Микроэлектромеханические системы. Технология MEMS

Что же такое МЭМС (MEMS)? Под этой аббревиатурой скрывается название «микроэлектромеханические системы» (Microelectromechanical systems). Они представляют собой миниатюрные устройства, содержащие микроэлектронные и микромеханические компоненты. Само название МЭМС, скажем прямо, совсем не на слуху у пользователей. Однако каждый день мы пользуемся множеством девайсов, основанных на базе этих решений. Самым простым примером микроэлектромеханической системы может служить акселерометр, который используется во всех современных смартфонах, игровых консолях и жестких дисках. Однако существует множество других систем, применение которых отнюдь не ограничивается потребительской электроникой. Решения на основе МЭМС находят применение в автомобильной промышленности, военной отрасли, а также медицине.

История и архитектура Для начала немного истории. По большому счету, началом развития МЭМС можно считать 1954 год. Именно тогда был открыт пьезорезистивный эффект кремния и германия, который лег в основу первых датчиков давления и ускорения. Через 20 лет - в 1974 году - компанией National Semiconductor впервые было налажено массовое производство датчиков давления. А в 1990-х годах рынок микроэлектромеханических систем значительно вырос благодаря началу использования различных миниатюрных сенсоров в автомобильной электронике.

MEMS-системы получили приставку «микро-» из-за своих размеров. Составные части таких устройств имеют размеры от 1 до 100 мкм, а размеры готовых систем варьируются от 20 мкм до 1 мм.

Источник изображения

В плане архитектуры МЭМС-устройство состоит из нескольких взаимодействующих механических компонентов и микропроцессора, который обрабатывает данные, получаемые от этих компонентов. Какого-то стандарта для механических элементов нет: по своему типу они могут сильно различаться в зависимости от назначения конкретного устройства.

В качестве материалов для производства МЭМС могут использоваться как и традиционный кремний, так и другие материалы: например, полимеры, металлы и керамика. Чаще всего механические системы изготавливаются из кремния. Его основные преимущества заключаются в физических свойствах. Так, кремний очень надежен - он может работать в течение триллионов циклов операций и при этом не разрушаться. Что касается полимеров, то этот материал хорош тем, что его можно производить в больших количествах и, что самое важное, с множеством различных характеристик под конкретные задачи. Ну, а металлы (золото, медь, алюминий), в свою очередь, обеспечивают высокие показатели надежности, хоть и уступают по качеству своих физических свойств кремнию.

Стоит отдельно упомянуть и о таких материалах, как нитриды кремния, алюминия и титана. Благодаря своим свойствам они широко используются в микроэлектромеханических системах с пьезоэлектрической архитектурой.

Что касается технологий производства МЭМС, то здесь используется несколько основных подходов. Это объемная микрообработка, поверхностная микрообработка, технология LIGA (Litographie, Galvanoformung и Abformung - литография, гальваностегия, формовка) и глубокое реактивное ионное травление. Объемная обработка считается самым бюджетным способом производства МЭМС. Ее суть заключается в том, что из кремниевой пластины путем химического травления удаляются ненужные участки материала. В результате чего на пластине остаются только необходимые механизмы.

Источник изображения

Глубокое реактивное ионное травление почти полностью повторяет процесс объемной микрообработки, за исключением того, что для создания механизмов используется плазменное травление вместо химического. Полной противоположностью этим двум процессам является процесс поверхностной микрообработки, при котором необходимые механизмы «выращиваются» на кремниевой пластине путем последовательного нанесения тонких пленок. И, наконец, технология LIGA использует методы рентгенолитографии и позволяет создавать механизмы, высота которых значительно превышает ширину.

В целом, все МЭМС можно разделить на две большие категории: сенсоры и актуаторы. Различаются они принципом своей работы. Если задача сенсора состоит в преобразовании физических воздействий в электрические сигналы, то актуатор выполняет прямо противоположную работу, переводя сигнал в какие-либо действия. Тот же акселерометр является сенсором, а в качестве примера устройства, использующего актуаторы, можно привести DLP-проектор (Digital Light Processing).

Источник изображения

Ну, а теперь мы поговорим о каждом устройстве в отдельности.

Акселерометры Самым распространенным МЭМС-устройством является акселерометр. Как уже говорилось выше, сфера его использования чрезвычайно обширна. Она охватывает мобильные телефоны, ноутбуки, игровые приставки, а также более серьезные устройства, такие как автомобили. Само предназначение акселерометра заключается в измерении кажущегося ускорения. В случае с мобильными телефонами он используется для многих целей. Например, для смены ориентации экрана. Или же выполнения каких-либо функций при «встряхивании» устройства. Кроме этого, не стоит забывать и об играх - они, пожалуй, составляют основную сферу применения акселерометров. Нынче уже сложно представить «продвинутую» игрушку, в которой не было бы реализовано управление посредством наклона телефона. Одним словом, акселерометр стал неотъемлемой частью смартфонов. Кстати, впервые он был установлен в мобильный телефон Nokia 5500. Благодаря акселерометру телефон можно было использовать как шагомер. Любители утренних пробежек были в восторге! Но, конечно, только после выхода Apple iPhone акселерометры достигли пика популярности. Да и в целом интерес к MEMS начал расти вместе с развитием платформ iOS и Android.

Акселерометры также имеются в различных контроллерах игровых консолей, будь то обыкновенный геймпад или несколько иное устройство, например, контроллер движения PlayStation Move. Кстати, акселерометр используется и в анонсированном на днях шлеме виртуальной реальности Sony Project Morpheus.

Особое значение имеет акселерометр, применяемый в ноутбуках, а точнее в их жестких дисках. Всем известно, что винчестеры - устройства довольно хрупкие, и в случае с лэптопами вероятность их повреждения возрастает в разы. Так, при падении ноутбука акселерометр фиксирует резкое изменение ускорения и отдает команду на парковку головки жесткого диска, предотвращая и повреждение устройства, и потерю данных.

Источник изображения

По схожему принципу акселерометр влияет на работу автомобильного видеорегистратора. При резком ускорении, торможении и перестроении транспортного средства видеозапись помечается специальным маркером, который защищает ее от стирания и перезаписи, что значительно облегчает дальнейшие разборы дорожно-транспортных происшествий.

В целом самым большим и перспективным рынком для акселерометров и других МЭМС является автомобильная промышленность. Дело в том, что в отличие от рынка мобильных и игровых устройств, где акселерометры используются в развлекательных целях, в автомобилях на работе акселерометра основываются буквально все системы безопасности. С их помощью работают система развертывания подушек безопасности, антиблокировочная система тормозов, система стабилизации, адаптивный круиз-контроль, адаптивная подвеска, система Traction Control - и это далеко не полный список! Учитывая, что производители автомобилей уделяют особое внимание безопасности, количество применяемых акселерометров и других МЭМС будет лишь расти.

Источник изображения

Но несмотря на то, что рамки использования акселерометра довольно четко определены, разработчики продолжают думать над тем, в каких еще целях можно применять это устройство. Например, ученые из Национального института геофизики и вулканологии Италии Антонио Д«Аллесандро (Antonino D’Alessandro) и Джузеппе Д«Анна (Giuseppe D’Anna) предложили использовать акселерометр мобильного телефона как датчик землетрясений. Очень интересно! Исследования проводились с акселерометром iPhone, и результаты сравнивались с показаниями полноценного датчика землетрясений компании Kinemetrics. Как оказалось, мобильный гаджет способен улавливать сильные землетрясения силой более 5 баллов по шкале Рихтера, но только если он находится вблизи эпицентра подземных толчков. Результаты не настолько впечатляют, однако ученые уверены: чувствительность акселерометров будет только расти, и в будущем они смогут определять и менее сильные землетрясения. Остается лишь вопрос: зачем акселерометру телефона измерять силу подземных толчков, когда есть датчики землетрясения? Все дело в том, что ученые ставят своей целью создание в будущем целой сети из смартфонов в сейсмически активных районах. В теории, при землетрясениях данные со смартфонов будут поступать в аналитический центр, что позволит определять наиболее пострадавшие от стихии районы и правильно координировать спасательные операции. Идея более чем интересная и, главное, действительно востребованная в некоторых уголках мира, однако сейчас сложно представить, как она будет реализована на практике.

Теперь поговорим о самой конструкции акселерометра. Существует несколько видов устройств в зависимости от их архитектуры. Работа акселерометра может основываться на конденсаторном принципе. Подвижная часть такой системы представляет собой обыкновенный грузик, который смещается в зависимости от наклона устройства. По мере его смещения изменяется емкость конденсатора, а именно меняется напряжение. Исходя из этих данных, можно получить смещение грузика, а вместе с тем и найти искомое ускорение.

Самым распространенным типом акселерометров являются пьезоэлектрические системы. Так же как и в конденсаторных акселерометрах, в их основе лежит грузик, который давлением воздействует на пьезокристалл. Под давлением он вырабатывает электрический ток, что позволяет рассчитать искомое ускорение, зная параметры всей системы.

Существует и еще один тип акселерометров, который в корне отличается от конденсаторного и пьезоэлектрического. Такие акселерометры называются термальными. Их архитектура предусматривает использование пузырька воздуха. При ускорении пузырек отклоняется от своего начального положения, и это фиксируется датчиками. Зная, на сколько сместился пузырек при движении, можно рассчитать величину ускорения.

Гироскопы Еще одним интересным датчиком, часто используемым вместе с акселерометром, является гироскоп. Его основное предназначение заключается в измерении угловых скоростей относительно одной или нескольких осей. Собственно, комбинация акселерометра и гироскопа позволяет отследить и зафиксировать движение в трехмерном пространстве.

Первым из мобильных устройств, обладающих гироскопом, стал Apple iPhone 4. После чего наличие этой МЭМС стало чуть ли не обязательным требованиям для любого смартфона. Функциональность гироскопа пользователи смогли оценивать во многих мобильных играх, где вместо одного из двух виртуальных джойстиков появилась кнопка выстрела. Ну, а целиться уже приходилось путем позиционирования смартфона в пространстве, что стало возможно как раз благодаря наличию гироскопа.

Источник изображения

Кроме мобильных устройств, гироскопы присутствуют в контроллерах для игровых приставок PlayStation, Xbox и Wii, где они функционируют вместе с акселерометрами. Также эти системы используются в камерах в целях оптической стабилизации для получения качественных снимков.

Архитектура гироскопов во многом схожа с таковой у акселерометров. Многие из этих устройств имеют конденсаторную структуру. Такой дизайн, например, использует в своих продуктах компания STMicroelectronics. В основе их гироскопа лежит механический элемент, работающий по принципу камертона и использующий эффект Кориолиса для преобразования угловой скорости в перемещение чувствительной структуры. Немного поясним этот процесс.

Две подвижные массы находятся в постоянном движении, причем в противоположных направлениях, которые обозначены на рисунке синим цветом. При изменении угловой скорости начинает действовать сила Кориолиса, обозначенная желтым цветом. При этом направление силы Кориолиса перпендикулярно направлению движения масс. Сила Кориолиса вызывает смещение масс, пропорциональное величине угловой скорости. Поскольку система имеет конденсаторную структуру, то любое смещение вызывает изменение электрической емкости. И таким образом угловая скорость преобразуется в электрический параметр. Тут же стоит отметить, что благодаря использованию специальных камертонов гироскопы STMicroelectronics нечувствительны к случайной вибрации. При таком нежелательном воздействии на подвижные массы они обе будут смещаться в одном направлении, тем самым не изменяя емкости конденсатора.

Магнитометры и барометры Еще одной интересной микроэлектромеханической системой является магнитометр. Он, как и обычный магнитный компас, отслеживает ориентацию устройства в пространстве относительно магнитных полюсов Земли. Полученная же информация используется в основном в картографических и навигационных приложениях.

В дополнение к магнитометру часто используется МЭМС-барометр. Впервые барометр появился в устройстве Samsung Galaxy Nexus, вышедшем в 2011 году. Опять же его функциональность ничем не отличается от традиционного - он измеряет атмосферное давление в текущем местоположении устройства. При этом барометр уменьшает время подключения к системе GPS. Сама же суть работы сенсора заключается в сравнении внешнего атмосферного давления по отношению к вакуумной камере внутри самого датчика. Это позволяет определять местоположение пользователя с точностью до 50 см по высоте и значительно расширяет возможности навигаций пользователя, поскольку позволяет определить местоположение по вертикали. К примеру, мобильный телефон с барометром поможет определить ваш маршрут на любом этаже торгового центра, с чем не справляется система GPS, указывая лишь местоположение на плоскости.

Источник изображения

Однако для ориентирования внутри зданий необходимо специальное программное обеспечение. Разработкой такого ПО занимается финская компания IndoorAtlas. Главная идея ориентирования внутри зданий заключается в том, что любое помещение имеет свой уникальный геомагнитный рисунок благодаря различиям в интерьере и архитектурных формах. Стоит отметить, что ни металлические конструкции внутри помещений, ни электропроводка не мешают правильной работе программы. Одноименное приложение IndoorAtlas на основе геомагнитной составляющей генерирует карту помещения и запоминает ее для дальнейшего использования. Само собой, для полноценного функционирования сервиса необходимо предварительно сгенерировать множество карт. Эта задача лежит на плечах самих пользователей, и на ее решение, безусловно, уйдет немало времени. По словам разработчиков, на составление геомагнитной карты магазина может уйти до двух часов! Прямо скажем, далеко не каждый захочет потратить столько времени даже в таких полезных целях. Помимо этого, вызывала вопросы точность позиционирования, однако инженеры IndoorAtlas утверждают: «вы сможете определить свое местоположение с точностью до 2 метров». Неплохо.

Источник изображения

IndoorAtlas далеко не единственная компания, которая работает в этом направлении. Разработкой сервисов для ориентирования в помещениях также занимаются такие крупные компании, как Google, Samsung и Qualcomm.

Микрофоны Впервые МЭМС-микрофоны были использованы в телефонах Motorola в 2003 году. И прошло немало времени, прежде, чем микрофоны с такой архитектурой начали вытеснять традиционные электретные устройства. В сравнении с предшественниками МЭМС-микрофоны обеспечивают более четкую и качественную передачу звука. И опять же первой компанией, сделавшей ставку на МЭМС-микрофоны, стала Apple, которая начала их использовать в своих продуктах iPhone 4 и iPad 2. Интересно, что в iPhone используется не один, а два микрофона - в целях снижения уровня посторонних шумов, что особенно важно для работы систем распознавания голоса. Примеру Apple последовали и другие компании, в том числе Samsung и LG, которые внедрили МЭМС-микрофоны в свои устройства Galaxy Tab 10.1 и G-Slate. Сейчас микрофоны такого типа становятся определенным стандартом.

Источник изображения

Что касается архитектуры МЭМС-микрофонов, то во многом она схожа с дизайном акселерометров и гироскопов. Как и эти устройства, работа микрофона может основываться на конденсаторном принципе. В основе датчика лежат две обкладки: подвижная, называемая мембраной, и неподвижная. Когда человек говорит, на мембрану микрофона оказывается давление воздухом и она смещается. При смещении мембраны изменяется напряжение в системе, что влечет изменение емкости конденсатора. Далее происходит пересчет полученных данных в численные параметры звуковой волны. Стоит отметить, что мембрана представляет собой решетчатую поверхность. Перфорация выполняется для того, чтобы уменьшить вероятность возникновения помех.

Также МЭМС-микрофоны могут иметь пьезоэлектрическую архитектуру. В этом случае вместо неподвижной обкладки используется пьезокристалл, на который воздействует подвижная мембрана. Под давлением мембраны пьезокристалл вырабатывает электрический ток, который затем преобразуется в параметры звуковой волны.

Вместо заключения В этот раз мы рассмотрели самые распространенные МЭМС-устройства, которые используются в большинстве современных смартфонов. Но, как мы уже говорили, применение микроэлектромеханических систем отнюдь не ограничивается сферой потребительской электроники! В следующей части нашего материала мы остановимся на МЭМС-актуаторах и уделим внимание инновационным разработкам. Следите за обновлениями!

Микроэлектромеханические системы или сокращённо МЭМС представляют собой устройства микросистемой техники, выполненные по технологии объёмной микромеханики, сформированные путём локального вытравливания подложки, легирования, нанесения на неё материала и т. д. Подложки, как правило, изготавливаются из кремния благодаря его превосходным электрическим, механическим и тепловым свойствам. Размеры МЭМС лежат в диапазоне от 1 микрона до нескольких миллиметров, в зависимости от мощности, области применения, наличия встроенных схем обработки и количества элементов.

Основные преимущества:

  • Миниатюрность;
  • Высокая функциональность;
  • Надёжность;
  • Малое энергопотребление;
  • Возможность интеграции электроники с механическими, оптическими и прочими узлами;
  • Малый разброс параметров в пределах одной партии изделий;
  • Высокая технологичность и повторяемость;
  • Возможность достичь очень низкую стоимость (при больших или очень больших объёмах производства).

В виде МЭМС могут быть выполнены следующие устройства:

Особенности технологии МЭМС и приборов, выполненных по данной технологии

Технология производства МЭМС подразумевает осаждение и видоизменение слоёв материала целиком, используя специальную технику для осаждения и особые маскирующие слои для формирования рельефа механических элементов и всего изделия в одном технологическом цикле. В данном цикле обрабатывается единственная подложка, которая может содержать от десятков до сотен заготовок МЭМС.

Почему МЭМС?

Применение МЭМС технологии позволяет получать микромеханические и оптические узлы значительно меньших размеров, чем это возможно по традиционным технологиям. Идея изготовления сенсоров и обрабатывающих схем в одном устройстве даёт прекрасную возможность создавать готовые, достаточно высокой сложности изделия в едином, относительно небольшом корпусе, что является выгодным разработчикам конечных устройств, поскольку позволяет выполнять проект на основе готовых решений на уровне законченных функциональных модулей. Так же преимуществом МЭМС является электронная часть, и электрические соединения с датчиками и механизмами, выполненные по интегральной технологии и имеющие малые размеры, поскольку они позволяют улучшить такие характеристики, как рабочие частоты, соотношение сигнал/шум и т. п. Высокая повторяемость чувствительных элементов, и их интегральное изготовление вместе с обрабатывающей схемой позволяет значительно повысить точность измерений. Благодаря интегральной технологии надежность МЭМС выше, чем надежность аналогичной системы, которая собрана из дискретных компонентов. Также большей надежностью и долговечностью обладают оптические системы, поскольку они располагаются в герметичном корпусе и защищены от воздействий внешней среды. Применение МЭМС уменьшает стоимость как механической, так и электронной частей устройства, поскольку обрабатывающая электроника и МЭМС интегрированы в единой подложке, что позволяет избежать дополнительных соединений и, в некоторых случаях, применения согласующих схем.

На данный момент ведутся разработки генераторов электрической энергии на основе микро ДВС.

Данная работа ведётся под руководством профессора Симоны Хохгреб (Simone Hochgreb) из Центра исследования горения (Combustion Research Centre) университета Кембриджа (Cambridge University) и доктора Кили Цзян (Kyle Jiang) из Центра микроинжиниринга и нанотехнологий (Micro-Engineering and Nano-Technology Research Centre) университета Бирмингема (University of Birmingham).

Они проектируют двигатели с объёмом камеры сгорания порядка одного кубического миллиметра.

Интересно, что ДВС, создаваемые британцами - это дизели. Только вот работают они не на солярке, а на неких метаноловых смесях (с добавкой водорода), способных самостоятельно вспыхивать при такте сжатия.

Так же разработан и изготовлен с помощью МЭМС технологии микро роторный двигатель (двигатель внутреннего сгорания Ванкеля). Диаметр ротора: 1мм; частота вращения ротора (макс): 40000 об./мин; мощность: 26 мВт; рабочий объем: 0,064 мм3. Мощность как у щелочной батарейки, однако, размер куда меньше.

А мощность микро роторного двигателя, изображённого справа - 4 Вт.

Применение:

  • Военная техника;
  • Космические аппараты;
  • Автомобилестроение;
  • Медицина;
  • Наука;
  • Промышленность;
  • Мобильные устройства;
  • Бытовая техника;

MEMS-компоненты (рус. МЕМС) – расшифровываются, как микроэлектромеханические системы. Основной отлиительной особенностью в них является, то что они содержат в себе подвижную 3D-структуру. Она движется за счет внешнего воздействия. Следовательно, движутся в МЕМС-компонентах не только электроны, но и составные части.

MEMS-компоненты – это один из элементов микроэлектроники и микромеханики, изготовленный зачастую на кремниевой подложке. По структуре они напоминают однокристальные ИМС. Обычно эти механические части МЕМС имеют размеры от единиц до сотен микрометров, а сам кристалл от 20 мкм до 1 мм.

Рисунок 1 – один из примеров структуры MEMS

Примеры использования:

1. Изготовление различных микросхем.

2. МЭМС-осцилляторы в некоторых случаях заменяют .

3. Изготовление датчиков, среди которых:

    акселерометр;

    гироскоп

    датчик угловых скоростей;

    магнитометрический датчик;

    барометры;

    анализаторы среды;

    измерительные преобразователи радиосигнала.

Материалы, применяемые в MEMS-структурах

К основным материалам, из которых изготавливаются МЕМС-компоненты относят:

1. Кремний. В настоящее время подавляющее большинство электронных компонентнов изготавливаются именно из этого материала. У него целый ряд преимуществ, среди которых: распространенность, прочность, при деформации практически не изменяет свойств (не появляется гистерезис). Основным способом изготовления кремниевых МЕМС является фотолитография с последующим травлением.

2. Полимеры. Так как кремний хоть и распространенный материал, но сравнительно дорогой, для его замены в некоторых случаях могут использоваться полимеры. Они производятся промышленностью в больших объемах и с разнообразными характеристиками. Основные методы изготовления полимерных МЕМС – это литьевое формирование, штамповка, стереолитография.

Производственные объемы на примере крупного производителя

Для примера востребованности этих компонентов приведем компанию ST Microelectronics. Она производит крупные инвестиции в МЕМС-технологии, в день на её фабриках и заводах производится до 3 000 000 элементов в день.

Рисунок 2 – производственные мощностя компании разрабатывающей MEMS-компоненты

Производственный цикл разбит на 5 основных крупных этапов:

1. Производство чипов.

2. Тестирование.

3. Упаковка в корпуса.

4. Финальное тестирование.

5. Поставка дилерам.

Рисунок 3 – цикл производства

Примеры МЕМС-датчиков разных типов

Рассмотрим несколько популярных МЕМС-датчиков.

Акселерометр – это прибор, который измеряет линейное ускорение. Его используют для определения метоположения или движение объекта. Используется в мобильной технике, автомобилях и прочем.

Рисунок 4 – три оси распознаваемые акселерометром

Рисунок 5 – внутренняя структура МЕМС-акселерометра

Рисунок 6 – пояснения к структуре акселерометра

Характеристики акселерометра на примере компонента LIS3DH:

1. 3 осевой акселерометр.

2. Работает с интерфейсами SPI и I2C.

3. Измерение по 4м шкалам: ±2, 4, 8 и 16g.

4. Высокое разрешение (до 12 бит).

5. Низкое потребление: 2 мкA в режиме Low power mode (1Гц), 11мкA в режиме Normal (50Гц) и 5мкA в режиме Power Down.

6. Гибкость работы:

    8 ODR: 1/10/25/50/100/400/1600/5000 Гц;

    Пропускная способность до 2.5 КГц;

    32-уровневый FIFO (16-бит);

    3 входа АЦП;

    Датчик температуры;

    Питание от 1.71 до 3.6 В;

    Функция самотестирования;

    Корпус 3 x 3 x 1 мм. 2.

Гироскоп – это прибор который измеряет угловое перемещение. С его помощью можно измерять угол вращения округ оси. Такие приборы могут использовать в качестве системы навигации и управления полетом летательных аппаратов: самолетов и различных БПЛА или для определения положения мобильных устройств.

Рисунок 7 – данные измеряемые гироскопом

Рисунок 8 – внутренняя структура

Для примера рассмотрим характеристики МЕМС-гироскопа L3G3250A:

    3-Осевой Аналоговый Гироскоп;

    Иммунитет к аналоговому шуму и вибрациям;

    2 шкалы измерения: ±625°/с и ±2500°/с;

    Power down и Sleep режимы;

    Функция самотестирования;

    заводская калибровка;

    Высокая чувствительность: 2 мВ/°/с при 625°/с

    Встроенный фильтр нижних частот

    Высокая температурная стабильность (0.08°/с/°C)

    Высокое шоковое состояние: 10000g в течении 0.1 мс

    Температурный диапазон от -40 до 85°C

    Напряжение питания: 2.4 - 3.6В

    Потребление: 6.3 мA в Normal, 2 мA в Sleep и 5 мкA в Power Down режимах

    Корпус 3.5 x 3 x 1 LGA

Выводы

На рынке МЕМС-датчиков кроме рассмотренных в докладе примеров есть и другие элементы, среди которых:

    Многоосевые (например, 9-осевые) датчики;

    Компасы;

    Датчики для измерения окружающей среды (давления и температуры);

    Цифровые микрофоны и прочее.

Современная промышленная высокоточные микроэлектромеханические системы, которые активно применяются в транспортных средствах и портативных носимых компьютерах.

Реальная мощь технологии МЭМС заключается в возможности одновременного создания на поверхности пластины множества механизмов без единой сборочной операции. Поскольку процесс подобен классической фотолитографии, изготовить на подложке миллион механизмов так же просто, как и один.

Эти становящиеся вездесущими крошечные машины быстро пробили себе дорогу во множество коммерческих и военных приложений.

При изготовлении МЭМС используется несколько основных технологий, которые мы рассмотрим ниже.

Объемная микрообработка

Объемная микрообработка - это производственный процесс, идущий от поверхности кремниевой пластины вглубь, при которой химическим травлением последовательно удаляются ненужные участки кремния, в результате чего остаются полезные механизмы. Традиционным фотоспособом на пластине формируется рисунок, защищающий те участки, которые необходимо сохранить. Затем пластины погружаются в жидкий травитель, в качестве которого может использоваться гидроксид калия, «съедающий» незащищенные участки кремния. Технология объемной микрообработки относительно проста и недорога, и хорошо подходит для не слишком сложных приложений, критичных к цене.

Практически все датчики давления изготавливаются сегодня с помощью объемной микрообработки. По ряду параметров они превосходят традиционные датчики давления, так как намного более дешевы, исключительно надежны, технологичны и имеют хорошую воспроизводимость параметров.

В любом современном автомобиле обязательно есть несколько микромеханических датчиков давления. Типичное пример их использования - измерение давления во впускном коллекторе двигателя.

Миниатюрность и высочайшая надежность изготовленных объемной микрообработкой датчиков давления делают их идеальными компонентами также и для различных медицинских приложений.

Поверхностная микрообработка

В противоположность объемной микрообработке, суть которой заключается в послойном удалении материала с поверхности пластины с помощью травления, при поверхностной микрообработке происходит последовательное наращивание слоев материала на кремний.

Типичный процесс поверхностной микрообработки представляет собой повторяющуюся последовательность нанесения на поверхность пластины тонких пленок, формирования на пленке защитного рисунка методом фотолитографии и химического травления пленки. Чтобы создать подвижные, функционирующие механизмы, в слоях чередуют тонкие пленки конструкционного материала (обычно это кремний) и заполнителя, называемого также абляционным материалом (как правило, двуокись кремния). Из конструкционного материала образуются механические элементы, а абляционный материал заполняет пустоты между ними. На последнем этапе заполнитель удаляется травлением, и конструкционные элементы приобретают подвижность и функциональность.

Если в качестве конструкционного материала используется кремний, а заполнителем служит двуокись кремния, финальный этап состоит в погружении пластины в плавиковую кислоту, которая быстро вытравливает заполнитель, оставляя кремний нетронутым.

Затем, в типичном случае, пластины разрезаются на отдельные кристаллы, которые, в свою очередь, упаковываются в корпуса той или иной конструкции, соответствующей требуемому приложению.

Поверхностная микрообработка требует большего количества технологических операций, чем объемная, и, соответственно, она дороже. Поверхностная микрообработка используется для создания более сложных механических элементов.


LIGA (от немецкого LItographie, Galvanoformung и Abformung - литография, гальваностегия, формовка) - это технология, позволяющая методами рентгенолитографии создавать небольшие элементы с относительно большим отношением высоты к ширине. Процесс изготовления в типичном случае начинается с нанесения фотомаски на поверхность листа полиметилметакрилата (ПММА). Затем ПММА подвергается экспонированию рентгеновскими лучами высокой энергии. Экспонированные участки, не защищенные маской, удаляются с помощью подходящего травителя, в результате чего образуются исключительно точные микроскопические механические элементы.

Технология LIGA относительно дешева и хорошо подходит для приложений, требующих большего коэффициента соотношения сторон, чем можно получить с помощью поверхностной микрообработки.

Глубокое реактивное ионное травление

От традиционной объемной микрообработки глубокое реактивное ионное травление (Deep Reactive Ion Etching - DRIE) отличается только тем, вместо влажного химического травления для создания фигур используется плазменное. Это позволяет намного гибче управлять профилями травления и существенно расширить ассортимент изготавливаемых элементов. Производственное оборудование для ионного травления весьма дорого, поэтому и приборы, созданные по технологии DRIE, как правило, дороже приборов, сделанных с использованием традиционного влажного травления.

Интегрированные МЭМС технологии

Поскольку для создания МЭМС используется то же оборудование и те же технологии, что и для изготовления интегральных схем, ничто не мешает формировать электронные схемы на одном кристалле с микромеханизмами. Это позволяет снабжать микромашины интеллектом и создавать очень интересные устройства.

Что такое МЭМС?Микроэлектромеханические системы (МЭМС) – это
системы, включающие в себя взаимосвязанные
механические и электрические компоненты микронных
размеров.
Трехосевой
акселерометр
Электрический
микродвигатель

Что такое МЭМС?

МЭМС =
Электроника + Микромеханика

История создания

1958 г. - первые прототипы интегральных схем (ИС);
1960 г. - мелкосерийный выпуск ИС;
1974 г. - промышленный выпуск тензодатчиков на
основе кремния (National Semiconductors);
1982 г. - термин микрообработка (micromachining)
используется для описания процессов изготовления
механических подсистем (диафрагм и микробалок);
1986 г. - в одном из отчетов министерства обороны
США был впервые использован термин
“микроэлектромеханические системы” (МЭМС);

Способы изготовления

Изготовление МЭМС
Объемная
микрообработка
(bulk micromachining)
Поверхностная
микрообработка
(surface micromachining)
Субтрактиный подход – от
целого отсекаем лишнее
(как изготовление статуи)
Аддитивный подход –
строим целое из
кирпичиков
(как строительство дома)

Объемная микрообработка

Это процесс, идущий от поверхности материалаосновы вглубь, при которой травлением
последовательно удаляются ненужные участки этого
материала, в результате чего остаются механические
структуры необходимой формы.
Микрозахват (microgripper)
Микрокантилеверы

Объемная микрообработка

Si
Отжиг
XeF2
SiO2
Si
SiO2
Si
Литография
Фоторезист
SiO2
Si
RIE
SiO2
Si

Поверхностная микрообработка

Это процесс, заключающийся последовательных
циклах нанесение тонких слоев материала, которые
затем с помощью литографии и последующего
травления приобретает необходимую геометрическую
форму
Система зубчатой
передачи
Элемент
тепловизионной
матрицы

Поверхностная микрообработка

Обобщенная схема изготовления МЭМС

Применение МЭМС

Датчики:
Акселерометры;
Гироскопы;
Магнетометры;
Датчики давления
расходометры
Исполнительные
механизмы (актуаторы):
Микродвигатели;
Микрозахваты;
Микрозеркала;
Области применения:
1. МЭМС-компоненты для высокочастотной электроники (RF MEMS);
2. Датчики на основе сил инерции;
3. Акустические и ультразвуковые МЭМС, датчики давления;
4. Оптические МЭМС;
5. Биомедицинские МЭМС;
6. Микроманипуляторы.

Высокочастотные МЭМС ключи

F2
F1
Земля
h0
Земля
Земля
Сигнал
S
V
V
Вид сверху
Вид сбоку
V’ = 0
Земля

Высокочастотные МЭМС ключи

Vкр= 30-50В

Датчик давления на основе МЭМС

P1
P2
F2
h
F1
Датчики давления
пьезорезистивного типа
Датчики давления
емкостного типа

Акселерометры и гироскопы

F1
F2

Акселерометры и гироскопы

Оптические МЭМС

Элементы МОЭМС: зеркала,
призмы, линзы
Электростатически
управляемое микрозеркало

Оптические МЭМС: DLP

DLP (Digital Light Processing) - технология, используемая во
многих проекторах
Устройство отклоняющих
зеркал
Красной стрелкой показан путь луча
света от лампы к матрице, через
диск светофильтров, зеркало и
линзу. Далее луч отражается либо в
объектив (жёлтая стрелка), либо на
радиатор (синяя стрелка).

Оптические МЭМС: микроболометры

Инфракрасное излучение пройдя сквозь систему линз попадает на
поглощающий элемент, нагревая его. Рядом с этим элементов находится
терморезистивная пленка, меняющее свое сопротивление от нагрева. Так
как температурные коэффициент изменения сопротивления при комнатной
температуре невелик (порядка 2% на градус для диоксида ванадия)

В исполнительных механизмах на основе МЭМС технологий обычно
задействуются следующие компоненты:
1. Элементы на основе обратного пьезолектрического эффекта – можно
получать большие величины силы, но величина смещения мала. Требует
высоких электрических напряжений;
2. Биморфные элементы на основе двух материалов с разным
температурным коэффициентом расширения. Можно получать большие
величины силы и смещения, процесс происходят медленно и им сложно
управлять;
3. Электростатические элементы, работающие за счет
электростатического притяжения и отталкивания между обкладками
конденсатора. Небольшие величины силы и смещения, легко изготовить,
требуются большие значения электрического напряжения;
4. Элементы на основе магнитных катушек. Слабые величины силы,
сложно изготовить;

Исполнительные механизмы МЭМС

Пьезакерамический элемент сканера
атомно-силового микроскопа
Биморфный (Si - Al)
элемент. Стрелкой
показано направление
изгиба при его нагреве

Исполнительные механизмы МЭМС

Электростатические актуатор
линейного движения
Электростатические актуатор
углового движения

Список литературы

1. “ВЧ МЭМС и их применение” Варадан В., Виной К., Джозе К.,
Техносфера, 2004.
2. “Электромеханические микроустройства”, Н. Мухуров,Г. Ефремов,
Litres, 2014.
3. MEMS and MOEMS Technology and Applications, P. Rai-Choudhury, SPIE
Press, 2000.
4. MEMS: Introduction and Fundamentals, M. Gad-el-Hak, CRC Press, 2005.
5. An Introduction to Microelectromechanical Systems Engineering, N. Maluf,

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: