, а некий путь к решению, причем, выбор правильного паттерна - задача нетривиальная, предполагающая от архитектора наличие интуиции, опыта, определенного творчества.

Немного истории

Впервые, в конце 1970-х годов Кристофером Александром был разработан каталог паттернов, предназначенных для проектирования зданий и городов . В конце 1980-х годов Кент Бек и Вард Каннингем попытались перенести идеи Александра в область разработки ПО, составив 5 небольших паттернов для проектирования пользовательских интерфейсов на языке Smalltalk. В 1989 Джеймс Коплиен в целях обучения С++ внутри компании AT&T составил каталог идиом С++ (разновидность паттернов, специфичных для языка программирования), а в 1991 на его основе вышла в свет книга "Advanced C++ Programming Styles and Idioms" (имеется русский перевод ).

Однако по настоящему популярным применение паттернов в индустрии разработки программного обеспечения стало после того, как в 1994 был опубликован каталог, включающий 23 паттерна объектно-ориентированного проектирования . Этот каталог настолько популярен, что часто упоминается как паттерны GoF ("Gang of Four" или "банда четырех" по числу авторов).

В настоящее время паттерны продолжают непрерывно развиваться. Появляются новые паттерны, категории и методы их описания.

Классификация паттернов

В силу популярности каталога GoF часто под паттернами проектирования подразумевают все виды паттернов программной индустрии, что является не совсем корректным. В области разработки программных систем существует множество паттернов, которые отличаются областью применения, масштабом, содержимым, стилем описания. Например, в зависимости от сферы применения существуют такие паттерны как паттерны анализа, проектирования, тестирования, документирования, организации процесса разработки, планирования проектов и другие.

В настоящее время наиболее популярными паттернами являются паттерны проектирования. Одной из распространенных классификаций таких паттернов является классификация по степени детализации и уровню абстракции рассматриваемых систем. Согласно , паттерны проектирования программных систем делятся на следующие категории:

  • Архитектурные паттерны
  • Паттерны проектирования
  • Идиомы

Архитектурные паттерны , являясь наиболее высокоуровневыми паттернами, описывают структурную схему программной системы в целом. В данной схеме указываются отдельные функциональные составляющие системы, называемые подсистемами, а также взаимоотношения между ними. Примером архитектурного паттерна является хорошо известная программная парадигма "модель-представление-контроллер" (model-view-controller - MVC).

В свою очередь, подсистемы могут состоять из архитектурных единиц уровнем ниже. Паттерны проектирования описывают схемы детализации программных подсистем и отношений между ними, при этом они не влияют на структуру программной системы в целом и сохраняют независимость от реализации языка программирования. Паттерны GoF относятся именно к этой категории. Согласно , под паттернами проектирования объектно-ориентированных систем понимается описание взаимодействия объектов и классов, адаптированных для решения общей задачи проектирования в конкретном контексте.

В русскоязычной литературе обычно встречаются несколько вариантов перевода оригинального названия design patterns - паттерны проектирования , шаблоны проектирования , образцы . Здесь в основном используется первый вариант, иногда второй.

Идиомы , являясь низкоуровневыми паттернами, имеют дело с вопросами реализации какой-либо проблемы с учетом особенностей данного языка программирования. При этом часто одни и те же идиомы для разных языков программирования выглядят по-разному или не имеют смысла вовсе. Например, в C++ для устранения возможных утечек памяти могут использоваться интеллектуальные указатели. Интеллектуальный указатель содержит указатель на участок динамически выделенной памяти, который будет автоматически освобожден при выходе из зоны видимости. В среде Java такой проблемы просто не существует, так как там используется автоматическая сборка мусора. Обычно, для использования идиом нужно глубоко знать особенности применяемого языка программирования.

Следует отметить, что в программной области существуют и другие виды паттернов, не относящиеся к проектированию вообще, например, паттерны анализа, тестирования, документирования и др.

Описание паттернов

Задача каждого паттерна - дать четкое описание проблемы и ее решения в соответствующей области. Для этого могут использоваться разные форматы описаний от художественно-описательного до строгого, академического . В общем случае описание паттерна всегда содержит следующие элементы:

  1. Название паттерна. Представляет собой уникальное смысловое имя, однозначно определяющее данную задачу или проблему и ее решение.
  2. Решаемая задача. Здесь дается понимание того, почему решаемая проблема действительно является таковой, четко описывает ее границы.
  3. Решение. Здесь указывается, как именно данное решение связано с проблемой, приводится пути ее решения.
  4. Результаты использования паттерна. Обычно приводятся достоинства, недостатки и компромиссы.

Результаты применения паттернов

  1. Они (паттерны) позволяют суммировать опыт экспертов и сделать его доступным рядовым разработчикам.
  2. Имена паттернов образуют своего рода словарь, который позволяет разработчикам лучше понимать друг друга.
  3. Если в документации системы указано, какие паттерны в ней используются, это позволяет читателю быстрее понять систему.
  4. Паттерны упрощают реструктуризацию системы независимо от того, использовались ли паттерны при ее проектировании.

Правильно выбранные паттерны проектирования позволяют сделать программную систему более гибкой, ее легче поддерживать и модифицировать, а код такой системы в большей степени соответствует концепции повторного использования.

Используемая литература

При подготовке материалов из раздела Design Patterns использовалась следующая литература:

  1. Alexander С., Ishikawa S., Silverstein M. A Pattern Language: Towns, Buildings, Construction. Oxford University Press, 1977.
  2. Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M. Pattern-Oriented Software Architecture, Volume 1, A System of Patterns. Wiley, 1996, 476 pages
  3. Александреску А. Современное проектирование на C++ (серия C++ in Depth). - М.: Издательский дом "Вильямс", 2008.-336с
  4. Влиссидес Дж. Применение шаблонов проектирования. Дополнительные штрихи. - М.: Издательский дом "Вильямс", 2003.-144с
  5. Гамма Э., Хелм Р., Джонсон Р., Влиссидес Дж. Приемы объектно-ориентированного проектирования. Паттерны проектирования. - СПб.: Питер, 2001.-368с
  6. Кериевски Дж. Рефакторинг с использованием шаблонов. - М.: Издательский дом "Вильямс", 2006.-400с
  7. Коплиен Дж. Программирование на C++. Классика CS. - СПб.: Питер, 2005.-479с
  8. Ларман К. Применение UML и шаблонов проектирования, 2-е издание. - М.: Издательский дом "Вильямс", 2004.-624с
  9. Эккель Б. Философия C++. Практическое программирование C++. Том 2. - СПб.: Питер, 2004.-608с

Приложения Laravel, нам неплохо было бы понять архитектуру каркаса приложения . Некоторые могут спросить: Зачем это нужно? Смысл забивать себе голову разной теоретической чепухой?
Постараюсь ответить на этот вопрос примером из жизни:

Представьте себе, что вы хотите иметь эксклюзивный автомобиль. Естественно он будет строиться на базе некоей серийной модели, но для того, чтобы его построить вам потребуется помощь людей, которые умеют это делать. Вы решаете обратиться к мастерам или даже к фирмам, у которых есть все необходимое: знания, опыт, оборудование и инструмент, но их услуги не дешевы, Ваш бюджет просто не выдержит таких расходов. Тогда вы решаете, что будете строить автомобиль самостоятельно. Отличное решение - правда, вы берете в руки инструмент, плюете на изучение теории, внедряете свои задумки и в итоге…

Я думаю, не стоит описывать, что у вас получится в итоге, ясно только одно - ничего хорошего.

Ну и более приближенный к теме Laravel 4 ответ: Понимание архитектуры приложения , знание основ паттернов (шаблонов) проектирования , помогут вам понять, почему следует использовать именно этот каркас web-приложения, оценить его слабые и сильные стороны. Так же вы получите ответ, почему так сильно изменился Laravel 4 по сравнению с Laravel 3.

Для тех, кто все же решил изучить теорию, прежде чем приступить к практике, советую: запаситесь терпением.

После прочтения статьи не останавливайтесь на достигнутом, в сети много ресурсов, где можно почерпнуть нужную информацию по паттернам. Поверьте, зная, что такое паттерны, их конкретные реализации и как их использовать, можно добиться намного большего, чем оставив эту тему за пределами багажа своих знаний…

Определения

  • Архитектура приложения - это логическая структура, описывающая отдельные компоненты, их свойства и связи в виде единой системы.
  • Паттерны - это описания схем детализации отдельных подсистем приложения и взаимосвязей между ними. При этом паттерны не являются частью программы, не влияют прямо на ее структуру и сохраняют полную независимость от языка программирования конкретной системы.
  • MVC - программная парадигма архитектурных паттернов : модель - представление - контроллер.

Паттерны это не так сложно как кажется

Если Вы спокойно и уверенно ориентируетесь в паттернах и парадигмах, то смело можете пропускать эту часть статьи. Но если, читая определения, Вы чувствуете, что это просто набор слов, то не поленитесь прочитать представленный ниже материал. Я надеюсь, он поможет вам разобраться в этой не очень простой для многих программистов теме и начать использовать паттерны в своей работе.

На самом деле паттерны не так сложны для понимания, как кажется на первый взгляд. Давайте проиллюстрируем их примерами, все сразу станет намного понятнее.

Итак, представьте, что вам необходимо разработать сложное приложение представлявшее каркас диалога и передачи данных между людьми, абстрактными Васей и Петей. Вначале мы рассмотрим простую программу того как Вася и Петя будут общаться между собой и производить обмен информацией:

  1. Вася и Петя встретились.
  2. Вася протянул Пете руку.
  3. Петя сказал «Здравствуй Вася» .
  4. Вася ответил «Здравствуй Петя» .
  5. Вася спросил «Ты принес мне диск с курсовой?» .
  6. Петя ответил «Да, принес» .
  7. Вася полез в карман и достал деньги.
  8. Вася отсчитал 100$.
  9. Вася передал деньги Пете.
  10. Петя принял деньги от Васи.
  11. Петя пересчитал деньги.
  12. Петя кивнул головой - подтверждая, что сумма соответствует цене за диск.
  13. Петя положил деньги в карман.
  14. Петя достал диск.
  15. Петя передал диск Васе.
  16. Вася принял диск от Пети.
  17. Вася положил диск в карман.

Теперь разобьём эту программу на отдельные части:

  1. Начало программы.
  2. Встреча.
  3. Обмен приветствиями.
  4. Проверка наличия «данных» .
  5. Передача данных «деньги» .
  6. Списание данных «деньги» .
  7. Проверка данных «деньги» .
  8. Запись данных «деньги» .
  9. Передача данных «диск» .
  10. Списание данных «диск» .
  11. Запись данных «диск» .
  12. Конец программы.

У нас получился алгоритм действий для встречи и обмена диска на деньги между двумя индивидуумами.

Теперь разбиваем алгоритм на составляющие так:

  1. Общение.
  2. Обмен данными.
  3. Проверка условий.
  4. Действия.

У нас как раз и получился набор паттернов (правда очень абстрактный). Зато этот архитектурный паттерн или программная парадигма описывает обмен данными практически любого вида и любой сложности. По сути это аналог всем известного MVC .

Если же мы решим разработать универсальную программу для взаимодействия двух человек, то нам будет недостаточно такого куцего описания. Точнее нам к архитектурному паттерну понадобиться добавить паттерны, которые расширят описание реализации взаимодействия всех частей архитектурного паттерна.

Давайте попробуем составить схему таких паттернов самостоятельно:

  1. Общение
    1. Установление контакта
    2. Передача запросов между пользователем и системой
  2. Обмен данными
    1. Передача данных запроса в направлении в систему
    2. Передача данных запроса в направлении из системы
    3. Передача команд на проверку условий
    4. Передача команд на передачу данных
  3. Проверка условий
    1. Проверка условий передачи данных
    2. Подтверждение проверки условий
  4. Действия
    1. Извлечение данных из хранилища «А»
    2. Передача данных в хранилище «А»

В итоге у нас получилась своя схема паттернов.

Теперь, если мы опишем, как конкретно взаимодействуют наши паттерны между собой - то получим рабочие паттерны. Причем паттерны будут достаточно универсальными, чтобы на их основе писать приложения не только для общения людей, но и для общения инопланетян.

Если на основе наших паттернов написать приложение - получим каркас приложения для реализации общения, причем этот каркас можно будет очень легко модифицировать, так как он имеет очень детальную, хорошо продуманную и описанную структуру. Так же на основании нашего каркаса любой разработчик сможет легко написать собственное приложение для общения людей или компьютеров, или даже инопланетян. Ведь ему не нужно будет вникать в тонкости реализации взаимодействия компонентов нашего каркаса, ему будет достаточно знать общую структуру паттернов - архитектуру каркаса приложения, для того, чтобы составить свои правила общения, обмена данными, проверки условий и действий...

Паттерны бывают разными

Давайте теперь немного углубим наши знания. Дело в том, что паттерны бывают не только архитектурными, на самом деле у паттернов есть несколько классификаций .

  • Классификация по масштабу
  • Классификация по стилю
  • Классификация по применению

Классификация по масштабу

Самая часто используемая классификация - это классификация по масштабу. Чаще всего она применяется для паттернов проектирования и делится на три слоя по детализации:

  • Архитектурные паттерны - наивысший слой детализации, используются для описания структуры программы в целом.
  • Паттерны проектирования - средний слой детализации, описывают компоненты отдельных архитектурных паттернов и реализацию их взаимодействия.
  • Идиомы - низший слой детализации, описывают реализацию отдельных решений проблем применительно к конкретному языку программирования. Следует учитывать, что зачастую идиомы для различных языков программирования имеют различную реализацию, или не имеют таковой вовсе. Примером могут служить указатели в памяти для реализации в Assembler , они имеют абсолютно другую реализацию в Си и не имеют реализации в С# , так как там проблема с утечкой памяти не существует ибо есть мусора ...

Классификация по стилю

  • Порождающие паттерны - предназначены для решения проблем создания новых объектов и связей.
  • Структурные паттерны - предназначены для компоновки системы, при этом могут использовать различные механизмы, такие как наследование , полиморфизм , композиция . Кстати, принципы классов построены как раз на структурных паттернах.
  • Паттерны поведения - предназначены для решения задач связи объектов и распределения задач между ними.

Классификация по применению

Программистам редко приходится сталкиваться с данным классом паттернов, но все же стоит о нем упомянуть, чтобы иметь хотя бы общее представление. Это самый высокоуровневый класс паттернов. В него входят целые классы паттернов. Например:

  • Паттерны тестирования
  • Паттерны документирования
  • Паттерны организации производственных процессов
  • Паттерны организации рабочих мест

И многие другие. Но я надеюсь их уже не нужно расписывать, вы вполне теперь способны продолжить этот список и без моих подсказок.

Заключение

Какие преимущества дают нам паттерны? Отвечу на этот вопрос, цитируя John Vlissides ( Влиссидес):

Паттерны суммируют опыт множества разработчиков и экспертов, делая его доступным рядовым разработчикам.
Именование паттернов позволяют создать своего рода словарь, с помощью которого разработчики могут понять друг друга намного лучше.
Если в документации к системе указано, на основе каких паттернов она построена, это позволяет быстрее понять структуру системы.

Правильно подобранные паттерны проектирования позволяют сделать программную систему более гибкой, ее легче поддерживать и модифицировать, а код такой системы в большей степени соответствует концепции повторного использования.

Для тех, кого заинтересовали паттерны, советую найти и почитать книги:

  • Э. Гамма, Р. Хелм, Р. Джонсон, Д. Влиссидес: Приемы ООП. проектирования .
  • Джон Влиссидес: шаблонов проектирования . Дополнительные штрихи.

Материал статьи для уровня Beginners. Здесь не будет Moose, только чистый Perl. Предполагается, что какое-то ООП в Perl уже знакомо

Паттерны это стандартные приемы, решающие небольшую конкретную задачу. Это не инструкция, как писать код, а схема или принцип организации кода, модулей и т. п. Уверена, что если вы их не знаете на уровне диаграмм UML, то встречали в коде. Этот небольшой обзор познакомит с самыми простыми, полезными и часто используемыми паттернами.

Singleton (Одиночка)

Порождающий паттерн. Используется в случае, когда в системе должен быть только один экземпляр какого-то класса. Например, подключение к базе, распарсенный файл конфигурации и т. д. Но при этом вы не хотите таскать с собой какие-то глобальные переменные. Невероятно удобен для отложенных инициализаций тех же конфигов.

Реализация

Пусть у нас будет какой-то абстрактный класс с именем MyClass .

Package MyClass; use strict; our $singleton = undef; sub new { my $class = shift; return $singleton if defined $singleton; my $self = {}; $singleton = bless($self, $class); $singleton->init(); return $singleton; } # other methods sub init { #... } 1;

$singleton->init(); - вот тут, к примеру, проводится какая-то инициализация (либо она может быть отложена до вызова конкретных функций).

Пример использования

use MyClass; use strict; sub f { print MyClass->new()->{name}, "\n"; } sub f2 { print MyClass->new()->{name}, "\n"; } my $obj = MyClass->new(); $obj->{name} = "Bob"; # это не ООП! f(); f2(); $obj->{name} = "Mike"; # и это тоже f(); f2();

На выходе

Bob Bob Mike Mike

В результате вызова функций f() и f2() мы получим один и тот же созданный объект, ссылка на который хранится у нас в $MyClass::singleton , с ней можно работать напрямую, но это моветон и делать так не надо (за исключением ситуаций, когда требуется высокая производительность, а использование аксессоров создаёт ощутимые накладные расходы).

Таким образом, можно в любом месте кода создавать объект через конструктор и не волноваться, что он каждый раз будет создаваться заново.

На CPAN, кстати, есть Class::Singleton , MooseX::Singleton , Apache::Singleton и еще куча других.

Abstract Factory (Абстрактная фабрика)

Порождающий паттерн. Берет на себя ответственность за создание объекта нужного класса. Мы просто обращаемся к ее конструктору, а какой нам вернуть объект, фабрика решает сама. Создаваемые объекты, конечно, должны быть из одного семейства и иметь идентичный интерфейс. То есть, они должны быть взаимозаменяемыми.

В качестве примеров использования: в номере 21 в статье паттерн использован для создания объекта-логгера в зависимости от способа вывода: либо stderr, либо file. В более бизнесовом мире встречаются разные способы доставки (там все одинаковое, но разные формочки, разные коэффициенты какие-нибудь), разные форматы прайсов от поставщиков (у кого-то Excel, у кого-то XML), разные способы отправки уведомлений (e-mail, SMS).

У меня будет пример очень абстрактный, но очень понятный. Допустим, у нас есть ферма с животными. Нам, с точки зрения логики, все равно, какое животное будет создано, мы только задаем в параметрах, сколько у него ног. (В реальности значение количества ног мы получаем из внешнего конфига, а не задаем в коде).

Пример использования

use AnimalFactory; my $animal_one = AnimalFactory->new(legs => 2); print ref $animal_one, "\n"; my $animal_two = AnimalFactory->new(legs => 4); print ref $animal_two, "\n"; $animal_one->walk(); $animal_two->walk();

На выходе

Chicken Cow

Реализация

package AnimalFactory; use Chicken; use Cow; sub new { my $class = shift; my $opt = {@_}; return Cow->new() if $opt->{legs} == 4; return Chicken->new() if $opt->{legs} == 2; } 1;

Тут важно понимать, что обращаясь к конструктору AnimalFactory, мы получаем объект класса вовсе не AnimalFactory, а того, который она решит создать.

Если нам понадобится класс Snake , то мы просто добавим логику его создания в AnimalFactory , как-нибудь так:

Return Snake->new() if $opt->{legs} == 0;

Если вдруг Cow нужно будет заменить на Horse , это нужно будет сделать только в одном месте - в AnimalFactory , не затрагивая других участков кода.

Абстрактную фабрику стоит использовать там, где класс объекта зависит от каких-нибудь внешних факторов: пользовательских настроек, версии браузера, ОС и т. п.

(В некоторых случаях не очень хорошо, что мы подгружаем все возможные классы сразу через use , это можно изменить: внести внутрь конструктора и подключать классы через require уже после анализа параметров и до создания конкретного объекта.)

Template Method (Шаблонный метод)

Паттерн поведения. Паттерн используется для определения основного алгоритма для всех подклассов. Берем алгоритм, делим его на много мелких этапов, пишем в базовом классе, а все подклассы реализуют различающиеся части.

Самый простой пример: импорт товаров от поставщика. Нужно распарсить файл, пройти по всем товарам от поставщика, если товар найден - обновить его, если не найден - создать, подсчитать конечную стоимость, записать операцию с товаром в журнал, проделать что-нибудь еще с чем-нибудь.

Использование

my $import = ImportFactory->new(type => "Bekka"); $import->do;

(Здесь я использую фабрику для создания нужного мне объекта по имени поставщика, от которого загружается файл.)

Но можно обойтись и без фабрики, а сделать вот так (хотя гибкость это явно снижает, но она и не всегда такая нужна):

My $type = "Bekka"; my $import = $type->new(); $import->do;

Реализация

Допустим, у меня тут два поставщика: Bekka

Package Bekka; use base "Import"; sub parse { # parse Excel } sub count_price { # price * 2 } 1;

который присылает файлы в Excel, и у которого цену из файла нужно увеличивать в два раза.

И Pukka , у которого файлы в XML, а цену нужно делить пополам:

Package Pukka; use base "Import"; sub parse { # parse XML } sub count_price { # price / 2 } 1;

Оба эти класса имеют родителя Import , который и описывает основной алгоритм загрузки файла (sub do). В нем определяются все используемые методы, но работающие по какому-то умолчанию. (У методов, конечно, еще есть какой-нибудь код, но здесь он не нужен, поэтому его не привожу.)

Package Import; ... sub do { my $self = shift; $self->parse(); while ($self->next) { if ($self->find) { $self->update; } else { $self->insert; } $self->count_price; $self->log; } $self->finish; } sub next; sub find; sub update; sub insert; sub count_price { my $self = shift; # use original price } 1;

Получается: фабрика создает нам объект нужного класса, основываясь на имени поставщика. Базовый объект для него описывает весь процесс импорта товара от любого поставщика. Объект конкретного класса переопределяет те методы, которые ему не подходят, на свою реализацию - в нашем случае методы count_price и parse .

Метод do из класса Import и есть наш шаблонный метод - он описывает шаблон поведения. И вовсе необязательно, что он должен его реализовывать. В реальности сложно найти задачи такого плана, которые могут быть удовлетворены поведением по умолчанию.

Удобно использовать констукцию can для методов, которые не обязательно должны быть в базовом классе, но могут быть в подклассах: $self->do_smth if $self->can("do_smth") , тогда метод будет вызваться только в том случае, если он реально определен. Это избавит от кучи пустого кода, а также позволяет писать довольно удобно хуки, типа:

$self->before_update() if $self->can("before_update"); $self->update(); $self->after_update() if $self->can("after_update");

Strategy (Стратегия)

Паттерн поведения. Другое название - Политика. Используется для взаимозаменяемости алгоритмов или их фрагментов. Например, когда у нас есть разные способы расчета скидки на заказ. (Пример высосан из пальца, и для таких случаев делать подобные схемы - роскошь. Но он прост и понятен.)

Использование

use DiscountFactory; use Order; my $order = Order->new(); $order->{summa} = 200; # так делать - не ООП! Это только для примера my $discounter = DiscountFactory->new(type => "Visa"); print $order->get_summa(discounter => $discounter), "\n"; $discounter = DiscountFactory->new(type => "yandex"); print $order->get_summa(discounter => $discounter), "\n";

На выходе

Реализация

Класс Заказ

Package Order; sub new { return bless {}, shift } sub get_summa { my $self = shift; my $opt = {@_}; my $summa = $opt->{discounter}->do(summa => $self->{ summa }); return $summa; } 1;

Фабрика DiscountFactory (ее кода здесь нет, там все как и в обычной фабрике) возвращает объекты класса либо DiscountVisa , либо DiscountYM:

Package DiscountVisa; sub new { return bless {}, shift } sub do { my $self = shift; my $opt = {@_}; # Здесь я позволила себе использовать # «магическое число» --- это только для наглядности # примера. Так делать плохо. return $opt->{summa} * (1 - 0.02); } package DiscountYM; sub new { return bless {}, shift } sub do { my $self = shift; my $opt = {@_}; return $opt->{summa} * (1 + 0.05); } 1;

В классе Order у нас есть метод get_summa , который возвращает конечную стоимость заказа, но он должен учитывать и скидку на заказ. А скидка на заказ определяется способом оплаты заказа.

my $discounter = DiscountFactory->new(type => "Visa") - создали наш объект-дискаунтер, который знает, как считать скидку при оплате картой Visa.

$order->get_summa(discounter => $discounter) - вызываем метод для получения итоговой стоимости заказа, передавая туда нашу «стратегию» расчета скидки.

my $summa = $opt->{discounter}->do(summa => $self->{ summa }); - в методе get_summa мы вызываем операцию применения скидки к нашей базовой стоимости заказа.

То есть, мы передаем стратегию расчета скидки для заказа в качестве параметра. Эту же стратегию мы можем в дальнейшем использовать и в других функциях, работающих со стоимостью заказа, заменять ее, не меняя остальной код.

На деле все очень просто, в следующей статье обязательно расскажу про другие очень используемые паттерны с чуть более сложной реализацией.

Перед началом статьи, я хочу предложить доклад своего товарища — Дениса Порпленко о паттернах проектирования в программировании:

Я хочу напомнить о том, что паттерны проектирования возникли как решение часто возникающих однотипных задач, собственно, в проектировании. Но основное свое развитие получили в программной разработке. И дальше буду продолжать повествование в контексте разработки программного обеспечения.

Тематика паттернов очень широка, паттерны проектирования можно разделить на такие типы, как шаблоны для программирования, шаблоны архитектуры системы и шаблоны хранения данных. Это самые популярные паттерны, есть и другие. Ниже я их все перечислю.

Многие компании используют в своей практике паттерны. Применение паттернов имеет свои плюсы и минусы.
Польза от применения шаблонов проектирования :
— основное преимущество использования шаблонов перед свободным проектированием состоит в том, что паттерн дает название проблеме и определяет способы решения многих проблем за счет готового набора абстракций
— облегчает коммуникацию между разработчиками системы
— использование шаблонов проектирования аналогично использованию готовых библиотек кода
— правильное использование шаблонов помогает разработчикам определить нужный вектор развития и уйти от многих проблем, которые могут возникнуть в процессе разработки.

Проблемы, которые порождают шаблоны проектирования :
— на мой взгляд, самая главная проблема использования шаблонов — потеря гибкости проектирования и разработки системы
— использование шаблонов усложняет систему
— слепое следование определенному шаблону и повсеместное его использование может породить кучу архитектурных и логических проблем

Основные шаблоны программирования

Фундаментальные

Шаблон делегирования (Delegation pattern) — Объект внешне выражает некоторое поведение, но в реальности передаёт ответственность за выполнение этого поведения связанному объекту.
Шаблон функционального дизайна (Functional design) — Гарантирует, что каждый модуль компьютерной программы имеет только одну обязанность и исполняет её с минимумом побочных эффектов на другие части программы.
Неизменяемый интерфейс (Immutable interface) — Создание неизменяемого объекта.
Интерфейс (Interface) — Общий метод для структурирования компьютерных программ для того, чтобы их было проще понять.
Интерфейс-маркер (Marker interface) — В качестве атрибута (как пометки объектной сущности) применяется наличие или отсутствие реализации интерфейса-маркера. В современных языках программирования вместо этого могут применяться атрибуты или аннотации.
Контейнер свойств (Property container) — Позволяет добавлять дополнительные свойства для класса в контейнер (внутри класса), вместо расширения класса новыми свойствами.
Событийный шаблон (Event channel) — Расширяет шаблон Publish/Subscribe, создавая централизованный канал для событий. Использует объект-представитель для подписки и объект-представитель для публикации события в канале. Представитель существует отдельно от реального издателя или подписчика. Подписчик может получать опубликованные события от более чем одного объекта, даже если он зарегистрирован только на одном канале.

Порождающие шаблоны

Порождающие шаблоны (Creational) — шаблоны проектирования, которые абстрагируют процесс инстанцирования. Они позволяют сделать систему независимой от способа создания, композиции и представления объектов. Шаблон, порождающий классы, использует наследование, чтобы изменять инстанцируемый класс, а шаблон, порождающий объекты, делегирует инстанцирование другому объекту.
Абстрактная фабрика (Abstract factory) — Класс, который представляет собой интерфейс для создания компонентов системы.
Строитель (Builder) — Класс, который представляет собой интерфейс для создания сложного объекта.
Фабричный метод (Factory method) — Определяет интерфейс для создания объекта, но оставляет подклассам решение о том, какой класс инстанцировать.
Отложенная инициализация (Lazy initialization) — Объект, инициализируемый во время первого обращения к нему.
Пул одиночек (Multiton) — Гарантирует, что класс имеет поименованные экземпляры объекта и обеспечивает глобальную точку доступа к ним.
Объектный пул (Object pool) — Класс, который представляет собой интерфейс для работы с набором инициализированных и готовых к использованию объектов.
Прототип (Prototype) — Определяет интерфейс создания объекта через клонирование другого объекта вместо создания через конструктор.
Получение ресурса есть инициализация (Resource acquisition is initialization (RAII)) — Получение некоторого ресурса совмещается с инициализацией, а освобождение - с уничтожением объекта.
Одиночка (Singleton) — Класс, который может иметь только один экземпляр.

Структурные шаблоны

Структурные шаблоны (Structural) определяют различные сложные структуры, которые изменяют интерфейс уже существующих объектов или его реализацию, позволяя облегчить разработку и оптимизировать программу.
Адаптер (Adapter / Wrapper) — Объект, обеспечивающий взаимодействие двух других объектов, один из которых использует, а другой предоставляет несовместимый с первым интерфейс.
Мост (Bridge) — Структура, позволяющая изменять интерфейс обращения и интерфейс реализации класса независимо.
Компоновщик (Composite) — Объект, который объединяет в себе объекты, подобные ему самому.
Декоратор или Обёртка (Decorator) или (Wrapper) — Класс, расширяющий функциональность другого класса без использования наследования.
Фасад (Facade) — Объект, который абстрагирует работу с несколькими классами, объединяя их в единое целое.
Единая точка входа (Front controller) — Обеспечивает унифицированный интерфейс для интерфейсов в подсистеме. Front Controller определяет высокоуровневый интерфейс, упрощающий использование подсистемы.
Приспособленец (Flyweight) — Это объект, представляющий себя как уникальный экземпляр в разных местах программы, но по факту не являющийся таковым.
Заместитель (Proxy) — Объект, который является посредником между двумя другими объектами, и который реализует/ограничивает доступ к объекту, к которому обращаются через него.

Поведенческие шаблоны

Поведенческие шаблоны (Behavioral) определяют взаимодействие между объектами, увеличивая таким образом его гибкость.
Цепочка обязанностей (Chain of responsibility) — Предназначен для организации в системе уровней ответственности.
Команда (Command) — Представляет действие. Объект команды заключает в себе само действие и его параметры.
Интерпретатор (Interpreter) — Решает часто встречающуюся, но подверженную изменениям, задачу.
Итератор (Iterator) — Представляет собой объект, позволяющий получить последовательный доступ к элементам объекта-агрегата без использования описаний каждого из объектов, входящих в состав агрегации.
Посредник (Mediator) — Обеспечивает взаимодействие множества объектов, формируя при этом слабую связанность и избавляя объекты от необходимости явно ссылаться друг на друга.
Хранитель (Memento) — Позволяет не нарушая инкапсуляцию зафиксировать и сохранить внутренние состояния объекта так, чтобы позднее восстановить его в этих состояниях.
Нулевой объект (Null object) — Предотвращает нулевые указатели, предоставляя объект «по умолчанию».
Наблюдатель (Observer) — Определяет зависимость типа «один ко многим» между объектами таким образом, что при изменении состояния одного объекта все зависящие от него оповещаются об этом событии.
Слуга (Servant) — Используется для обеспечения общей функциональности группе классов.
Спецификация (Specification) — Служит для связывания бизнес-логики.
Состояние (State) — Используется в тех случаях, когда во время выполнения программы объект должен менять своё поведение в зависимости от своего состояния.
Стратегия (Strategy) — Предназначен для определения семейства алгоритмов, инкапсуляции каждого из них и обеспечения их взаимозаменяемости.
Шаблонный метод (Template method) — Определяет основу алгоритма и позволяет наследникам переопределять некоторые шаги алгоритма, не изменяя его структуру в целом.
Посетитель (Visitor) — Описывает операцию, которая выполняется над объектами других классов. При изменении класса Visitor нет необходимости изменять обслуживаемые классы.
Простая политика — я знаю, что такой паттерн есть, но что он означает, пока не нашел. Если будет инфа — скиньте в комментариях.
Слушатель (Event listener) — аналогично
Одноразовый посетитель (Single-serving visitor) — Оптимизирует реализацию шаблона посетитель, который инициализируется, единожды используется, и затем удаляется.
Иерархический посетитель (Hierarchical visitor) — Предоставляет способ обхода всех вершин иерархической структуры данных (например, древовидной).

Шаблоны параллельного программирования

Используются для более эффективного написания многопоточных программ, и предоставляет готовые решения проблем синхронизации.
Активный объект (Active Object) — Служит для отделения потока выполнения метода от потока, в котором он был вызван. Использует шаблоны асинхронный вызов методов и планировщик.
Уклонитель (Balking) — Служит для выполнения действия над объектом только тогда, когда тот находится в корректном состоянии.
Привязка свойств (Binding properties) — Комбинирует несколько наблюдателей для обеспечения синхронизации свойств в различных объектах
Обмен сообщениями (Messaging design pattern (MDP)) — Позволяет компонентам и приложениям обмениваться информацией (сообщениями).
Блокировка с двойной проверкой (Double-checked locking) — Предназначен для уменьшения накладных расходов, связанных с получением блокировки.
Ассинхронные события (Event-based asynchronous) — Адресные проблемы с Асинхронным паттерном, которые возникают в программах с несколькими потоками.
Охраняемая приостановка (Guarded suspension) — Используется для блокировки выполнения действия над объектом только тогда, когда тот находится в корректном состоянии.
Полусинхронизация (Half-Sync/Half-Async) — пока нет данных про этот паттерн.
Лидеры (Leaders/followers) — пока нет данных про этот паттерн.
Замок (Lock) — Один поток блокирует ресурс для предотвращения доступа или изменения его другими потоками.
Монитор (Monitor object) — Объект, предназначенный для безопасного использования более чем одним потоком.
Реактор (Reactor) — Предназначен для синхронной передачи запросов сервису от одного или нескольких источников.
Блокировка чтение-запись (Read write lock) — Позволяет нескольким потокам одновременно считывать информацию из общего хранилища, но позволяя только одному потоку в текущий момент времени её изменять.
Планировщик (Scheduler) — Обеспечивает механизм реализации политики планирования, но при этом не зависящих ни от одной конкретной политики.
Пул потоков (Thread pool) — Предоставляет пул потоков для обработки заданий, представленных обычно в виде очереди.
Спецпотоковое хранилище (Thread-specific storage) — Служит для предоставления различных глобальных переменных для разных потоков.
Однопоточное выполнение (Single thread execution) — Препятствует конкурентному вызову метода, тем самым запрещая параллельное выполнение этого метода.
Кооперативный паттерн (Cooperative pattern) — Обеспечивает механизм безопасной остановки потоков исполнения, используя общий флаг для сигнализирования прекращения работы потоков.

Шаблоны архитектуры системы

Model-View-Controller (MVC) — Модель-представление-контроллер.
Model-View-Presenter
Model-View-View Model
Presentation-Abstraction-Control
Naked objects
Hierarchical Model–View–Controller

Enterprise шаблоны

Active Record - способ доступа к данным реляционных баз данных в объектно-ориентированном программировании.
Business Delegate
Composite Entity/Составная Сущность
Composite View
DAO (Data Access Object) Объект Доступа к Данным
Dispatcher View
Front Controller
Intercepting Filter
Registry
Service Activator
Service Locator/Локатор Службы
Service to Worker
Session Facade/Фасад Сессии
Transfer Object Assembler
Transfer Object/Объект Перемещения
Value List Handler/Обработчик Списка Значений
View Helper
Unit of Work

Другие типы шаблонов

Также на сегодняшний день существует ряд других шаблонов.
Хранилище (Repository)
Carrier Rider Mapper описывают предоставление доступа к хранимой информации.
Аналитические шаблоны описывают основной подход для составления требований для программного обеспечения (requirement analysis) до начала самого процесса программной разработки
Коммуникационные шаблоны описывают процесс общения между отдельными участниками/сотрудниками организации
Организационные шаблоны описывают организационную иерархию предприятия/фирмы
Антипаттерны (Anti-Design-Patterns) описывают, как не следует поступать при разработке программ, показывая характерные ошибки в дизайне и в реализации



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: