История создания процессоров. История микропроцессоров

Многие при покупке flash-накопителя задаются вопросом: «как правильно выбрать флешку». Конечно, флешку выбрать не так уж и трудно, если точно знать для каких целей она приобретается. В этой статье я постараюсь дать полный ответ на поставленный вопрос. Я решил писать только о том, на что надо смотреть при покупке.

Flash-накопитель (USB-накопитель) – это накопитель, предназначенный для хранения и переноса информации. Работает флешка очень просто без батареек. Всего лишь нужно ее подключить к USB порту Вашего ПК.

1. Интерфейс флешки

На данный момент существует 2 интерфейса это: USB 2.0 и USB 3.0. Если Вы решили купить флешку, то я рекомендую брать флешку с интерфейсом USB 3.0. Данный интерфейс был сделан недавно, его главной особенностью является высокая скорость передачи данных. О скоростях поговорим чуть ниже.


Это один из главных параметров, на который нужно смотреть в первую очередь. Сейчас продаются флешки от 1 Гб до 256 Гб. Стоимость флеш-накопителя напрямую будет зависеть от объема памяти. Тут нужно сразу определиться для каких целей покупается флешка. Если вы собираетесь на ней хранить текстовые документы, то вполне хватит и 1 Гб. Для скачивания и переноски фильмов, музыки, фото и т.д. нужно брать чем больше, тем лучше. На сегодняшний день самыми ходовыми являются флешки объемом от 8Гб до 16 Гб.

3. Материал корпуса



Корпус может быть сделан из пластика, стекла, дерева, метала и т.д. В основном флешки делают из пластика. Тут я советовать нечего не могу, все зависит от предпочтений покупателя.

4. Скорость передачи данных

Ранее я писал, что существует два стандарта USB 2.0 и USB 3.0. Сейчас объясню, чем они отличаются. Стандарт USB 2.0 имеет скорость чтения до 18 Мбит/с, а записи до 10 Мбит/с. Стандарт USB 3.0 имеет скорость чтения 20-70 Мбит/с, а записи 15-70 Мбит/с. Тут, я думаю, объяснять ничего не надо.





Сейчас в магазинах можно найти флешки разных форм и размеров. Они могут быть в виде украшений, причудливых животных и т.д. Тут я бы посоветовал брать флешки, у которых есть защитный колпачок.

6. Защита паролем

Есть флешки, которые имеют функцию защиты паролем. Такая защита осуществляется при помощи программы, которая находится в самой флешке. Пароль можно ставить как на всю флешку, так и на часть данных в ней. Такая флешка в первую очередь будет полезна людям, которые переносят в ней корпоративную информацию. Как утверждают производители, потеряв ее можно не беспокоиться о своих данных. Не все так просто. Если такая флешка попадет в руки понимающего человека, то ее взлом это всего лишь дело времени.



Такие флешки внешне очень красивы, но я бы не рекомендовал их покупать. Потому что они очень хрупкие и часто ломаются пополам. Но если Вы аккуратный человек, то смело берите.

Вывод

Нюансов, как Вы заметили, много. И это только вершина айсберга. На мой взгляд, самые главные параметры при выборе: стандарт флешки, объем и скорость записи и чтения. А все остальное: дизайн, материал, опции – это всего лишь личный выбор каждого.

Добрый день, мои дорогие друзья. В сегодняшней статье я хочу поговорить о том, как правильно выбрать коврик для мыши. При покупке коврика многие не придают этому никакого значения. Но как оказалось, этому моменту нужно уделять особое внимание, т.к. коврик определяют один из показателей комфорта во время работы за ПК. Для заядлого геймера выбор коврика это вообще отдельная история. Рассмотрим, какие варианты ковриков для мыши придуманы на сегодняшний день.

Варианты ковриков

1. Алюминиевые
2. Стеклянные
3. Пластиковые
4. Прорезиненные
5. Двухсторонние
6. Гелиевые

А теперь я бы хотел поговорить о каждом виде поподробнее.

1. Сначала хочу рассмотреть сразу три варианта: пластиковые, алюминиевые и стеклянные. Такие коврики пользуются большой популярностью у геймеров. Например, пластиковые коврики легче найти в продаже. По таким коврикам мышь скользит быстро и точно. И самое главное такие коврики подходят как для лазерных, так и для оптических мышей. Алюминиевые и стеклянные коврики найти будет немного сложнее. Да и стоить они будут немало. Правда есть за что – служить они будут очень долго. Коврики данных видов имеют маленькие недостатки. Многие говорят, что при работе они шуршат и наощупь немного прохладные, что может вызывать у некоторых пользователей дискомфорт.


2. Прорезиненные (тряпичные) коврики имеют мягкое скольжение, но при этом точность движений у них хуже. Для обычных пользователей такой коврик будет в самый раз. Да и стоят они намного дешевле предыдущих.


3. Двухсторонние коврики, на мой взгляд, очень интересная разновидность ковриков для мыши. Как понятно из названия у таких ковриков две стороны. Как правило, одна сторона является скоростной, а другая высокоточной. Бывает так, что каждая сторона рассчитана на определенную игру.


4. Гелиевые коврики имеют силиконовую подушку. Она якобы поддерживает руку и снимает с нее напряжение. Лично для меня они оказались самыми неудобными. По назначению они рассчитаны для офисных работников, поскольку те целыми днями сидят за компьютером. Для обычных пользователей и геймеров такие коврики не подойдут. По поверхности таких ковриков мышь скользит очень плохо, да и точность у них не самая хорошая.

Размеры ковриков

Существует три вида ковриков: большие, средние и маленькие. Тут все в первую очередь зависит от вкуса пользователя. Но как принято считать большие коврики хорошо подходят для игр. Маленькие и средние берут в основном для работы.

Дизайн ковриков

В этом плане, нет ни каких ограничений. Все зависит от того что Вы хотите видеть на своем коврике. Благо сейчас на ковриках что только не рисуют. Наиболее популярными являются логотипы компьютерных игр, таких как дота, варкрафт, линейка и т.д. Но если случилось, что Вы не смогли найти коврик с нужным Вам рисунком, не стоит огорчаться. Сейчас можно заказать печать на коврик. Но у таких ковриков есть минус: при нанесении печати на поверхность коврика его свойства ухудшаются. Дизайн в обмен на качество.

На этом я хочу закончить статью. От себя желаю сделать Вам правильный выбор и быть им довольным.
У кого нет мышки или хочет её заменить на другую советую посмотреть статью: .

Моноблоки компании Microsoft пополнились новой моделью моноблока под названием Surface Studio. Свою новинку Microsoft представил совсем недавно на выставке в Нью-Йорке.


На заметку! Я пару недель назад писал статью, где рассматривал моноблок Surface. Этот моноблок был представлен ранее. Для просмотра статьи кликайте по .

Дизайн

Компания Microsoft свою новинку называет самым тонким в мире моноблоком. При весе в 9,56 кг толщина дисплея составляет всего лишь 12,5 мм, остальные габариты 637,35х438,9 мм. Размеры дисплея составляют 28 дюймов с разрешением больше чем 4К (4500х3000 пикселей), соотношение сторон 3:2.


На заметку! Разрешение дисплея 4500х3000 пикселей соответствует 13,5 млн пикселей. Это на 63% больше, чем у разрешения 4К.

Сам дисплей моноблока сенсорный, заключенный в алюминиевый корпус. На таком дисплее очень удобно рисовать стилусом, что в итоге открывает новые возможности использования моноблоком. По моему мнению эта модель моноблока будет по нраву творческим людям (фотографы, дизайнеры и т. д.).


На заметку! Для людей творческих профессий я советую посмотреть статью, где я рассматривал моноблоки подобного функционала. Кликаем по выделенному: .

Ко всему выше написанному я бы добавил, что главной фишкой моноблока будет его возможность мгновенно превращаться в планшет с огромной рабочей поверхностью.


На заметку! Кстати, у компании Microsoft есть еще один удивительный моноблок. Чтобы узнать о нем, переходите по .

Технические характеристики

Характеристики я представлю в виде фотографии.


Из периферии отмечу следующее: 4 порта USB, разъем Mini-Display Port, сетевой порт Ethernet, card-reader, аудио гнездо 3,5 мм, веб-камера с 1080р, 2 микрофона, аудиосистема 2.1 Dolby Audio Premium, Wi-Fi и Bluetooth 4.0. Так же моноблок поддерживает беспроводные контроллеры Xbox.





Цена

При покупке моноблока на нем будет установлена ОС Windows 10 Creators Update. Данная система должна выйти весной 2017 года. В данной операционной системе будет обновленный Paint, Office и т. д. Цена на моноблок будет составлять от 3000 долларов.
Дорогие друзья, пишите в комментариях, что вы думаете об этом моноблоке, задавайте интересующие вопросы. Буду рад пообщаться!

Компания OCZ продемонстрировала новые SSD-накопители VX 500. Данные накопители будут оснащаться интерфейсом Serial ATA 3.0 и сделаны они в 2.5-дюймовом форм-факторе.


На заметку! Кому интересно, как работает SSD-диски и сколько они живут, можно прочитать в ранее мною написанной статье: .
Новинки выполнены по 15-нанометровой технологии и будут оснащаться микрочипами флеш-памяти Tochiba MLC NAND. Контроллер в SSD-накопителях будет использоваться Tochiba TC 35 8790.
Модельный ряд накопителей VX 500 будет состоять из 128 Гб, 256 Гб, 512 Гб и 1 Тб. По заявлению производителя последовательна скорость чтения будет составлять 550 Мб/с (это у всех накопителей этой серии), а вот скорость записи составит от 485 Мб/с до 512 Мб/с.


Количество операций ввода/вывода в секунду (IOPS) с блоками данных размером 4 кбайта может достигать 92000 при чтении, а при записи 65000 (это все при произвольном).
Толщина накопителей OCZ VX 500 будет составлять 7 мм. Это позволит использовать их в ультрабуках.




Цены новинок будут следующими: 128 Гб — 64 доллара, 256 Гб — 93 доллара, 512 Гб — 153 доллара, 1 Тб — 337 долларов. Я думаю, в России они будут стоить дороже.

Компания Lenovo на выставке Gamescom 2016 представила свой новый игровой моноблок IdeaCentre Y910.


На заметку! Ранее я писал статью, где уже рассматривал игровые моноблоки разных производителей. Данную статью можно посмотреть, кликнув по этой .


Новинка от Lenovo получила безрамочный дисплей размером 27 дюймов. Разрешение дисплея составляет 2560х1440 пикселей (это формат QHD), частота обновлений равна 144 Гц, а время отклика 5 мс.


У моноблока будет несколько конфигураций. В максимальной конфигурации предусмотрен процессор 6 поколения Intel Core i7, объем жесткого диска до 2 Тб или объемом 256 Гб. Объем оперативной памяти равен 32 Гб DDR4. За графику будет отвечать видеокарта NVIDIA GeForce GTX 1070 либо GeForce GTX 1080 с архитектурой Pascal. Благодаря такой видеокарте к моноблоку можно будет подключить шлем виртуальной реальности.
Из периферии моноблока я бы выделил аудиосистему Harmon Kardon с 5-ваттными динамиками, модуль Killer DoubleShot Pro Wi-Fi, веб-камеру, USB порты 2.0 и 3.0, разъемы HDMI.


В базовом варианте моноблок IdeaCentre Y910 появиться в продаже в сентябре 2016 года по цене от 1800 евро. А вот моноблок с версией «VR-ready» появится в октябре по цене от 2200 евро. Известно, что в этой версии будет стоять видеокарта GeForce GTX 1070.

Компания MediaTek решила модернизировать свой мобильный процессор Helio X30. Так что теперь разработчики из MediaTek проектируют новый мобильный процессор под названием Helio X35.


Я бы хотел вкратце рассказать о Helio X30. Данный процессор имеет 10 ядер, которые объединены в 3 кластера. У Helio X30 есть 3 вариации. Первый - самый мощный состоит из ядер Cortex-A73 с частотой до 2,8 ГГц. Так же есть блоки с ядрами Cortex-A53 с частотой до 2,2 ГГц и Cortex-A35 с частотой 2,0 ГГц.


Новый процессор Helio X35 тоже имеет 10 ядер и создается он по 10-нанометровой технологии. Тактовая частота в этом процессоре будет намного выше, чем у предшественника и составляет от 3,0 Гц. Новинка позволит задействовать до 8 Гб LPDDR4 оперативной памяти. За графику в процессоре скорее всего будет отвечать контроллер Power VR 7XT.
Саму станцию можно увидеть на фотографиях в статье. В них мы можем наблюдать отсеки для накопителей. Один отсек с разъемом 3,5 дюймов, а другой с разъемом 2,5 дюймов. Таким образом к новой станции можно будет подключить как твердотельный диск (SSD), так и жесткий диск (HDD).


Габариты станции Drive Dock составляют 160х150х85мм, а вес ни много ни мало 970 граммов.
У многих, наверное, возникает вопрос, как станция Drive Dock подключается к компьютеру. Отвечаю: это происходит через USB порт 3.1 Gen 1. По заявлению производителя скорость последовательного чтения будет составлять 434 Мб/сек, а в режиме записи (последовательного) 406 Мб/с. Новинка будет совместима с Windows и Mac OS.


Данное устройство будет очень полезным для людей, которые работают с фото и видео материалами на профессиональном уровне. Так же Drive Dock можно использовать для резервных копий файлов.
Цена на новое устройство будет приемлемой — она составляет 90 долларов.

На заметку! Ранее Рендучинтала работал в компании Qualcomm. А с ноября 2015 года он перешел в конкурирующую компанию Intel.


В своем интервью Рендучинтала не стал говорить о мобильных процессорах, а лишь сказал следующее, цитирую: «Я предпочитаю меньше говорить и больше делать».
Таким образом, топ-менеджер Intel своим интервью внес отличную интригу. Нам остается ждать новых анонсов в будущем.

Процессоры на персональные компьютеры получились свое распространение в семидесятых годах прошлого столетия. Они выпускались большим количеством производителей. Практически каждой компании в то время, как собственно говоря и сейчас, хотелось использовать для их производства только самые новые технологии. Однако не у всех компаний получилось получить свое развитие настолько же сильно, как у Intel и AMD. Одни производители полностью пропали с рынка, другие же перешли в другую сферу деятельности. Однако следует рассказать обо всем поэтапно.

Как началось создание процессора

Впервые мир услышал о процессорах в пятидесятых годах прошлого столетия. Они функционировали на механическом реле. Впоследствии стали появляться модели, которые работали при помощи электронных ламп и транзисторов. В те времена компьютерные устройства, на которые они устанавливались, были похожи на сложное и очень крупногабаритное оборудование. Их стоимость была очень высокой.

Все компоненты процессоров отвечали за процесс вычисления. Нужно было разобраться с тем, каким образом, их можно было соединить в единую микросхему. Данная задумка воплотилась в жизнь практически сразу после появления схем полупроводникового типа. В те времена разработчики процессоров даже предположить не могли, что данные схемы окажутся полезными в их деле. Именно по этой причине еще несколько лет они разрабатывали процессоры на нескольких микросхемах.

В конце шестидесятых годов компания Busicom начала разработку своего нового настольного калькулятора. Ей потребовалось 12 микросхем и она заказала их у компании Intel. В то время у разработчиков данной компании появились идеи соединения нескольких микросхем в одно целое. Данная идея пришлась по душе руководителю фирмы. Ее преимущество заключалось в том, что при этом была возможность значительно сэкономить. Ведь не нужно было производить сразу несколько микросхем. Кроме того благодаря расположению элементов процессора на одной микросхеме можно было создать устройство, которое подходило бы для использования на самых разных видах оборудования, применяемых для совершения вычислительных процессов.

В итоге проведенной специалистами корпорации работы появился первый в мире микропроцессор под названием Intel 4004. У него была способность совершать сразу шесть десятков тысяч операций всего за одну секунду. Он даже обрабатывал двоичные числа. Однако данный вид процессора не было возможности использовать для компьютеров, потому что для него еще не было создано таких устройств.

Самый первый персональный компьютер

Первым компьютер был создан студентом из Америки Джонатаном Титусом. В журнале «Электроника» он получил название Марк 2. В нем кроме всего прочего было дано описание данного устройства. Данное изобретение не помогло студенту заработать большие деньги. Изначально Титус планировал зарабатывать при помощи своего изобретения. Он планировал распространять за определенную стоимость печатные платы для создания собственных компьютеров. Потребителям приходилось остальные детали приобретать в магазинах. Конечно же у него не получилось заработать много, но он внес большой вклад в развитие компьютерной техники.

История развития процессоров Intel

Первым процессором компании Intel был 4004. Позже данный разработчик представил пользователям модель 8008. Она отличалась от предыдущей модели тем, что частота работы данного процессора составляла от 600 до 800 килогерц. В нем было более трех тысяч транзисторов. Его активно использовали на всевозможных вычислительных машинах.

В то же самое время в мире стали появляться первые персональные компьютерные устройства и компания Intel приняла решение осуществлять производство процессоров, подходящих для них. Спустя короткий срок времени компания разработала процессор 8080, который в десятки раз был более производительным, чем его предшественник.

Стоимость данной модели процессора была очень высокой по тем меркам. Однако производители полагали, что стоимость является совершенно оправданной для процессора, который обладает высоким уровнем производительности и способен отлично вписаться в любое компьютерное устройство. Он пользовался огромным спросом. Именно благодаря этому доходы компании только росли.

Спустя несколько лет на свет появился компьютер Altair – 8800. Его производителем стала компания MITS. Данная модель персонального компьютерного устройства осуществляла свою деятельность на процессоре от компании Intel модели 8800. Именно благодаря нему многочисленные компании стали осуществлять производство собственных микропроцессоров.

В то же самое время в СССР

В СССР стремительно развивалось производство различных видов вычислительных механизмов. Самый пик развития ЭВМ пришелся на семидесятые годы прошлого столетия. Они могли по своему уровню производительности вполне сравниться со своими зарубежными аналогами.

В 1970 году появился указ от отечественного руководства о том, что были разработаны стандарты совместимости программ и аппаратуры ЭВМ. В это время образовалась новая концепция вычислительной техники. В ее основу легли разработки IBM. Отечественные специалисты использовали технологию IBM 360.

Отечественные технологии, которые были разработаны в советские времена, потеряли свою актуальность. Вместо них стали использовать технологии импортного происхождения. Постепенно отечественная электронная отрасль стала значительно отставать от той, которая существовала на Западе. Все компьютерные устройства, которые были разработаны после восьмидесятых годов прошлого столетия осуществляли свою деятельность при помощи процессоров Zilog или Intel. Россия стала отставать по своим технологиям от Америки почти на десятилетний период.

Эволюция процессоров

В середине семидесятых годов прошлого столетия компания Motorola представила суд пользователе свой первый процессор, который получил название MC6800. Он обладал высоким уровнем производительности. У него была возможность работать с шестнадцати битными числами. Его стоимость составляла столько же, что у процессора Intel 8080. Его потребители не очень то стремились покупать. Именно по этой причине он так и не стал использоваться для персональных компьютеров. Компании пришлось расстаться с четырьмя тысячами сотрудников из-за финансовых трудностей.

В 1975 году бывшими сотрудниками Motorola была создана новая компания под названием MOS Technology. Они разработали процессор MOS Technology 6501. Он по своим характеристикам напоминал разработку Motorola, которая обвинила компанию в плагиате. Позже сотрудники MOS постарались кардинально переделать свое детище и выпустили чип 6502. Его стоимость была гораздо приемлемей, и он начал пользоваться огромным спросом. Его даже использовали для компьютерной техники Apple. Он имел принципиальное отличие от своего предшественника. У него уровень частоты работы был гораздо выше.

По пути уволенных сотрудников Motorola пошли и те, которые потеряли свое место в компании Intel. Они тоже создали компанию и запустили в производство свой процессор Zilog Z80. Он обладал не сильными отличиями от продукта Intel 8080. Он обладал единственной линией питания, и у него была приемлемая стоимость. Он мог функционировать с такими же программами. К тому же производительность данного устройства можно было сделать выше, и при этом не нужно было влияние оперативной памяти. Таким образом, Zilog начал пользоваться огромным спросом среди потребителей.

В России данная модель процессора применялась преимущественно в военной технике, в различных контроллерах и на многих других устройствах. Его даже использовали на разнообразных игровых приставках. В девяностых и восьмидесятых годах он пользовался огромной популярностью среди потребителей российского рынка.

Процессоры в фильме «Терминатор»

Фильм «Терминатор» полон моментов, когда робот сканирует все происходящее перед ним. Перед его глазами образуются странные для зрителей коды. Через несколько лет становится очевидным тот факт, что появлению таких кодов создатели фильма обязаны компании MOS с ее процессором версии 6502. Это заставляет повеселиться разработчиков, которым кажется забавным ситуация, при которой в фильме про далекое будущее используется процессор семидесятых годов.

Эволюция процессоров Intel, Zilog, Motorola

В конце семидесятых годов компания Intel представила свою очередную новинку. Она получила название Intel 8086. Благодаря этому чипу все ближайшие преследователи компании на рынке остались далеко позади. Он обладал высоким уровнем мощности, но это дало ему возможности стать популярным. В нем использовалась 16 разрядная шина, которая обладал высоким уровнем стоимости. Для этого процессора необходимо было использовать специальные микросхемы и переделывать материнскую плату.

Затем компания выпустила свой более успешный продукт Intel 8088. В нем имелось более тридцати тысяч транзисторов.

Компания Motorola в то же время выпустила свой продукт MC68000. Он был одним из самых мощных на то время. Для его использования необходимо было иметь специальные микросхемы. Однако он все равно пользовался большим спросом среди потребителей. Он предлагал пользователям огромные возможности для его использования.

В это же время компания Zilog тоже представила пользователям свою новую разработку. Она создала процессор Z8000. Данная новинка до сих пор вызывает большое количество споров. По своим техническим параметрам она была приемлемой и ее стоимость была низкой. Однако не многие пользователи хотели использовать ее на своих компьютерных устройствах.

Процессоры нового поколения от компании Intel

В начале 1993 года компания Intel представила свой процессор P5. Сегодня он известен под названием Pentium. Компании удалось усовершенствовать технологии, которые она раньше использовала для создания своих продуктов. Теперь их новинка обладала способностью справляться сразу с двумя задачами одновременно. Пропускная разрядность шины стала больше практически в два раза. Однако пользоваться данным процессором пользователи в полной мере не имели возможности, потому что для него необходимо было иметь специальную материнскую плату. Однако после выхода следующей модели процессора Pentium, ситуация стала совершенно другой.

Именно благодаря высоким технологиям чипы от производителя Intel стали пользоваться огромной популярностью у потребителей. Они занимали длительное время первые места в мире.

Недорогие разработки Intel

Для того чтобы в полной мере соперничать с компанией AMD в области доступных по цене процессоров разработчики Intel приняли решение не уменьшать стоимость своих товаров, а стали создавать не очень мощные процессоры, которые в скором времени стали называться Celeron. В 1998 году появилась первая такая маломощная модель процессора Celeron, работающая на ядре процессора Pentium второго поколения. Она не отличалась высоки уровнем производительности. Однако она вполне могла работать с технологическими новинками.

История процессоров Intel | Первенец – Intel 4004

Свой первый микропроцессор Intel продала в 1971 году. Это был 4-битный чип с кодовым названием 4004. Он предназначался для совместной работы с тремя другими микрочипами, ПЗУ 4001, ОЗУ 4002 и сдвиговым регистром 4003. 4004 выполнял непосредственно вычисления, а остальные компоненты имели критическое значение для работы процессора. Чипы 4004 главным образом использовались в калькуляторах и прочих подобных устройствах, и не предназначались для компьютеров. Его максимальная тактовая частота составляла 740 кГц.

За 4004 последовал похожий процессор под названием 4040, который, по сути, представлял улучшенную версию 4004 с расширенной системой команд и более высокой производительностью.

История процессоров Intel | 8008 и 8080

С помощью 4004 Intel заявила о себе на рынке микропроцессоров, и чтобы извлечь выгоду из ситуации представила новую серию 8-битных процессоров. Чипы 8008 появились в 1972 году, затем в 1974 году появились процессоры 8080, а в 1975 году – чипы 8085. Хотя 8008 является первым 8-битным микропроцессоров Intel, он был не так известен, как его предшественник или преемник – модель 8080. Благодаря возможности обрабатывать данные 8-битными блоками 8008 был быстрее, чем 4004, но имел довольно скромную тактовую частоту 200-800 кГц и не особо привлекал внимание проектировщиков систем. 8008 производился по 10-микрометровой технологии.

Intel 8080 оказался намного более успешным. Архитектурный дизайн чипов 8008 был изменен ввиду добавления новых инструкций и перехода к 6-микрометровым транзисторам. Это позволило Intel более чем вдвое повысить тактовые частоты, и самые быстрые процессоры 8080 в 1974 году работали при частоте 2 МГц. ЦП 8080 использовались в бесчисленном множестве устройств, в связи с чем несколько разработчиков программного обеспечения, например, недавно сформированная Microsoft, сосредоточились на программном обеспечении для процессоров Intel.

В конечном счете, появившиеся позже микрочипы 8086 имели общую архитектуру с 8080, чтобы сохранить обратную совместимость с ПО, написанным для них. В результате ключевые аппаратные блоки процессоров 8080 присутствовали во всех когда-либо произведенных процессорах на базе x86. Программное обеспечение для 8080 технически также может работать на любом процессоре с архитектурой x86.

Процессоры 8085, по сути, представляли удешевленный вариант 8080 с повышенной тактовой частой. Они были очень успешны, хотя оставили меньший след в истории.

История процессоров Intel | 8086: начало эры x86

Первым 16-битным процессором Intel был 8086. Он имел существенно большую производительность по сравнению с 8080. Кроме повышенной тактовой частоты процессор обладал 16-разрядной шиной данных и аппаратными исполнительными блоками, позволяющими 8086 одновременно выполнять две восьмибитные инструкции. Кроме того процессор мог выполнять более сложные 16-битные операции, но основная масса программ того времени была разработана для 8-битных процессоров, поэтому поддержка 16-битных операций была не так актуальна, как многозадачность процессора. Разрядность адресной шины была расширена до 20-бит, что дало процессору 8086 доступ к 1 Мбайт памяти и увеличило производительность.

8086 также стал первым процессором на архитектуре x86. Он использовал первую версию набора команд x86, на которой базируются почти все процессоры AMD и Intel с момента появления этого чипа.

Примерно в то же время Intel выпускала чип 8088. Он был построен на базе 8086, но у него была отключена половина адресной шины, и он ограничивался исполнением 8-битных операций. Тем не менее, он имел доступ к 1 Мбайт ОЗУ и работал при более высоких частотах, поэтому был быстрее предыдущих 8-битных процессоров Intel.

История процессоров Intel | 80186 и 80188

После 8086 Intel представила несколько других процессоров, все они использовали схожую 16-битную архитектуру. Первым был чип 80186. Он разрабатывался с целью упрощения проектирования готовых систем. Intel переместила некоторые аппаратные элементы, которые обычно располагались на системной плате, в ЦП, включая генератор тактовых импульсов, контроллер прерываний и таймер. Благодаря интеграции этих компонентов в ЦП 80186 стал во много раз быстрее, чем 8086. Intel также увеличила тактовую частоту чипа, чтобы еще больше повысить производительность.

Процессор 80188 также имел ряд аппаратных компонентов, интегрированных в чип, но обходился 8-битной шиной данных, как 8088, и предлагался в качестве бюджетного решения.

История процессоров Intel | 80286: больше памяти, больше производительности

После выхода 80186 в том же году появился 80286. Он имел почти идентичные характеристики, за исключением расширенной до 24-бит адресной шины, которая, в так называемом защищенном режиме работы процессора, позволяла ему работать с оперативной памятью объемом до 16 Мбайт.

История процессоров Intel | iAPX 432

iAPX 432 был ранней попыткой Intel уйти от архитектуры x86 в совершенно другую сторону. По расчетам Intel iAPX 432 должен быть в несколько раз быстрее, чем другие решения компании. Но, в конечном счете, процессор потерпел неудачу из-за существенных просчетов в архитектуре. Хотя процессоры x86 считались относительно сложными, iAPx 432 поднял сложность CISC на совершенно новый уровень. Конфигурация процессора была довольно громоздкой, что вынудило Intel выпускать ЦП на двух отдельных кристаллах. Процессор также был рассчитан на высокие нагрузки и не мог хорошо работать в условиях недостатка пропускной способности шин или поступления данных. iAPX 432 смог обогнать 8080 и 8086, но его быстро затмили более новые процессоры на архитектуре x86, и в итоге от него отказались.

История процессоров Intel | i960: первый RISC-процессор Intel

В 1984 Intel создала свой первый RISC-процессор. Он не являлся прямым конкурентом процессорам на базе x86, поскольку предназначался для безопасных встраиваемых решений. В этих чипах использовалась 32-битная суперскалярная архитектура, в которой применялись концепция дизайна Berkeley RISC. Первые процессоры i960 имели относительно низкие тактовые частоты (младшая модель работала на 10 МГц), но со временем архитектура была улучшена и переведена на более тонкие техпроцессы, что позволило поднять частоту до 100 МГц. Также они поддерживали 4 Гбайт защищенной памяти.

i960 широко использовался в военных системах а также в корпоративном сегменте.

История процессоров Intel | 80386: переход x86 на 32-бита

Первым 32-битным процессором на архитектуре x86 от Intel стал 80386, который появился в 1985 году. Его ключевым преимуществом являлась 32-битная адресная шина, которая позволяла адресовать до 4 Гбайт системной памяти. Хотя в те времени столько памяти практически никто не использовал, ограничения ОЗУ часто вредили производительности предшествующих процессоров x86 и конкурирующих ЦП. В отличие от современных ЦП, на момент появления 80386 увеличение объема ОЗУ почти всегда означало увеличение производительности. Также Intel реализовала ряд архитектурных усовершенствований, которые помогали повысить производительность выше уровня 80286, даже когда обе системы использовали одинаковый объем ОЗУ.

Чтобы добавить в продуктовую линейку более доступные модели, Intel представила 80386SX. Этот процессор был практически идентичен 32-битному 80386, но ограничивался 16-битной шиной данных и поддерживал работу с ОЗУ объемом лишь до 16 Мбайт.

История процессоров Intel | i860

В 1989 году Intel предприняла еще одну попытку уйти от процессоров x86. Она создала новый ЦП с архитектурой RISC под названием i860. В отличие от i960 этот ЦП разрабатывался как модель с высокой производительностью для рынка настольных ПК, но процессорный дизайн имел некоторые недостатки. Главный из них заключался в том, что для достижения высокой производительности процессор полностью полагался на программные компиляторы, которые должны были размещать инструкции в порядке их выполнения в момент создания исполняемого файла. Это помогло Intel сохранить размер кристалла и уменьшить сложность чипа i860, но при компиляции программ было практически невозможно корректно расположить каждую инструкцию с начала и до конца. Это вынуждало ЦП тратить больше времени на обработку данных, что резко снижало его производительность.

История процессоров Intel | 80486: интеграция FPU

Процессор 80486 стал следующим большим шагом Intel с точки зрения производительности. Ключом к успеху являлась более плотная интеграция компонентов в ЦП. 80486 был первым процессором x86 с кэшем L1 (первого уровня). Первые образцы 80486 имели на кристалле 8 Кбайт кэш-памяти и изготавливались с применением техпроцесса 1000 нм. Но с переходом на 600 нм объем кэша L1 увеличился до 16 Кбайт.

Intel также включила в ЦП блок FPU, который до этого являлся отдельным функциональным блоком обработки данных. Переместив эти компоненты в центральный процессор, Intel заметно снизила задержку между ними. Чтобы увеличить пропускную способность процессоры 80486 также использовали более быстрый интерфейс FSB. Для повышения скорости обработки внешних данных было произведено множество усовершенствований в ядре и других компонентах. Эти изменения значительно подняли производительность процессоров 80486, которые в разы обгоняли старые 80386.

Первые процессоры 80486 достигали частоты 50 МГц, а более поздние модели, произведенные по техпроцессу 600 нм, могли работать на частоте до 100 МГц. Для покупателей с меньшим бюджетом Intel выпускала версию 80486SX, в которой был заблокирован блок FPU.

История процессоров Intel | P5: первый процессор Pentium

Pentium появился в 1993 году и был первым процессором x86 Intel, который не следовал системе нумерации 80x86. Pentium использовал архитектуру P5 – первую суперскалярную микроархитектуру x86 Intel. Хотя Pentium в целом был быстрее 80486, его главной особенностью был существенно улучшенный блок FPU. FPU оригинального Pentium был более чем в десять раз быстрее старого блока в 80486. Значение этого усовершенствования лишь усилилось, когда Intel выпустила Pentium MMX. В плане микроархитектуры этот процессор идентичен первому Pentium, но он поддерживал набор команд Intel MMX SIMD, который мог значительно повышать скорость отдельных операций.

По сравнению с 80486 Intel увеличила в новых процессорах Pentium объема кэша L1. Первые модели Pentium имели 16 Кбайт кэша первого уровня, а Pentium MMX получил уже 32 Кбайт. Естественно, эти чипы работали при более высоких тактовых частотах. Первые процессоры Pentium использовали транзисторы с техпроцессом 800 нм и достигали только 60 МГц, но последующие версии, созданные с использованием производственного процесса Intel 250 нм, достигали уже 300 МГц (ядро Tillamook).

История процессоров Intel | P6: Pentium Pro

Вскоре после первого Pentium Intel планировала выпустить Pentium Pro, основанный на архитектуре P6, но столкнулась с техническими трудностями. Pentium Pro выполнял 32-битные операции значительно быстрее оригинального Pentium благодаря внеочередному исполнению команд. Эти процессоры имели сильно переработанную внутреннюю архитектуру, которая декодировала инструкции в микрооперации, которые выполнялись на модулях общего назначения. В связи с дополнительными аппаратными средствами декодирования Pentium Pro также использовал значительно расширенный 14-уровневый конвейер.

Поскольку первые процессоры Pentium Pro были предназначены для рынка серверов, Intel снова расширила адресную шину до 36-бит и добавила технологию PAE, позволяющую адресовать до 64 Гбайт ОЗУ. Это гораздо больше, чем было нужно среднему пользователю, но возможность поддержки большого объема ОЗУ была крайне важна для заказчиков серверов.

Также была переработана система кэш-памяти процессора. Кэш L1 был ограничен двумя сегментами по 8 Кбайт, один для инструкций и один для данных. Чтобы восполнить дефицит 16 Кбайт памяти по сравнению с Pentium MMX, Intel добавила от 256 Кбайт до 1 Мбайт кэша L2 на отдельной микросхеме, присоединенной к корпусу ЦП. Она соединялась с ЦП с помощью внутренней шины передачи данных (BSB).

Изначально Intel планировала продавать Pentium Pro простым пользователям, но, в конечном счете, ограничила его выпуск моделями для серверных систем. Pentium Pro имел несколько революционных функций, но продолжал конкурировать с Pentium и Pentium MMX в плане производительности. Два более старых процессора Pentium были значительно быстрее при выполнении 16-битных операций, а в то время 16-битное ПО было преобладающим. Процессору также нахватало поддержки набора команд MMX, в результате Pentium MMX обгонял Pentium Pro в оптимизированных под MMX программах.

У Pentium Pro был шанс удержаться на потребительском рынке, но он был довольно дорогим в производстве из-за отдельной микросхемы, содержащей кэш L2. Самый быстрый процессор Pentium Pro достигал тактовой частоты 200 МГц и производился по техпроцессам 500 и 350 нм.

История процессоров Intel | P6: Pentium II

Intel не отступилась от архитектуры P6 и в 1997 году представила Pentium II, в которым были исправлены почти все недостатки Pentium Pro. Лежащая в основе архитектура была похожа на Pentium Pro. Он также использовал 14-уровневый конвейер и имел некоторые улучшения ядра, повышающие скорость выполнения инструкций. Объем кэша L1 вырос – 16 Кбайт для данных плюс 16 Кбайт для инструкций.

Для снижения стоимости производства Intel также перешла к более дешевым чипам кэш-памяти, присоединенным к более крупному корпусу процессора. Это был эффективный способ сделать Pentium II дешевле, но модули памяти не могли работать на максимальной скорости ЦП. В результате частота работы кэша L2 составляла лишь половину от процессорной, но для ранних моделей ЦП этого было достаточно, чтобы увеличить производительность.

Intel также добавила набор команд MMX. Ядра ЦП в Pentium II под кодовым названием "Klamath" и "Deschutes" также продавалась под брендами Xeon и Pentium II Overdrive, ориентированными на сервера. Модели с самой высокой производительностью имели 512 Кбайт кэша L2 и тактовую частоту до 450 МГц.

История процессоров Intel | P6: Pentium III и схватка за 1 ГГц

После Pentium II Intel планировала выпустить процессор, основанный на архитектуре Netburst, но она была еще не готова. Поэтому в Pentium III компания снова использовала архитектуру P6.

Первый процессор Pentium III носил кодовое имя "Katmai" и был очень похож на Pentium II: он использовал упрощенный кэш L2, работающий лишь на половине скорости ЦП. Базовая архитектура получила существенные изменения, в частности, несколько частей 14-уровневого конвейера были объединены между собой до 10 ступеней. Благодаря обновленному конвейеру и увеличению тактовой частоты первые процессоры Pentium III, как правило, немного обгоняли Pentium II.

Katmai производился по технологии 250 нм. Однако, после перехода на производственный процесс 180 нм, Intel смогла значительно увеличить производительность Pentium III. В обновленной версии под кодовым названием "Coppermine" кэш L2 был перемещен в ЦП, а его объем был снижена наполовину (до 256 Кбайт). Но поскольку он мог работать на частоте процессора, уровень производительности все равно повысился.

Coppermine участвовал в гонке с AMD Athlon за частотой 1 ГГц и преуспел. Позднее Intel попыталась выпустить модель процессора 1,13 ГГц, но в конечном счете она была отозвана после того, как доктор Томас Пабст из Tom"s Hardware обнаружил нестабильности в его работе . В итоге чип с частотой 1 ГГц остался самым быстрым процессором Pentium III на базе Coppermine.

Последняя версия ядра Pentium III называлась "Tualatin". При ее создании использовался техпроцесс 130 нм, который позволил добиться тактовой частоты 1,4 ГГц. Кэш L2 был увеличен до 512 Кбайт, что также позволило немного повысить производительность.

История процессоров Intel | P5 и P6: Celeron и Xeon

Вместе с Pentium II Intel также представила линейки процессоров Celeron и Xeon. Они использовали ядро Pentium II или Pentium III, но с разным объемом кэш-памяти. У первых моделей процессоров под брендом Celeron, основанных на базе Pentium II, вообще не было кэша L2, и производительность была ужасной. Более поздние модели на базе Pentium III имели половину от его объема кэша L2. Таким образом мы получили процессоры Celeron, которые использовали ядро Coppermine и имели только 128 Кбайт кэша L2, а более поздние модели, на базе Tualatin уже 256 Кбайт.

Версии с половиной кэша также называли Coppermine-128 и Tualatin-256. Частота этих процессоров была сопоставима с Pentium III и позволяла конкурировать с процессорами AMD Duron. Microsoft использовала процессор Celeron Coppermine-128 с частотой 733 МГц в игровой консоли Xbox.

Первые процессоры Xeon тоже были основаны на Pentium II, но имели больше кэша второго уровня. У моделей начального уровня его объем составлял 512 Кбайт, тогда как у старших собратьев могло быть до 2 Мбайт.

История процессоров Intel | Netburst: премьера

Прежде чем обсуждать архитектуру Intel Netburst и Pentium 4, важно понимать, в чем преимущества и недостатки ее длинного конвейера. Под понятием конвейера подразумевается перемещение инструкций через ядро. На каждом этапе конвейера выполняется множество задач, но иногда может выполняться только одна единственная функция. Конвейер можно увеличить путем добавлением новых аппаратных блоков или разделением одного этапа на несколько. А также можно уменьшить за счет удаления аппаратных блоков или объединения нескольких этапов обработки в один.

Длина или глубина конвейера имеет прямое влияние на задержку, IPC, тактовую частоту и пропускную способность. Более длинные конвейеры обычно требуют большей пропускной способности от других подсистем, и если конвейер постоянно получает необходимый объем данных, то каждый этап конвейера не будет простаивать вхолостую. Также процессоры с длинными конвейерами обычно могут работать при более высоких тактовых частотах.

Недостатком длинного конвейера является повышенная задержка исполнения, поскольку данные, проходящие через конвейер, вынуждены «останавливаться» на каждом этапе на определенное число тактов. Кроме того, процессоры, имеющие длинный конвейер, могут иметь более низкий показатель IPC, поэтому для повышения скорости работы они используют более высокие тактовые частоты. Со временем процессоры, использующие комбинированный подход, доказали свою эффективность без существенных недостатков.

История процессоров Intel | Netburst: Pentium 4 Willamette и Northwood

В 2000 году архитектура Intel Netburst, наконец, была готова и увидела свет в процессорах Pentium 4, доминировав в течение последующих шести лет. Первая версия ядра называлась "Willamette", под которой Netburst и Pentium 4 просуществовали два года. Однако это было трудное время для Intel, и новый процессор с трудом обгонял Pentium III. Микроархитектура Netburst позволяла использовать более высокие частоты, и процессоры на базе Willamette смогли достичь 2 ГГц, но в некоторых задачах Pentium III с частотой 1,4 ГГц оказывался быстрее. В этот период процессоры AMD Athlon имели большее преимущество в производительности.

Проблема Willamette состояла в том, что Intel расширила конвейер до 20 этапов и планировала побить планку частоты 2 ГГц, но из-за ограничений, накладываемых энергопотреблением и тепловыделением, она не смогла достигнуть поставленных целей. Ситуация улучшилась с появлением микроархитектуры Intel "Northwood" и использованием нового техпроцесса 130 нм, который позволил увеличить тактовую частоту до 3,2 ГГц и удвоить объем кэша L2 с 256 Кбайт до 512 Кбайт. Впрочем, проблемы с потребляемой мощностью и тепловыделением архитектуры Netburst никуда не делись. Однако производительность Northwood была значительно выше, и он мог конкурировать с новыми чипами AMD.

В процессорах класса high-end Intel внедрила технологию Hyper-Threading, увеличивающую эффективность использования ресурсов ядра в условиях многозадачности. Польза от Hyper-Threading в чипах Northwood была не так велика, как в современных процессорах Core i7 – прирост производительности составлял несколько процентов.

Ядра Willamette и Northwood также использовались в процессорах серии Celeron и Xeon. Как и в предыдущих поколениях ЦП Celeron и Xeon, Intel соответственно уменьшала и увеличивала размер кэша второго уровня, чтобы дифференцировать их по производительности.

История процессоров Intel | P6: Pentium-M

Микроархитектура Netburst разрабатывалась для высокопроизводительных процессоров Intel, поэтому она была довольно энергоемкой и не подходила для мобильных систем. Поэтому в 2003 году Intel создала свою первую архитектуру, разработанную исключительно для ноутбуков. Процессоры Pentium-M базировались на архитектуре P6, но с более длинными 12-14-уровневыми конвейерами. Кроме того в ней впервые был реализован конвейер переменной длины – если необходимая для команды информация уже была загружена в кэш, инструкции могли выполняться после прохождения 12 этапов. В противном случае им нужно было пройти еще два дополнительных этапа, чтобы загрузить данные.

Первый из таких процессоров выпускался по техпроцессу 130 нм и содержал 1 Мбайт кэш-памяти L2. Он достигал частоты 1,8 ГГц при потребляемой мощности всего 24,5 Вт. Более поздняя версия под именем "Dothan" с 90-нанометровыми транзисторами была выпущена в 2004 году. Переход на более тонкий производственный процесс позволял Intel увеличить кэш второго уровня L2 до 2 Мбайт, который в сочетании с некоторыми улучшениями ядра заметно увеличивал производительность из расчета на такт. Кроме того максимальная частота ЦП поднялась до 2,27 ГГц при небольшом повышении энергопотребления до 27 Вт.

Архитектура процессоров Pentium-M впоследствии использовалась в мобильных чипах Stealey A100, на замену которых пришли процессоры Intel Atom.

История процессоров Intel | Netburst: Prescott

Ядро Northwood с архитектурой Netburst продержалось на рынке с 2002 по 2004 год, после чего Intel представила ядро Prescott с многочисленными улучшениями. При производстве использовался техпроцесс 90 нм, позволивший Intel увеличить кэш L2 до 1 Мбайт. Также Intel представила новый процессорный интерфейс LGA 775, который обладал поддержкой памяти DDR2 и расширенной в четыре раза шиной FSB. Благодаря этим изменениям Prescott обладал большей пропускной способностью, чем Northwood, а это было необходимо для повышения производительности Netburst. Кроме того на базе Prescott Intel показала первый 64-битный процессор x86, имеющий доступ к ОЗУ большего объема.

Intel рассчитывала, что процессоры Prescott станут самыми успешными среди чипов на базе архитектуры Netburst, но вместо этого они потерпели фиаско. Intel снова расширила конвейер выполнения команд, на сей раз до 31 этапа. В компании надеялись, что увеличения тактовых частот будет достаточно, чтобы компенсировать наличие более длинного конвейера, но им удалось достичь только 3,8 ГГц. Процессоры Prescott были слишком горячими и потребляли слишком много энергии. В Intel рассчитывали, что переход на техпроцесс 90 нм устранит эту проблему, однако повышенная плотность транзисторов лишь усложнила охлаждение процессоров. Добиться более высокой частоты было невозможно, и изменения ядра Prescott негативно сказались на общей производительности.

Даже со всеми улучшениями и дополнительным кэшем Prescott, в лучшем случае, выходил на один уровень с Northwood по части произвольности на такт. В то же время процессоры AMD K8 также осуществили переход на более тонкий техпроцесс, что позволило повысить их частоты. AMD некоторое время доминировала на рынке ЦП для настольных компьютеров.

История процессоров Intel | Netburst: Pentium D

В 2005 году два основных производителя соревновались за первенство в анонсе двухъядерного процессора для потребительского рынка. AMD первой анонсировала двухъядерный Athlon 64, но он долго отсутствовал в продаже. Intel стремилась обойти AMD, используя многоядерный модуль (MCM), содержащий два ядра Prescott. Компания окрестила свой двухъядерный процессор Pentium D, а первая модель носила кодовое имя "Smithfield".

Однако Pentium D подвергся критике, поскольку имел те же проблемы, что и оригинальные чипы Prescott. Тепловыделение и энергопотребление двух ядер на базе Netburst ограничивали таковую частоту на уровне 3,2 ГГц (в лучшем случае). И поскольку эффективность архитектуры сильно зависела от загруженности конвейера и скорости поступления данных, показатель IPC у Smithfield заметно снизился, поскольку пропускная способность канала делилась между двумя ядрами. Кроме того физическая реализация двухъядерного процессора не отличалась изящностью (по сути это два кристалла под одной крышкой). И два ядра на одном кристалле в ЦП AMD считались более продвинутым решением.

После Smithfield появился Presler, который был переведен на 65 нм техпроцесс. Многоядерный модуль содержал два кристалла Ceder Mill. Это помогло уменьшить тепловыделение и потребляемую мощность процессора, а также поднять таковую частоту до 3,8 ГГц.

Существовало две основных версии Presler. Первая имела более высокий тепловой пакет 125 Вт, а более поздняя модель ограничивалась значением 95 Вт. Благодаря уменьшенному размеру кристалла Intel также смогла удвоить объема кэша L2, в итоге каждый кристалл имел по 2 Мбайт памяти. Некоторые модели для энтузиастов также поддерживали технологию Hyper-Threading, позволяющую ЦП выполнять задачи в четыре потока одновременно.

Все процессоры Pentium D поддерживали 64-битное ПО и ОЗУ объемом более 4 Гбайт.

Во второй части: процессоры Core 2 Duo, Core i3, i5, i7 вплоть до Skylake.

Cтраница 1


Первые микропроцессоры на четыре разряда (бита) состояли из одного кристалла.  

Первые микропроцессоры были выполнены на р - МОП-схе-мах. Современные микропроцессоры выполняются на и - МОП-схемах, имеющих низкую стоимость и среднее быстродействие, на предельно-маломощных КМОП-схемах и на ТТЛ-схемах с высоким быстродействием.  

Первые микропроцессоры (МП) появились в начале 70 - х годов в результате совместных усилий системотехников, решающих проблемы архитектурной организации средств вычислительной техники, и схемотехников, занимающихся вопросами конструирования и технологии производства радиоэлектронных средств.  

Первый микропроцессор - 4-разрядный Intel 404 - поступил на неподготовленный к этому событию рынок в 1971 г. МП 4004 разработанный с ориентацией на требования изготовителей калькуляторов, предстал перед миром как знамение новой эры интегральной электроники.  

В первых микропроцессорах применялся способ управления памятью, известный как чисто машинный.  

Стоит напомнить, что первые микропроцессоры, импортированные в Японию в 1971 г., стоили около тысячи долларов.  

За более чем 30 лет, прошедших с момента появления первых микропроцессоров, были выработаны определенные правила обмена, которым следуют и разработчики новых микропроцессорных систем. Правила эти не слишком сложны, но твердо знать и неукоснительно соблюдать их для успешной работы необходимо.  

Операционные системы создаются для какого-либо типа микропроцессоров на основе той системы команд, которая закладывается в микропроцессор при разработке. Первый микропроцессор был создан в фирме Intel, лидировавшей в производстве микросхем.  

Может ли какое-либо техническое достижение компьютерной эры соперничать по своей значимости с микропроцессором. Первые микропроцессоры, короткая история которых началась всего десятилетие назад, основывались главным образом на достижениях микроэлектроники - технологии, возникшей гораздо позднее появления самих ЭВМ и в значительной степени независимо от них. С самого начала конструкторы и изготовители микропроцессоров вызывали бурное одобрение, как только им удавалось продемонстрировать, что каждая их новая разработка еще на какой-то шажок становится ближе по структуре к современной средней или большой вычислительной машине. Наблюдатели без труда приходили к выводу, что если плотность монтажа, быстродействие и возможности автоматического проектирования будут продолжать возрастать в соответствии с ожиданиями, то микропроцессоры вскоре по мощности и логике сравняются с крупными мини - ЭВМ, а возможно, и с большими вычислительными машинами.  

В 1970 г. был сделан еще один важный шаг на пути к персональному компьютеру - Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большого компьютера. Так появился первый микропроцессор Intel-4004 (см. рис. справа), который был выпущен в продажу в 1971 г. Это был настоящий прорыв, ибо микропроцессор Intel-4004 размером менее 3 см был производительнее гигантской машины ENIAC. Правда, возможности Intel-4004 были куда скромнее, чем у центрального процессора больших компьютеров того времени, - он работал гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших компьютеров обрабатывали 16 или 32 бита одновременно), но и стоил он в десятки тысяч раз дешевле.  

Создание такой операционной системы, как PC-DOS, не является ни делом случая, ни результатом чисто технократического планирования. Экономическая конкуренция давно привела к появлению операционных систем для больших ЭВМ еще до появления первых микропроцессоров.  

Он представляет собой одну-единственную микросхему, управляющую всем, что происходит в ПК. Микросхема эта работает на определенной тактовой частоте, измеряемой некоторым количеством мегагерц. По сегодняшним меркам первые микропроцессоры (8088 или 80286) были до ужаса медлительны и не смогли бы управлять современными программами.  

Переконструировать большую интегральную схему всякий раз, когда компания пожелает обновить ассортимент выпускаемой продукции, что случается очень часто, действительно колоссальная работа. Микропроцессор появился на свет благодаря идее, выдвинутой специалистами из Бизиком: необходимо CKOEI-струировать такую интегральную схему, которую легко можно приспособить к любому новому изделию, осваиваемому их фирмой. Увы, тогда Япония была еще слишком слаба в сфере опытно-конструкторских разработок; поэтому Соединенным Штатам удалось подхватить мячик и убежать, создав первый микропроцессор.  

Однако фирма Intel продолжала придерживаться прототипа, средства на разработку которого уже были израсходованы. Таким образом, хорошо известный МП Intel 8008 стал первым микропроцессором на мировом рынке.  

Сейчас, даже более мене продвинутые мобильные телефоны не обходятся без микропроцессора, что уже говорить о планшетных, переносных и настольных персональных компьютерах. Что же такое микропроцессор и как развивалась история его создания? Если говорить на понятном языке, то микропроцессор – это более сложная и многофункциональная интегральная схема.

История микросхемы (интегральной схемы) начинается с 1958 года , когда сотрудник американской фирмы Texas Instruments Джек Килби изобрел некое полупроводниковое устройство, содержащее в одном корпусе несколько транзисторов, соединенных между собой проводниками. Первая микросхема – прародительница микропроцессора – содержала всего лишь 6 транзисторов и представляла собой тонкую пластину из германия с нанесёнными на неё дорожками, выполненными из золота, Расположено всё это было на стеклянной подложке. Для сравнения, сегодня счет идет на единицы и даже десятки миллионов полупроводниковых элементов.

К 1970 году достаточно много производителей занимались разработкой и созданием интегральных схем различной емкости и разной функциональной направленности. Но именно этот год можно считать датой рождения первого микропроцессора. Именно в этом году фирма Intel создает микросхему памяти емкостью всего лишь 1 Кбит – ничтожно мало для современных процессоров, но невероятно велико для того времени. На то время это было огромнейшее достижение – микросхема памяти способна была хранить до 128 байт информации – намного выше подобных аналогов. Кроме этого примерно в тоже время японский производитель калькуляторов Busicom заказала той же Intel 12 микросхем различной функциональной направленности. Специалистам Intel удалось реализовать все 12 функциональных направленностей в одной микросхеме. Более того, созданная микросхема оказалась многофункциональной, поскольку позволяла программно менять свои функции, не меняя при этом физической структуры. Микросхема выполняла определенные функции в зависимости от подаваемых на ее управляющие выводы команд.

Уже через год в 1971 Intel выпускает первый 4-разрядный микропроцессор под кодовым именем 4004. По сравнению с первой микросхемой в 6 транзисторов, он содержал аж 2,3 тыс. полупроводниковых элементов и выполнял 60 тыс. операций в секунду. На то время – это был огромнейший прорыв в области микроэлектроники. 4-разрядный означало то, что 4004 мог обрабатывать сразу 4-х битные данные. Еще через два года в 1973 фирма выпускает 8-ми разрядный процессор 8008, который работал уже с 8-ми битными данными. Начиная с 1976 года , компания начинает разрабатывать уже 16-разрадную версию микропроцессора 8086. Именно он начал применяться в первых персональных компьютерах IBM и, по сути заложил один из кирпичиков в историю ЭВМ.

Типы микропроцессоров

По характеру исполняемого кода и организации устройства управления выделяется несколько типов архитектур:

    Процессор со сложным набором инструкций. Эту архитектуру характеризует большое количество сложных инструкций, и как следствие сложное устройство управления. В ранних вариантах CISC-процессоров и процессоров для встроенных приложений характерны большие времена исполнения инструкций (от нескольких тактов до сотни), определяемые микрокодом устройства управления. Для высокопроизводительных суперскалярных процессоров свойственны глубокий анализ программы, внеочередное исполнение операций.

    Процессор с упрощённым набором инструкций. В этой архитектуре значительно более простое устройство управления. Большинство инструкций RISC-процессора сожержат одинаковое малое число операций (1, иногда 2-3), а сами командные слова в подавляющем числе случаев имеют одинаковую ширину (PowerPC, ARM), хотя бывают исключения (Coldfire). У суперскалярных процессоров - простейшая группировка инструкций без изменения порядка исполнения.

    Процессор с явным параллелизмом. Отличается от прочих прежде всего тем, что последовательность и параллельность исполнения операций и их распределение по функциональным устройствам явно определены программой. Такие процессоры могут обладать большим количеством функциональных устройств без особого усложнения устройства управления и потерь эффективности. Обычно такие процессоры используют широкое командное слово, состоящее из нескольких слогов, определяющих поведение каждого функционального устройства в течение такта.

    Процессор с минимальным набором инструкций. Эта архитектура определяется прежде всего свехмалым количеством инструкций (несколько десятков), и почти все они нуль-операндные. Такой подход даёт возможность очень плотно упаковать код, выделив под одну инструкцию от 5 до 8 бит. Промежуточные данные в таком процессоре обычно хранятся на внутреннем стеке, и операции производятся над значениям на вершине стека. Эта архитектура тесно связана с идеологией программирования на языке Forth и обычно используется для исполнения программ, написанных на этом языке.

    Процессор с изменяемым набором инструкций. Архитектура, позволяющая перепрограммировать себя, изменяя набор инструкций, подстраивая его под решаемую задачу.

    Транспорт-управляемый процессор. Архитектура изначально ответвилась от EPIC, но принципиально отличающаяся от остальных тем, что инструкции такого процессора кодируют функциональные операции, а так называемые транспорты - пересылки данных между функциональными устройствами и памятью в произвольном порядке.

По способу хранения программ выделяется две архитектуры:

    Архитектура фон Неймана . В процессорах этой архитектуры используется одна шина и одно устройство ввода-вывода для обращения к программе и данным.

    Гарвардская архитектура. В процессорах этой архитектуры для выборки программ и обмена данным существуют отдельные шины и устройства ввода-вывода. Во встроенных микропроцессорах, микроконтроллерах и ПЦОС это также определяет существование двух независимых запоминающих устройств для хранения программ и данных. В центральных процессорах это определяет существование отдельного кэша инструкций и данных. За кэшем шины могут быть объединены в одну посредством мультиплексирования.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: