Венгерский алгоритм для прямоугольной матрицы. Задача о назначениях (венгерский метод) х

Получился - граф . Вершины слева – разработчики, вершины справа – технологии (задачи). Ребра, которые их соединяют – означают то, насколько разработчик в ней разбирается. Эти цифры, т.е. степень владения разработчиком данной технологией, очень важны, но к ним обратимся чуть позже. А пока мы уже верно наметили направление, в котором эффективно решается данная задача:

3. Графы

Самые основы графов были изложены в статье (), поэтому сразу перейду к терминологии, касающейся данной задачи:

Двудольный граф – граф, у которого существует такое разбиение множества вершин на две части (доли), что концы каждого ребра принадлежат разным долям. В нашей задаче тоже есть четкое разделение: одни вершины – это разработчики, другие – задачи, и связи (эффективность владения) есть только между разработчиками и задачами.
Паросочетанием неориентированного графа G называется подмножество M его ребер E, выбранное так, что никакие два ребра из M не являются смежными, т.е. не имеют общей вершины. В терминах нашей задачи синонимом этому будет «назначение» , чтобы каждый задействованный разработчик взял на себя отдельную задачу. И не получилось такого, что два разработчика прорабатывают одну проблему, или один «бедняга» отвечал за две задачи.

В теории графов наша проблема, как это ни странно, называется Задачей о Назначениях (ЗН) . =) Она является частным случаем задачи нахождения максимального паросочетания. В самом деле, мы ведь стремимся максимально задействовать ресурсы, чтобы одновременно прорабатывалось максимальное число технологий, поэтому в терминах графов - пытаемся найти «максимальное паросочетание», составить максимальное количество пар разработчик-задача.

4. Максимальное паросочетание

Чтобы упростить себе жизнь, мы пока не обращаем внимания на способности людей. Просто хотим каждому подыскать работу. Нескольким первым попавшимся под руку разработчикам предложить работать со знакомой им технологией не составит проблем. Продолжая в том же духе, мы распределим еще несколько задач, но построенное таким образом паросочетание вряд ли будет максимальным. Возможна ситуация как та, что изображена на рисунке:

Как же увеличить паросочетания (назначения)?

Выберем незадействованного разработчика, которому еще не назначена задача. Посмотрим, с чем бы он мог справиться, т.е. знакомые ему технологии. Если нашли среди них свободную – отлично, это то, что мы и искали. Назначаем. А если задача уже «занята» другим разработчиком? Попробуем занятому разработчику подыскать другую свободную технологию, ведь в таком случае эту - мы бы назначили нашему незадействованному подопечному. В общем, из вершины незадействованного разработчика или разработчика, которому мы пытаемся переназначить задачу, мы просматриваем все знакомые ему технологии на наличие свободной:
  • если нашли свободную – поиск завершен
  • если задача уже кому-то назначена, то пройдя по этому ребру паросочетания, попытаемся «переназначить» технологию разработчику, участвующему в данном назначении
В ходе такого обхода графа мы пытаемся из «незадействованного разработчика» попасть в «свободную задачу». Таким образом поиск «разворачивается» в следующее дерево:

Добавим еще немного терминологии из теории графов, простыми словами:

Экспонированная вершина – это вершина, которая не участвует в текущем паросочетании. Т.е. либо «незадействованный разработчик», либо «свободная задача».
Альтернирующая цепь – это цепь, ребра которой попеременно лежат или не лежат в паросочетании. (…- владение технологией – назначенная задача – владение технологией – назначенная задача - …)
Альтернирующее дерево – дерево, состоящее из альтернирующих цепей
Аугментальная цепь – это такая альтернирующая цепь, начальная и конечная вершины которой экспонированы. Вот как называется то, что мы и ищем! =)
Аугментальное дерево – соответственно дерево, в котором хотя бы одна из веток – это аугментальная цепь.

Вот и нашли способ наращивать паросочетание, стремясь получить максимальное. Нужно строить альтенирующее дерево. Когда оно станет аугментальным, искать аугментальные цепи из «незадействованного разработчика» в «свободную задачу» и потом «переназначать» задачи вдоль них. Это выгодно, т.к. увеличивает количество «задач в обработке» на 1:

Теперь мы уже сможем задействовать наибольшее количество технологий в проекте. Самое время принять во внимание еще одно важное условие поставленной перед нами проблемы: эффективность владения технологиями. Мы ведь хотим оптимально назначить всем задачи.

5. Венгерский метод.

Найти решение с максимальной суммарной эффективностью (стоимостью). Звучит, в некотором смысле, похоже на задачу об оптимальной упаковке рюкзака. Наводит на мысль. Вот если бы нам представилась возможность действовать по принципу «жадных алгоритмов».

Мы бы для начала всем разработчикам до упора назначили задачи в соответствии с их максимальными способностями. Если всем разработчикам удалось сразу же распределить задачи - отлично. Но такое происходит не часто. Вдруг два человека, оптимально владеют одной и той же технологией, кому она достанется и что делать в этой ситуации? Одному из разработчиков нужно будет подыскать иную свободную задачу, так же наиболее соответствующую его способностям. Если при текущих (максимальных требованиях) условиях не найдется свободной задачи, то нужно будет попробовать подыскать среди задач, предварительно немного занизив наши требования. Как бы искусственно занизить способности разработчиков в графе. Если в таких условиях обнаружим свободную задачу – получим аугментальное дерево. «Поменяем» по цепочке паросочетания, после чего будет +1. И продолжим назначать таким вот оптимальным образом, пока всем не подыщем работу.

Стратегия ясна.

Мы почти разгадали принцип Венгерского алгоритма. Но как все же построить решение по принципу «жадных алгоритмов»: до упора назначить по max способностям, потом чуть занизить способности и добавив к рассмотрению новые задач, до упора назначить их, занизить… и.т.д.? Как оценить способности и оптимальность текущего назначения?

Вся «фишка» этого алгоритма заключается в следующем. Нам дан всего один параметр в графе – эффективность решения определенной задачи разработчиком, что указано на ребрах. Эта величина присвоена парам разработчик-задача. Мы же «разделим» (отделим от пар) эти величины на две. Искусственно добавим два дополнительных параметра. Одни величины будут приписаны вершинам задач, другие - вершинам разработчиков.

Попробую привести такую интерпретацию:

  • у разработчиков мы укажем их «способности» , допустим в единицах «сил», просто указывающие на то, насколько эффективно мы можем их задействовать или задействовали.
  • у задач мы укажем их «изученность» , или, если можно так выразиться, «переизбыток внимания». Этот параметр будем так же измерять в «силе». Переизбыток внимания к задаче возникает в следующей ситуации. Если мы какого-то разработчика «недогрузили», т.е. он способен решать задачу на 5, а ему досталась всего на 3. То у него остается еще 2 «силы» которые он, в принципе, может уделить какой-то из знакомых ему задач. Бегать между кабинетов, консультировать по телефону, давать советы тем, кто занимается любимой ему технологией.

Таким образом, величины указанные на ребрах мы «разделим» на 2 значения, приписанных уже вершинам: эффективность решения задачи = способность разработчика + изученность задачи. В принципе, логично. Чем способней разработчик или чем более известна технология, тем лучше будет реализована эта часть в проекте. Эффективней.

В конце, после того как мы найдем решение, мы конечно будем учитывать только величины на ребрах, но сейчас эта «фишка» поможет нам найти решение. =)

6. Описание алгоритма

Инициализируем граф. Будучи «упертыми оптимистами », мы для каждого разработчика рассчитаем его максимальную «способность» по знакомым ему технологиям, и присвоим ему это число. Everyone enjoys doing the kind of work for which he is best suited . О задачах пока ничего неизвестно, поэтому их «изученность» инициализируем нулями.

При поиске «свободной задачи» для «незадействованного разработчика» мы ограничимся теперь только (назовем их) оптимальными ребрами графа, т.е. теми, для которых выполняется равенство: эффективность решения задачи (ребро) = способность разработчика (вершина) + изученность задачи (вершина) .

Далее мы поступаем так же, как и при поиске максимального паросочетания. Хватаем по очереди незадействованных разработчиков и, подыскивая им свободные задачи, строим альтернирующее дерево (состоящее из чередующихся цепей), но уже только по оптимальным ребрам. Далее возможно 2 ситуации:

  • Удалось обнаружить свободную задачу. Дерево стало аугментальным. «Переназначаем» задачи, наращиваем паросочетание. Начинаем строить альтернирующее дерево заново, т.к. мало ли как там граф изменился
  • Мы не нашли (не достигли) свободную задачу по оптимальным ребрам. А она есть, т.к. начинали ведь мы со свободного разработчика, а в графе у нас одинаковое количество задач и разработчиков. Полученное альтернирующее дерево становится, так называемым, Венгерским (весь метод так же называется). В данном случае нам нужно будет немного понизить наши требования к разработчикам и начать поиски заново. Failure is simply the opportunity to begin again, this time more intelligently (с) .

Вот и подошли к последнему моменту Венгерского метода для чего все эти дополнительные параметры и «способности» задумывались. Допустим, что, наращивая альтернирующее дерево, мы в конечном итоге получили - Венгерское дерево. Рассмотрим, какие вершины попадут в это дерево:

  • Незадействованные разработчики, т.к. именно с них мы начинаем стоить дерево
  • Разработчики и задачи, до которых можно дотянуться по оптимальным ребрам из незадействованных разработчиков. Т.к. именно через их «переназначение» мы пытаемся трудоустроить последних.
Снаружи этого дерева, в оставшемся графе будут присутствовать:
  • Разработчики и задачи, находящиеся в паросочетании, но недоступные из свободных вершин (разработчиков). Нашли им работу – нечего их пока трогать.
  • Задачи, недостижимые по оптимальным ребрам – до них нам и нужно будет добраться. Поэтому при построении дерева мы будем отмечать вершины, в которые удалось попасть. А эти задачи, соответственно, останутся неотмеченными.
Далее в цикле мы пробежим по «границе» дерева: по тем ребрам, которые соединяют незадействованных разработчиков или разработчиков, достижимых из них (может их удастся «переназначить»), со смежными задачами (по неоптимальным ребрам). По этим ребрам мы вычислим минимальное на текущий момент «несоответствие» способностей разработчика, чтобы он смог приступить к этой задаче: delta = min(способность разработчика (вершина) + изученность задачи (вершина) - эффективность решения задачи (ребро)) .

После чего внутри венгерского дерева мы:

  • Понизим способности разработчиков на delta, чтобы «присоединить» наименее безболезненным способом, по крайней мере, одно ребро к альтернирующему дереву, по которому в следующий раз будем продолжать поиски свободной задачи
  • Повысим «изученность» задач на delta, чтобы внутри уже сейчас построенного аугментального графа ребра - остались оптимальными. Т.е. чтобы сохранилось равенство: эффективность решения задачи (ребро) = способность разработчика (вершина) + изученность задачи (вершина)
Мини-интерпретация: мы понижаем способности разработчикам, чтобы впоследствии «пристроить» хотя бы одного из них. Мы его пристроим, но он будет работать не в соответствии со своей квалификацией. Он бы смог большего. Поэтому у него высвобождается некоторое количество времени, чтобы проконсультировать коллег по задаче, в которой он наиболее компетентен. Она становится более изученной в команде. Ей в свою очередь наверняка занимался другой разработчик, который теперь тоже сможет подменяться в случае чего. Можно понизить и его компетенцию на изученность задачи. И так далее «по цепочке» в команде повышается «изученность» задач и немного понижаются способности разработчиков, чтобы найти им назначения.

Все. Все шаги данного метода рассмотрены. Продолжаем в том же духе… Success is not final, failure is not fatal: it is the courage to continue that counts .

7. Алгоритм словами, очень кратко

Соберем теперь все до кучи:
  • Инициализация. Разработчикам – max способности. Задачи – не изучены.
  • Пока не всем разработчикам нашли задачи.
    • Пока удается построить аугментальное дерево (находить свободные задачи) по оптимальным ребрам
      • «Переназначаем» задачи, увеличивая паросочетания
    • Не достигли свободной задачи. Венгерское дерево.
      • Понижаем способности разработчиков на min величину

8. Листинг

Код, конечно, будет покороче, чем все мое описание. =)

Я взял его . На мой взгляд, очень хорошая реализация. Единственное отличие, у автора приведен код метода минимизации назначений (если, допустим, на ребрах – зарплата), а в статье мы распределяли задачи с целью получения максимальной эффективности. Поэтому, слегка модифицировав код, приведу ниже реализацию максимального метода:

int n;
vector < vector > a; // Матрица эффективности a[разраб][задача]
vector xy, yx; // Паросочетания: xy[разраб], yx[задача]
vector vx, vy; // Альтернирующее дерево vx[разраб], vy[задача]
vector maxrow, mincol; // Способности, изученность

bool dotry (int i) {
if (vx[i]) return false ;
vx[i] = true ;
for (int j=0; jif (a[i][j]-maxrow[i]-mincol[j] == 0)
vy[j] = true ;
for (int j=0; jif (a[i][j]-maxrow[i]-mincol[j] == 0 && yx[j] == -1) {
xy[i] = j;
yx[j] = i;
return true ;
}
for (int j=0; jif (a[i][j]-maxrow[i]-mincol[j] == 0 && dotry (yx[j])) {
xy[i] = j;
yx[j] = i;
return true ;
}
return false ;
}

int main() {

// ... чтение a ...

Mincol.assign (n, 0);
minrow.assign (n, 0);
for (int i=0; ifor (int j=0; j maxrow[i] = max (maxrow[i], a[i][j]);

Xy.assign (n, -1);
yx.assign (n, -1);
for (int c=0; c vx.assign (n, 0);
vy.assign (n, 0);
int k = 0;
for (int i=0; iif (xy[i] == -1 && dotry (i))
++k;
c += k;
if (k == 0) {
int z = INF;
for (int i=0; iif (vx[i])
for (int j=0; jif (!vy[j])
z = min (z, maxrow[i]+mincol[j]-a[i][j]);
for (int i=0; iif (vx[i]) maxrow[i] -= z;
if (vy[i]) mincol[i] += z;
}
}
}

int ans = 0;
for (int i=0; i ans += a[i]];
printf ("%d\n" , ans);
for (int i=0; i printf ("%d " , xy[i]+1);
}

* This source code was highlighted with Source Code Highlighter .

9. Итого

Если кто-то видит Венгерку впервые. И после прочтения описания, а за ним листинга – возникнет уверенное впечатление «да тут по листингу и без этих описаний все понятно, что было распинаться». Буду все же надеяться, что хоть отчасти описание добавило понимания в работу алгоритма. Буду искренне рад за Вас! а мне, в свою очередь, это немного даст почувствовать, что писал, наверное, не зря. =)

Теги:

  • задача о назначениях
  • венгерский алгоритм
  • алгоритм Куна
Добавить метки

Метод представляет собой процедуру, состоящую из следующих шагов:

1.Находим в каждой строке матрицы С минимальный элемент и вычитаем его из каждого элемента этой строки. Если в полученной матрице окажутся столбцы, не содержащие нулевых элементов, то в каждом из них находим минимальный элемент и вычитаем его из всех элементов этого столбца. Таким образом, приходим к матрице, каждая строка и каждый столбец которой содержат, по меньшей мере, один нулевой элемент.

2.Если в полученной матрице можно выбрать по одному нулевому элементу так, чтобы соответствующие этим элементам решение было допустимым(то есть каждому исполнителю назначена была одна работа и каждая работа выполнялась одним исполнителем), то данное (нулевое) назначение будет оптимальным. Иначе переходим к следующему пункту.

3.Ищется минимальное множество строк и столбцов, содержащие нули. Далее вне этого множества находим минимальный элемент и вычитаем его из всех элементов приведенной матрицы. Затем преобразуем матрицу таким образом, чтобы не было отрицательных элементов. Эта процедура эквивалентна следующей: минимальный элемент вычитаем из элементов, не содержащих нулевые строки и столбцы. На пересечении этих вычеркнутых строк и столбцов, содержащих нулевые элементы, этот минимальный элемент прибавляется элементам приведенной матрицы, а остальные элементы вычеркнутых столбцов и строк берутся без изменения.

III.Практическая часть. Задача о назначениях.

Решение венгерским методом

Некоторая компания имеет четыре сбытовые базы и четыре заказа, которые необходимо доставить различным потребителям. Складские помещения каждой базы вполне достаточны, для, того, чтобы вместить один из этих заказов. В нижеприведенной таблице содержится информация о расстоянии между каждой базой и каждым потребителем. Как следует распределить заказы по сбытовым базам, чтобы общая дальность транспортировки была минимальной?



Для нахождения оптимального решения воспользоваться «венгерским методом».

Строим матрицу:

Решим ее венгерским методом.

1. Найдем в каждой строке минимальное значение и вычтем его из каждого элемента данной строки,(отмечены полужирным курсивом).

68 72 74 83 0 4 6 15

56 60 58 63 Получим 0 4 2 7

38 40 35 45матрицу: 3 5 0 10

47 42 40 45 7 2 0 5

2.Выберем в каждом столбце матрицы минимальный элемент и вычтем его из каждого элемента данного столбца: (отмечены полужирным курсивом).

0 4 6 15 0 2 6 10

3 5 0 10 3 3 0 5

7 2 0 5 7 0 0 0

3.Определяем число нулей в каждой строке: 1-1, 2-1, 3-1, 4-3и в каждом столбце: 1-2, 2-1, 3-2, 4-1. Максимальное число нулей (3) содержит 4-я строка и 1-й и 3-й столбец. Минимальным числом прямых вычеркнем все нули в матрице. Среди не вычеркнутых элементов выберем минимальный (выделен полужирным курсивом и подчеркнут – 2).


0 2 6 10

Прибавим его к элементам, стоящим на пересечении прямых и вычтем из всех не вычеркнутых элементов. Теперь перераспределим соответствующие назначения сбытовых баз и потребителей.

Получим скорректированную матрицу с назначениями для нулевых клеток:

Вычеркнем из матрицы ненужные нули:

0 0 7 8

0 0 2 0

3 1 0 3

9 0 2 0

Теперь требование о размещении четырех назначений в клетки с нулевой стоимостью выполняется, следовательно полученное решение является оптимальным. Перевозки осуществляются со сбытовой базы 1-к потребителю 1, с базы 2- к потребителю 2, с базы 3 – к потребителю 3 и с базы 4 – к потребителю 4. В результате в начальной таблице суммируются клетки, соответствующие выбранным элементам итоговой таблицы(по диагонали – 68+60+35+45=208), это и будет минимальное решение данной задачи.

Ответ: заказы по сбытовым базам распределены оптимально, общая дальность минимальна – 208 км.

ЗАКЛЮЧЕНИЕ

Линейное программирование, математическая дисциплина, посвященная теории и методам решения задач об экстремумах линейных функций на множествах, задаваемых системами линейных неравенств и равенств. Линейное программирование является одним из разделов математического программирования. В данном курсовом проекте был рассмотрен метод линейного программирования,на примере задачи: венгерский метод.

Суть венгерского метода состоит в следующем: путем прибавления определенным образом найденных чисел к некоторым столбцам и вычитания из них некоторых чисел находят систему так называемых независимых нулей. Набор нулей называется системой независимых нулей, если какие два9или больше) нуля не лежат на одной линии (в строке или столбце). Если число независимых нулей равно n, то приняв соответствующие им переменные xij равными 1, а все остальные – равными 0, получаем оптимальный план назначения.

Алгоритм венгерского метода состоит из предварительного шага и не более чем (n-2) последовательно повторяющихся итераций. На предварительном этапе в случае решения задачи на максимум, ее преобразуют в эквивалентную задачу на минимум. На этом же этапе выделяется система независимых нулей. Каждая последующая итерация направлена на увеличение хотя бы на 1 числа независимых нулей. Как только число независимых нулей k станет равным размерности матрицы (k=n), задача решена. Оптимальный план назначения определится положением независимых нулей на последней итерации.

Разработанная программа позволяет контролировать процесс ввода исходных данных путем вывода на экран соответствующих комментариев о некорректности вводимых показателей, что помогает своевременно устранить заведомо неверный исход решения задачи. У пользователя имеется возможность наблюдать за процессом решения, поскольку на экран выводятся результаты каждого этапа, согласно методике решения данного типа задач. Программный продукт можно использовать при изучении курса экономико-математические методы и модели в целях контроля правильности решения задач о назначениях венгерским методом, а также на предприятиях, где необходимо решить проблему по размещению кадров для осуществления экономически целесообразной деятельности.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ И ИСТОЧНИКОВ

1. Агальцов, В.П. «Математические методы в программировании»: учебник. В.П. Агальцов, И.В. Волдайская. - М.: ИД «ФОРУМ»: ИНФРА-М, 2009 г.

2. Акулич И. А. «Математическое программирование в примерах и задачах». - М.: «Высшая школа», 2010.

3. Ашманов С.А. «Линейное программирование»,- М.: 2011г.

4. Балдин.К.В. «Математическое программирование»/ К.В.Балдин – М: Издательство «Дашков и К», 2009.

5. Васильев Ф.П., «Линейное программирование»/ Ф.П., Васильев, А.Ю. Иваницкий,2009.

6. Вершик А.М. «О Л.В. Канторовиче и линейном программировании»,2010г

7. Глебова Н.В. «Применение методов линейного программирования для решения экономических задач»: учебно –методическое пособие для студентов 3 курса ВВАГС, 2001 г.

8. Карасев А.Н. «Математические методы в экономике»/ А.Н.Карасев,Н.Ш.Кремер,Т.Н.Савельева,2010.

9. Лищенко А.В., «Линейное и нелинейное программирование»,2011.

10. Партыка, Т.Л. «Математические методы»: учебник. / Т.Л. Партыка, И.И.2009г.

11. Цирель, С. В. «Венгерский способ»/ С. Цирель. Москва: УРСС, 2007 г.

12. Шапкин, А.С. «Математические методы» / А. Шапкин. Учебник. Москва, 2010 г.


Вершик А.М. «О Л.В. Канторовиче и линейном программировании»,2010г.,с.45

Агальцов, В.П. «Математические методы в программировании»: учебник. В.П. Агальцов, И.В. Волдайская. - М.: ИД «ФОРУМ»: ИНФРА-М, 2009 г. - 224 с.: ил.

Шапкин, А.С. «Математические методы» / А. Шапкин. Учебник. Москва, 2010.- 104 с.

Ашманов С.А. «Линейное программирование»,- М.: 2011г,с.235

Балдин.К.В. «Математическое программирование»/ К.В.Балдин – М: Издательство «Дашков и К», 2009.с.67

Васильев Ф.П., «Линейное программирование»/ Ф.П., Васильев, А.Ю. Иваницкий,2009,с.76

Шапкин, А.С. «Математические методы» / А. Шапкин. Учебник. Москва, 2010- 100 с

Лищенко А.В., «Линейное и нелинейное программирование»,2011.С.84

Хазанова Л.Э. «Математическое программирование в экономике»: Учебное пособие. - М.: Издательство БЕК, 2008. - 141с.

Акулич И. А. «Математическое программирование в примерах и задачах». - М.: «Высшая школа», 2010.с 319

Карасев А.Н. «Математические методы в экономике»/ А.Н.Карасев,Н.Ш.Кремер,Т.Н.Савельева,2010.с.35

Акулич И. А. Математическое программирование в примерах и задачах. - М.: «Высшая школа», 2010- 319 с.

Цирель, С. В. «Венгерский способ»/ С. Цирель. Москва: УРСС, 2007.- 120 с.

Цирель, С. В. Венгерский способ/ С. Цирель. Москва: УРСС, 2007.- 120 с.

Глебова Н.В. «Применение методов линейного программирования для решения экономических задач»: учебно –методическое пособие для студентов 3 курса ВВАГС, 2001.,с.53

Предположим, что у нас имеются $4$ склада $A_1,\ A_2,\ A_3,\ A_4$ и $4$ магазина $B_1,\ B_2,\ B_3,\ B_4$. Расстояния от каждого склада до каждого магазина заданы с помощью следующей матрицы:

Например, расстояние от $A_1$ до $B_1$ равно элементу $a_{11}=10$, расстояние от $A_2$ до $B_2$ равно элементу $a_{12}=20$, и т.д.

Требуется так прикрепить склады к магазинам, чтобы суммарное расстояние получилось минимальным. Такая задача называется задачей о назначениях. Решать ее можно с помощью так называемого венгерского алгоритма.

Венгерский алгоритм

  1. В каждой строке матрицы назначения находим минимальный элемент и вычитаем его из всех элементов строки.
  2. В каждом столбце полученной матрицы находим минимальный элемент и вычитаем его из всех элементов столбца.
  3. Находим строку с одним нулем. Этот ноль заключаем в квадрат и называем отмеченным. В столбце, где стоит отмеченный ноль, все остальные нули зачеркиваем и в дальнейшем не рассматриваем. Этот шаг продолжаем, пока возможно.
  4. Находим столбец с одним нулем и этот ноль отмечаем. В строке, где стоит отмеченный ноль, все остальные нули зачеркиваются. Этот шаг продолжаем, пока возможно.
  5. Если после выполнения шагов $3$ и $4$ еще остаются неотмеченные нули, то отмечаем любой их них, а в строке и столбце, где стоит отмеченный ноль, все остальные нули зачеркиваются.
  6. Если каждая строка и каждый столбец матрицы содержит ровно один отмеченный ноль, то получено оптимальное решение. Каждый из отмеченных нулей прикрепляет поставщика к потребителю. В противном случаем проводим минимальное количество пересекающихся вертикальных и горизонтальных прямых через все нули. Среди не зачеркнутых этими прямыми чисел ищем минимум. Этот минимум вычитаем их всех не зачеркнутых чисел и прибавляем ко всем числам на пересечении прямых. К полученной матрице применяем вышеприведенный алгоритм, начиная с шага $3$.

Пример решения

Находим минимальный элемент в каждой строке матрицы и вычитаем его из всех элементов строки.

В полученной матрице проделываем тоже самое со столбцами, то есть находим в каждом столбце минимальный элемент и вычитаем его из всех элементов столбца.

В первой строке полученной матрицы находится ровно один ноль. Отмечаем его, а в столбце, где стоит этот ноль все остальные нули зачеркиваем. Получим матрицу:

Следующая строка, в который находится ровно один ноль, это $4$-я. С ней поступаем точно так же. Больше нет строк, содержащих ровно один ноль, но имеются столбцы с одним нулем. Второй столбец содержит ровно один ноль, который мы и отметим. Поскольку этот ноль находится в $3$-й строке, то вычеркиваем все нули, находящиеся в $3$-й строке. Получим матрицу:

Видим, что в матрице больше нет нулей. Полученное распределение не является оптимальным, поскольку во второй строке нет отмеченных нулей. Проводим минимальное количество пересекающихся вертикальных и горизонтальных прямых через все нули.

Находим минимальный элемент среди не зачеркнутых этими прямыми чисел: ${\min \left(5,\ 13,\ 7,\ 2,\ 11,\ 8\right)\ }=2$. Вычитаем найденный минимум из всех не зачеркнутых чисел и прибавляем его ко всем числам, стоящими на пересечении прямых. Получим матрицу:

Полученное распределение не является оптимальным, поскольку в $4$-й строке нет отмеченных нулей. Проводим прямые:

${\min \left(11,\ 5,\ 9,\ 6,\ 6,\ 1\right)\ }=1$. Вычитаем найденный минимум из всех не зачеркнутых чисел и прибавляем его ко всем числам, стоящими на пересечении прямых. Получим матрицу:

К полученной матрицы применяем вышеописанный алгоритм:

Видим, что в каждой строке и в каждом столбце матрицы находится ровно один отмеченный ноль. Получено оптимальное распределение. $A_1$ прикрепляем к $B_4$, $A_2$ - к $B_1$, $A_3$ - к $B_2$, $A_4$ - к $B_3$. Для того, чтобы найти суммарное распределение, нужно сложить числа, расположенные в исходной матрице на месте отмеченных нулей. Получим: $5+3+8+8=24$.

Стоит отметить, что задача о назначениях может решаться и на максимум (чтобы суммарное расстояние было максимальным). В этом случае каждый элемент матрицы умножается на $-1$ и к полученной матрице применяется вышеописанный алгоритм.

Содержательная постановка задачи. В объединении находится n автомобилей, способных каждый перевозить в месяц Q i тонн груза (i = 1,2,…, n). С их помощью необходимо обеспечить перевозку грузов (пиломатериал, шурупы и т.д.) от поставщиков к потребителям по n маршрутам в количестве R j тонн в месяц (j = 1,2,…, n).
Задача заключается в том, чтобы перевезти все грузы с минимальными издержками, для этого надо каждый автомобиль пустить по одному и только его маршруту. Если возможность автомобиля в перевозке груза ниже потребности потребителя этого груза, то на данный маршрут автомобиль не может быть назначен. Поэтому составляется матрицу С, характеризующую издержки i-го автомобиля, в случае, если он будет назначен на j-й маршрут.

Венгерский метод решения задач о назначениях

Алгоритм венгерского метода .

Задача о назначениях является частным случаем транспортной задачи , поэтому для ее решения можно воспользоваться любым алгоритмом линейного программирования, однако более эффективным является венгерский метод .

Специфические особенности задач о назначениях послужили поводом к появлению эффективного венгерского метода их решения. Основная идея венгерского метода заключается в переходе от исходной квадратной матрицы стоимости С к эквивалентной ей матрице Сэ с неотрицательными элементами и системой n независимых нулей, из которых никакие два не принадлежат одной и той же строке или одному и тому же столбцу. Для заданного n существует n! допустимых решений. Если в матрице назначения X расположить n единиц так, что в каждой строке и столбце находится только по одной единице, расставленных в соответствии с расположенными n независимыми нулями эквивалентной матрицы стоимости Сэ, то получим допустимые решения задачи о назначениях.

Следует иметь в виду, что для любого недопустимого назначения соответствующая ему стоимость условно полагается равной достаточно большому числу М в задачах на минимум. Если исходная матрица не является квадратной, то следует ввести дополнительно необходимое количество строк или столбцов, а их элементам присвоить значения, определяемые условиями задачи, возможно после редукции, а доминирующие альтернативы дорогие или дешевые исключить.

Введение 3

1 Задача о назначениях. Венгерский метод 4

1.1 Задача о назначениях 4

1.2 Венгерский метод решения задачи о назначениях 7

2 Решение задачи о назначениях с помощью венгерского метода 15

Заключение 20

Список использованной литературы 21


Задача о назначениях является частным случаем классической транспортной задачи и, как следствие, является задачей транспортного типа.

Транспортная задача – задача о наиболее экономном плане перевозок однородного или взаимозаменяемого продукта из пункта производства (станций отправления), в пункты потребления (станции назначения) – является важнейшей частной задачей линейного программирования, имеющей обширные практические приложения не только к проблемам транспорта.

Применительно к задаче о назначениях симплексный метод не эффективен, так как любое ее допустимое базисное решение является вырожденным. Специфические особенности задачи о назначениях позволили разработать эффективный метод ее решения, известный как венгерский метод.

Предположим, что имеется п различных работ, каждую из которых может выполнить любой из п привлеченных испол­нителей. Стоимость выполнения і-й работы j - м исполнителем известна и равна C і j (в условных денежных единицах). Необхо­димо распределить исполнителей по работам (назначить одного исполнителя на каждую работу) так, чтобы минимизировать суммарные затраты, связанные с выполнением всего комплекса работ.

В исследовании операций задача, сформулированная выше, известна как задача о назначениях. Введем переменные X ij , где X ij принимает значение 1 в случае, когда і-ю работу выполняет j-й исполнитель, и значение 0 во всех остальных случаях, i,j = 1, п . Тогда ограничение

гарантирует выполнение каждой работы лишь одним исполни­телем, ограничение

гарантирует, что каждый из исполнителей будет выполнять лишь одну работу. Стоимость выполнения всего комплекса работ равна

Таким образом, задачу о назначениях можно записать следую­щим образом:

Задача о назначениях (1) является частным случаем классической транспортной задачи, в которой надо положить При этом условие означает выполнение требова­ния целочисленности переменных x і j . Это связано с тем, что мощности всех источников и стоков равны единице, откуда следует, что в допустимом целочисленном решении значениями переменных могут быть только 0 и 1.

Как частный случай классической транспортной задачи, за­дачу о назначениях можно рассматривать как задачу линейного программирования. Поэтому в данном случае используют тер­минологию и теоретические результаты линейного программи­рования.

В задаче о назначениях переменное х і j может принимать значение 0 или 1. При этом, согласно (1), в любом допусти­мом решении лишь п переменных могут принимать значения 1. Таким образом, любое допустимое базисное решение задачи о назначениях будет вырожденным.

На практике встречаются задачи о назначениях, в поста­новках которых параметр понимается как эффективность выполнения і-й работы j - м исполнителем. В этих случаях нужно так распределить работы между исполни­телями, чтобы суммарная эффективность их выполнения была бы максимальной, т.е.

(2)

где максимум ищется при ограничениях, указанных в (1).

Параметры задачи о назначениях (1) удобно представлять матрицей , которую называют матрицей стоимости. Предположим, что и С = (c і j) - две матрицы стоимости, элементы которых связаны следующим образом:

где - некоторые постоянные. Таким образом, для получения матрицы С* нужно к элементам каждой і-й строки матрицы С прибавить число d,-, а к элементам ее каждого j - г o столбца - число Ц. В этом случае, если X - допустимое решение, удовлетворяющее ограничениям из (1), и

то с учетом ограничений из (1) типа равенства имеем

Таким образом, для любого допустимого решения X соот­ветствующие ему значения функций будут отличаться на постоянную у, которая не зависит от X . Поэтому, если есть две задачи о назначениях с одним и тем же множеством G допу­стимых решений и целевыми функциями соответственно, то их оптимальные решения совпадают. Нетрудно убедиться в наличии аналогичного свойства и у классической транспортной задачи.

Если задача о назначениях является задачей максимизации, т.е. ищется максимум целевой функции на множестве G допу­стимых решений, которое задается системой ограничений из (1), то эквивалентную ей задачу минимизации

(3)

формально нельзя отнести к задачам о назначениях, поскольку коэффициенты ее целевой функции не являются положитель­ными. Это несоответствие можно преодолеть, заменив (3) эквивалентной задачей

(4)

в которой

так как в этом случае для всех имеет место неравен­ство .

1.2 Венгерский метод решения задачи о назначениях

При обсуждении постановки задачи о назначениях было отмечено, что эта задача является частным случаем классической транспортной задачи и, как следствие, является задачей транспортного типа. Применительно к задаче о назначениях симплексный метод не эффективен, так как лю­бое ее допустимое базисное решение является вырожденным. Специфические особенности задачи о назначениях позволили разработать эффективный метод ее решения, известный как венгерский метод.

Суть венгерского метода состоит в следующем: Путем прибавления определенным образом найденных чисел к некоторым столбцам и вычитания из них некоторых чисел находят систему так называемых независимых нулей. Набор нулей называется системой независимых нулей, если никакие два (или больше) нуля не лежат на одной линии (в строке или столбце). Если число независимых нулей равно n, то, приняв соответствующие им переменные x ij равными 1, а все остальные – равными 0, согласно утверждению 2, получим оптимальный план назначения.

Алгоритм венгерского метода состоит из предварительного шага и не более, чем (n-2) последовательно повторяющихся итераций. На предварительном этапе в случае решения задачи на максимум, ее преобразуют в эквивалентную задачу на минимум. На этом же этапе выделяется система независимых нулей. Каждая последующая итерация направлена на увеличение хотя бы на 1 числа независимых нулей. Как только число независимых нулей k станет равным размерности матрицы (k=n) , задача решена.

Оптимальный план назначения определится положением независимых нулей на последней итерации.

1. Волков И.К., Загоруйко Е.А. Исследование операций: Учеб. для вузов. 2-е узд. / Под ред.. В.С. Зарубина, А.П. Крищенко. – М.: Узд-во МГТУ им. Н.Э. Баумана, 2002. – 436 с.

2. Зайченко Ю.П. Исследование операций: Учеб. пособие для студентов вузов. – 2-е изд., перераб. и доп. – Киев: Вища школа. Главное изд-во, 1979. 392 с.

3. И. А. Акулич. Математическое программирование в примерах и задачах. - М.: «Высшая школа», 1986.- 319 с.

4. Сакович В.А. Исследование операций (детерминированные методы и модели): Справочное пособие. - Мн.: Выш. шк., 1984.-256с.

5. Таха Х. Введение в исследование операций: в двух книгах. Кн.1,2 Пер. с англ. - М.: Мир, 1985.

6. Хазанова Л.Э. Математическое программирование в экономике: Учебное пособие. – М.: Издательство БЕК, 1998. – 141с.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: