Общие сведения о дисциплине «электротехника. Электротехника — отрасль науки и техники

  • 9. Расчет цепей постоянного тока при последовательном и параллельном соединении пассивных приемников.
  • 10. Приборы магнитоэлектрической и электромагнитной схем. Магнитоэлектрическая система
  • Прибор магнитоэлектрической системы
  • Достоинства магнитоэлектрической системы
  • Недостатки магнитоэлектрической системы
  • Электромагнитная система
  • Прибор электромагнитной системы
  • Достоинства электромагнитной системы
  • Недостатки электромагнитной системы
  • 11. Электрические цепи переменного тока, принципы получения переменной эдс.
  • 12. Электрические измерения и приборы. Основные определения и термины. Методы измерений. Классификация средств измерений.
  • 13. Действующие и среднее значения токов и напряжений в цепях переменного тока.
  • 14. Цифро-аналоговые и аналогово-цифровые преобразователи.
  • 15. Законы Ома и Кирхгофа для мгновенных значений токов и напряжений в цепях переменного тока.
  • 16. Регистры, кольцевые счетчики. Счетчики с двоичным и недвоичным коэффициентами пересчета.
  • 17. Расчет цепей переменного тока методом векторных диаграмм.
  • 18. Последовательные цифровые устройства. Триггеры и их разновидности.
  • 19. Расчет последовательных цепей переменного тока методом векторных диаграмм.
  • 20. Комбинационные цифровые устройства. Мультиплексоры, демультиплексоры, дешифраторы, сумматоры.
  • 21. Расчет параллельных цепей переменного тока методом векторных диаграмм.
  • 22. Основные типы цифровых интегральных схем. Параметры цифровых ис.
  • 23. Комплексный метод расчета параметров электрических цепей переменного тока.
  • 24. Представление информации в цифровой форме. Составление логических функций и функциональных схем.
  • 25. Явление резонанса в цепях переменного тока.
  • 26. Транзисторные ключи на биполярных и полевых транзисторах. Аналоговые коммутаторы.
  • 27. Трехфазные цепи переменного тока. Соединение приемников звездой и треугольником. Основные определения
  • 2. Соединение в звезду. Схема, определения
  • 3. Соединение в треугольник. Схема, определения
  • 28. Импульсный режим работы электронных устройств. Генераторы импульса.
  • 29. Нелинейные элементы электрических цепей и их характеристики. Графический метод расчета нелинейных цепей постоянного тока.
  • 30. Генераторы гармонических колебаний.
  • 2. Генератор lc-типа
  • 31. Политический метод расчета нелинейных цепей.
  • 32. Линейные преобразователи электрических сигналов на основе операционных усилителей
  • 33. Магнитные цепи. Основные понятия и определения. Магнитный поток, индукция, напряженность. Магнитная проницаемость. Явление магнитного гистерезиса в веществе.
  • 34. Методы расчета транзисторных усилителей.
  • 35. Прямая и обратная задачи в расчетах магнитных цепей.
  • 36. Усилители на транзисторах. Стабилизация начальной рабочей точки.
  • 37. Уравнения Кирхгофа для магнитной цепи.
  • 38. Классификация, основные параметры и характеристики усилителей. Обратная связь в усилителях.
  • 39. Электромагнитные устройства. Принцип работы и основные аналитические соотношения для электромагнитов и электромагнитных реле.
  • 41. Устройство и принцип работы трансформатора, его векторная диаграмма
  • Устройство и принцип работы
  • 43. Режим холостого хода трансформатора и его работа под нагрузкой.
  • 45. Устройство и принцип действия генератора постоянного тока эдс и электромагнитный момент. Способы возбуждения генераторов постоянного тока.
  • 46. Операционные усилители, эквивалентная схема, основные характеристики и уравнения, интегральные микросхемы.
  • 47. Двигатели постоянного тока. Регулирование скорости двигателей постоянного тока.
  • 48. Основные свойтва, характеристики и типы тиринисторов. Динисторы и тринисторы.
  • 49. Устройство и принцип работы асинхронного двигателя. Его характеристики.
  • 50. Основные свойства, характеристики и типы полевых транзисторов.
  • 51. Пуск и реверсирование асинхронных двигателей. Регулирование частоты вращения.
  • 52. Устройство и принцип работы синхронного генератора. Его характеристики.
  • 54. Основные свойства, характеристики и типы полупроводниковых диодов. Расчет электронных схем с диодами.
  • 4.1.1. Выпрямление в диоде
  • 4.1.2. Характеристическое сопротивление
  • 4.1.4. Эквивалентная схема диода
  • 55. Работа синхронной машины в режиме двигателя. Рабочие характеристики синхронного двигателя.
  • 56.Краткие сведения о структуре полупроводников, электрические переходы в полупроводниках.
  • Свойства полупроводников.
  • Строение атомов полупроводников.
  • Электропроводность полупроводника.
  • Электронно-дырочная проводимость.
  • Электронная проводимость.
  • Дырочная проводимость.
  • 1. Основные понятия и определения электротехники. Топологические параметры.

    Электротехника - это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления электрической энергии.

    Электроника - это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребленияинформации.

    Электромагнитное поле - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами.

    Магнитное поле - это одна из форм электромагнитного поля. Оно создается движущимися электрическими зарядами и спиновыми магнитными моментами (момент количества движения микрочастиц) атомных носителей магнетизма. Взаимосвязь магнитного и электрического полей описывает уравнение Максвелла.

    Электрическое поле - это частная форма проявления электромагнитного поля. Оно создаётся электрическими зарядами или переменным магнитным полем.

    Магнитная цепь - это совокупность источников магнитного потока (постоянных магнитов, электромагнитов) и ферромагнитных или других тел и сред, через которые магнитный поток замыкается.

    Электрический ток - это направленное движение электрических зарядов в веществе или вакууме под воздействием электрического поля. Ток характеризуется силой, измеряемой в амперах (А). Для установившихся режимов различают два вида токов: постоянный и переменный. Постоянным называют ток, который может изменяться по величине, но не меняется по знаку сколь угодно долгое время. Переменным называют ток, который периодически изменяется как по величине, так и по знаку. Переменные токи подразделяются на синусоидальные и несинусоидальные.

    Гармонические колебания характеризуются изменением колеблющейся величины во времени по синусоидальному закону. По синусоидальному закону изменяется напряжение, ЭДС, магнитный поток. Синусоидально изменяющиеся величины изображают синусоидами, показывающими мгновенные их значения в любой момент времени, или вращающимися векторами.

    Скорость изменения переменного тока характеризуется его частотой, определяемой как число полных повторяющихся колебаний в единицу времени. Частота обозначается буквой / и измеряется в герцах (Гц). В России (как и во многих странах мира) частота тока в электрической сети 50 Гц соответствует 50 полным колебаниям (периодам) в секунду.

    Электродвижущая сила (ЭДС) - это сила, способная совершать работу по перемещению в электрической цепи электрических зарядов. ЭДС измеряется в вольтах (В) и обозначается латинской буквой Е.

    Электрическое напряжение (U) - это величина, численно равная работе по перемещению единицы электрического заряда между двумя произвольными точками электрической цепи. Напряжение, как и ЭДС, измеряется в вольтах (В). Если источник ЭДС подключить к замкнутой цепи, то она окажется под воздействием электромагнитного поля, а на её участках установятся разности электрических потенциалов или напряжения.

    Электрической цепью называется, в общем виде, совокупность определенным образом соединенных источников, преобразователей и потребителей электрической энергии, через которые может протекать электрический ток.

    Электрическое сопротивление - это способность элемента электрической цепи противодействовать в той или иной степени прохождению по нему электрического тока. Сопротивление, в общем случае, зависит от материала элемента, его размеров, температуры, частоты тока и измеряется в омах (Ом). Различают активное (омическое), реактивное и полное сопротивления. Они обозначаются чаще всего соответственно: R, X, Z.

    Активное сопротивление элемента - это сопротивление постоянному току.

    Индуктивное сопротивление - это сопротивление элемента, связанное с созданием вокруг него переменного или изменяющегося магнитного поля. Оно зависит от конфигурации и размеров элемента, его магнитных свойств и частоты тока. Индуктивность можно определить как меру магнитной инерции элемента в отношении электромагнитного поля. По смыслу индуктивность в электротехнике можно уподобить массе в механике. Например, чем больше индуктивность элемента, тем медленнее и тем большую энергию магнитного поля он запасает. Индуктивностью обладают в разной мере все элементы электрической цепи переменного тока: провода, шины, кабели и т.п., но в большей степени обмотки электрических машин и разного рода многовитковые катушки.

    Ёмкостное сопротивление - это сопротивление элемента, связанное с созданием внутри и вокруг него электрического поля. Оно зависит от материала элемента, его размеров, конфигурации и частоты тока.

    Фаза (от греч. - появление ) - в теории колебаний и волн переменного тока определяет состояние колебательного процесса в каждый момент времени.

    Однофазная цепь - это электрическая цепь переменного тока, в которой действует одно синусоидальное напряжение.

    Трёхфазная цепь - это электрическая цепь переменного тока, в которой действуют три синусоидальных напряжения сдвинутых по фазе обычно на 120°. Трёхфазные цепи экономичнее однофазных, дают существенно меньшие пульсации тока после выпрямления в постоянный ток, позволяют простыми средствами получать вращающееся магнитное поле в электродвигателях.

    Фазное напряжение источника (приёмника, сети) электрического тока - это разность потенциалов между выводом фазы и нейтральной точкой (проводом).

    Линейное напряжение источника (приёмника, сети) электрического тока - это разность потенциалов между выводами смежных фаз.

    Электромагнитная индукция есть возникновение ЭДС в проводнике, движущемся в магнитном поле или в замкнутом проводящем контуре вследствие движения контура в магнитном поле или в результате изменения самого поля.

    Взаимная индукция - это явление возбуждения ЭДС в одной электрической цепи при изменении электрического тока в другой цепи или при изменении взаиморасположения этих двух цепей. Самоиндукция - наведение ЭДС в электрической цепи при изменении протекающего в ней электрического тока.

    Магнитодвижущая сила (МДС) - ранее часто называлась намагничивающей силой - это величина, характеризующая магнитное действие электрического тока. МДС вводится при расчётах магнитных цепей по аналогии с ЭДС в электрических цепях.

    Электрическая энергия - это способность электромагнитного поля производить работу, преобразовываясь в другие виды энергии (механическую, тепловую, световую, химическую и др.).

    Электрическая мощность - это работа по перемещению электрических зарядов в единицу времени. Единица измерения мощности -ватт (Вт), киловатт (кВт), мегаватт (МВт). Различают активную и реактивную мощности.

    Активная мощность (Р) - это мощность, связанная с преобразованием электроэнергии в тепловую или механическую энергию.

    Диэлектрики - это вещества практически не проводящие электрический ток. Диэлектрики бывают твёрдые, жидкие и газообразные. Важнейшими характеристиками диэлектриков являются: диэлектрическая восприимчивость, диэлектрическая проницаемость и электрическая прочность.

    Диэлектрические потери есть мощность, выделяющаяся в диэлектрике при воздействии на него переменного электрического поля. Потери мощности в диэлектриках, работающих в переменном поле, оцениваются тангенсом угла диэлектрических потерь.

    Конденсатор электрический - это электрическая ёмкость, представляющая собой устройство из двух или более электродов (обкладок), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

    Электрическая изоляция - это устройство, выполненное из диэлектрических материалов и предназначенное для изоляции частей электрооборудования, находящихся под разными электрическими потенциалами с целью предотвращения коротких замыканий на землю, на корпус машин, на сооружения и конструкции. Наиболее распространенные материалы: фарфор, слюда, бумага, минеральное масло, эпоксидные смолы, стекло и другие.

    Изоляторы - из фарфора и стекла - одни из основных элементов для изоляции электроустановок и наиболее широко распространены. По своему назначению изоляторы подразделяются на опорные, проходные и линейные с нормированными соответствующими стандартами электрическими и механическими нагрузками. Опорные изоляторы предназначены для крепления и изоляции токоведущих частей. Проходные изоляторы служат для изоляции и соединения токоведущих частей, находящихся в закрытых помещениях, баках трансформаторов с открытыми токоведущими частями электроустановок и ЛЭП. Линейные изоляторы служат для изоляции и крепления проводов и грозозащитных тросов воздушных ЛЭП и подстанций.

    Изоляционное масло - это минеральное масло повышенной степени очистки, обладающее диэлектрическими свойствами.

    Пробивное напряжение - это напряжение, при котором происходит пробой (разрушение), т.е. наступает предел электрической прочности диэлектрика, а соответствующее значение напряженности электрического поля называется электрической прочностью диэлектрика.

    Электролиты - это растворимые химические вещества, в которых прохождение постоянного электрического тока осуществляется в результате движения ионов и сопровождается электролизом - распадом. Положительно заряженные ионы (катионы) движутся к катоду, отрицательно заряженные ионы (анионы) движутся к аноду.

    Короткое замыкание (КЗ) - это образование электрического контакта вследствие соединения проводников электрической цепи, не предусмотренного нормальными условиями работы. Это явление в электрической части ГЭС относится к числу самых опасных случаев.

    В сети переменного тока КЗ может быть между фазами (2-х и 3-х -фазное) или вследствие замыкания фазы на землю (однофазное). В сети постоянного тока КЗ бывает между полюсами или полюсом и землёй. КЗ возникает из-за нарушения изоляции частей электрической установки и обычно сопровождается значительным увеличением силы тока в цепи, что создаёт опасность повреждения оборудования. У потребителей электроэнергии в момент КЗ резко снижается электрическое напряжение. Для предотвращения опасных последствий КЗ применяют релейную защиту или устанавливают плавкие предохранители, которые обеспечивают быстрое отключение участка с КЗ.

    Релейная зашита - это комплекс электрических устройств, содержащих релейные элементы (реле), способные выявлять скачкообразное изменение контролируемых параметров (тока, напряжения, частоты тока, мощности и др.), и при достижении их недопустимых значений выдавать командные импульсы на отключение поврежденных участков электроустановки или на остановку агрегатов, машин, механизмов.

    Переходный процесс в электрических установках представляет собой переход от одного устачовившегося состояния к другому установившемуся состоянию в результате планового включения или отключения генераторов, а также при возникновении КЗ либо при внезапных изменениях нагрузки (мощности).

    Электрическая машина - это электромеханическое устройство, осуществляющее взаимное преобразование механической и электрической энергии (электрогенератор и электродвигатель).

    Электрической цепью называют совокупность тел и сред, образующих замкнутые пути для протекания электрического тока.

    Обычно физические объекты и среду, в которой протекает электрический ток, упрощают до условных элементов и связей между ними. Тогда определение цепи можно сформулировать как совокупность различных элементов, объединенных друг с другом соединениями или связями, по которым может протекать электрический ток.

    Элементами электрической цепи являются источники электрической энергии, активные и реактивные сопротивления.

    Связи в электрической цепи изображаются линиями и по смыслу соответствуют идеальным проводникам с нулевым сопротивлением.

    Связи цепи, наряду с элементами, определяют ее свойства и для одних и тех же элементов можно создать множество различных электрических цепей различающихся только связями.

    Связи элементов электрической цепи обладают топологическими свойствами, т.е. они не изменяются при любых преобразованиях, производимых без разрыва связей. Пример такого преобразования показан на рис. 1.

    Возможность взаимно однозначного преобразования электрической цепи позволяет использовать его до начала анализа для приведения схемы к наиболее простому и легко воспринимаемому виду. Так схема на рис. 1 б) выглядит значительно проще, чем схема а).

    Для описания топологических свойств электрической цепи используются топологические понятия, основными из которых являются узел, ветвь и контур.

    Узлом электрической цепи называют место (точку) соединения трех и более элементов.

    Графически такое соединение может изображаться различными способами.

    Обратите внимание на точку в месте пересечения линий схемы. Если она отсутствует, то это означает отсутствие соединения. Точка может не ставиться там, где при пересечении линия заканчивается (рисунок а)).

    Узел не обязательно имеет вид точки. На рис. 1 б) вся нижняя линия связи, соединяющая R 2 , E, R 5 и R 3 , является узлом, а на рис. 1 а) этот же узел представлен диагональной связью.

    Ветвью называют совокупность связанных элементов электрической цепи между двумя узлами.

    Ветвь по определению содержит элементы, поэтому вертикальные связи рис. 2 а) и б) ветвями не являются. Не является ветвью и диагональная связь рис. 1 а).

    Контуром (замкнутым контуром)называют совокупность ветвей, образующих путь, при перемещении вдоль которого мы можем вернуться в исходную точку, не проходя более одного раза по каждой ветви и по каждому узлу.

    По определению различные контуры электрической цепи должны отличаться друг от друга по крайней мере одной ветвью.

    Количество контуров, которые могут быть образованы для данной электрической цепи ограничено и определено.

    Электротехника включает в себя понятие использования электрических и магнитных сил для практических нужд. В основе науки лежит фундаментальный закон немецкого ученого Георга Ома о соотношении между электрической силой, напряжением и сопротивлением.

    Это гениальное открытие способствовало развитию электрификации. Простота преобразования электроэнергии в другой вид энергии и подачи ее на дальние расстояния определили её главенствующее место среди других видов энергии. С появлением электрификации производства произошел глобальный промышленный переворот, где ручной труд заменили машины. Эта индустрия производит высокотехнологичную продукцию, такую как линии передач, электрические провода, высоковольтную и низковольтную аппаратуру, турбины, трансформаторы, электродвигатели и другую наукоемкую продукции.

    Электротехника развивается по трем основным направлениям: энергетической (преобразование и получение энергии), технологической (получения и преобразования химического состава вещества) и информационной (передачи и сохранения информации.)

    Электротехнические устройства легко поддаются автоматизации за чет чего достигается экономия электроэнергии на предприятии. Например, очень большую экономию дает тиристорный регулятор , управляющий термическими процессами. Дальнейшее развитие отрасли привело к созданию систем автоматизации печи.

    Производство электричества стало самостоятельной отраслью в конце ХIХ века. С интенсивным промышленным развитием и ростом населенных пунктов потребность в электричестве возрастает, поэтому появляется необходимость в создании электрических станций для преобразования и подачи большого объема электроэнергии. С возникновением мощных энергетических объектов встает потребность технических решений: экономной передачи электроэнергии на большие расстояния. Проблема была решена с помощью многофазных систем и повышения напряжения линий передач. Электричество становятся товаром, и в целях экономической целесообразности производственные объекты начинают создавать в регионах, где есть дешевые топливные или энергетические ресурсы.

    Электротехника дала зарождение электронике и автоматике. Появление автоматизированных систем позволило повысить эффективность производства в таких областях, как транспорт, химическая промышленность, металлургия и др.

    Технологии микроэлектроники способствовали развитию новой индустрии - информатики. Ее назначение - производство программного обеспечения компьютерной и вычислительной техники. Появление микропроцессоров и микроЭВМ позволило обеспечить народное хозяйство всеми необходимыми информационными ресурсами.

    Электрические магнитные явления были известны еще в глубокой древности, но началом развития науки об этих явлениях (электротехника) принято считать 1600 год. В этом году английский физик У. Гильберт опубликовал результаты некоторых исследований электрических и магнитных явлений, ввел термин «электричество». Теорию атмосферного электричества (область статического электричества) в 1753 году опубликовал М.В. Ломоносов. В 1785 году Ш. Кулон установил закон взаимодействия электрических зарядов, в 1800 году А. Вольта изобрел гальванический элемент. Далее количество открытий новых законов, теорий, изобретений стало быстро возрастать. Всемирную известность получили такие ученые как В.В Петров, Х.Эрстед, А.Ампер, М. Фарадей, Э.Х. Ленц, Б.С. Якоби, Д. Максвелл, А.Г. Столетов, В.Н. Чикалев, П.Н. Яблочков, М.О. Доливо-Добровольский и многие другие. В настоящее время в области электротехники работают целые институты и научно-производственные объединения. Создана международная электротехническая комиссия, задачей которой является определение стандартов на получение, и использование электрической энергии в различных отраслях. Радиотехника и электроника и другие отрасли науки получили свое начало в науке «электротехника».

    Определения понятия «Наука электротехника»:

    Электротехника – это наука, которая занимается использованием свойств электромагнитного поля для получения, передачи и преобразования электрической энергии.

    Электротехника как наука изучает свойства получения, передачи и преобразования электрической энергии.

    Электротехника – это наука о процессах, связанных с практическим применением электрических и магнитных явлений

    Электротехника как наука является областью знаний, в которой рассматриваются электрические и магнитные явления и их практическое использование

    Электротехника как наука является базовой дисциплиной для изучения специальных дисциплин, таких как радиотехника, радиоцепи и сигналы, источники вторичного электропитания и другие.

    Энергия – это количественная мера движения и взаимодействия всех форм материи .

    Для любого вида энергии можно назвать материальный объект, который является ее носителем. Носителем электрической энергии является электромагнитное поле.

    Электрическая энергия нашла широкое применение благодаря своим свойствам:

      универсальность, т.е легко преобразуется в другие неэлектрические виды энергии и обратно;

      передается на большие расстояния с небольшими потерями;

      легко дробится и распределяется по потребителям различной мощности

      легко регулируется и контролируется с помощью различных приборов.

    Применяется электрическая энергия во всех без исключения отраслях промышленности и сельского хозяйства, в науке, в медицине, в отраслях услуг и сервиса, ну и конечно, в быту.

    Радиотехника как наука решает задачи применения электромагнитного поля и электрической энергии для передачи информации без проводов.

    ОСНОВНЫЕ ЗАКОНЫ ЭЛЕКТРОТЕХНИКИ

    Тема1.1

    Начальные сведения об электрическом поле, проводники, полупроводники,

    Электротехника - это наука о процессах, связанных с практическим применением электрических и магнитных явлений. Так же называют отрасль техники, которая применяет их в промышленности, медицине, военном деле и т. д.

    Большое значение электротехники во всех областях деятельности человека объясняется преимуществами электрической энергии перед другими видами энергии, а именно:

    ♦ электрическую энергию легко преобразовать в другие виды энергии (механическую, тепловую, световую, химическую и др.), и наоборот, в электрическую энергию легко преобразуются любые другие виды энергии;

    ♦ электрическую энергию можно передавать практически на любые расстояния. Это дает возможность строить электростанции в местах, где имеются природные энергетические ресурсы, и передавать электрическую энергию в места, где расположены источники промышленного сырья, но нет местной энергетической базы:

    электрическую энергию удобно дробить на любые части в электрических цепях (мощность приемников электроэнергии может быть от долей ватта до тысяч киловатт);

    ♦ процессы получения, передачи и потребления электроэнергии легко поддаются автоматизации;

    ♦ процессы, в которых используется электрическая энергия, допускают простое управление (нажатие кнопки, выключателя и т. д.).

    Особо следует отметить существенное удобство применения электрической энергии при автоматизации производственных процессов, благодаря точности и чувствительности электрических методов контроля и управления. Использование электрической энергии позволило повысить производительность труда во всех областях деятельности человека, автоматизировать почти все технологические процессы в промышленности, на транспорте, в сельском хозяйстве и в быту, а также создать комфорт в производственных и жилых помещениях. Кроме того, электрическую энергию широко используют в технологических установках для нагрева изделий, плавления металлов, сварки, электролиза, получения плазмы, получения новых материалов с помощью электрохимии, очистки материалов и газов и т. д.

    В настоящее время электрическая энергия является практически единственным видом энергии для искусственного освещения. Можно сказать, что без электрической энергии невозможна нормальная жизнь современного общества.

    Единственным недостатком электрической энергии является невозможность запасать ее в больших количествах и сохранять эти запасы в течение длительного времени. Запасы электрической энергии в аккумуляторах, гальванических элементах и кон-

    денсаторах достаточны лишь для работы сравнительно маломощных устройств, причем сроки ее сохранения ограничены. Поэтому электрическая энергия должна быть произведена тогда, когда ее требует потребитель, и в том количестве, в котором она ему необходима.

    Непрерывное расширение области применения электрической энергии влечет за собой глубокое внедрение электротехники во все отрасли промышленности, сельского хозяйства и быта, а это требует дальнейшего подъема электровооруженности труда, широкой автоматизации производственных процессов и использования автоматизированных систем управления.

    Эти обстоятельства требуют обеспечения такой профессиональной подготовки специалистов, при которой они будут располагать системой знаний, умений и навыков в актуальных для них областях электротехники.

    Содержание:

    Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

    Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

    Понятия и свойства электрического тока

    Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

    Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

    Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

    • Нагревание проводника, по которому протекает ток.
    • Изменение химического состава проводника под действием тока.
    • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

    Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором - периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

    Основные токовые величины

    При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется , измеряемой в амперах .

    Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как . Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица - вольт . Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

    Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление , измеряемое в омах . Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока - 1 А.

    Закон Ома

    Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и . Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

    Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

    1. Сила тока: I = U/R (ампер).
    2. Напряжение: U = I x R (вольт).
    3. Сопротивление: R = U/I (ом).

    Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким - на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов - напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

    Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

    Энергия и мощность в электротехнике

    В электротехнике существуют еще и такие понятия, как энергия и мощность , связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

    Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит . Он означает перемещение одним вольтом через сопротивление в один ом.

    Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

    Электрика для чайников: основы электроники



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: