Локальные сети в виде кольца. Кольцевая топология: преимущества и недостатки

Возможности МВВ позволяют организовывать кольцевые самозалечивающиеся сети .

Существуют два варианта их построения: однонаправленное и двунаправленное кольцо.

При первом варианте каждый входной поток направляется вокруг кольца в обоих направлениях, а на приемной стороне, как и в случае схемы 1+1, осуществляется выбор лучшего сигнала. Для построения кольца используются два волокна. Передача по всем основным путям происходит в одном направлении (например, по часовой стрелке), а по всем резервным - в противоположном (деление на основной и резервный пути здесь является условным, так как они оба равноправны). Поэтому такое кольцо называется однонаправленным, с переключением трактов или с закрепленным резервом.

Схема прохождения сигналов обоих направлений передачи для одного соединения по основному и резервному путям в таком кольце изображена на рис. 5.2.

Рис. 5.2. Однонаправленное кольцо

В случае двунаправленного кольца с двумя волокнами удвоение сигнала не производится. При нормальной работе каждый входной поток направляется вдоль кольца по кратчайшему пути в любом направлении (отсюда и название "двунаправленное"). При возникновении отказа посредством МВВ на обоих концах отказавшего участка осуществляется переключение всего потока информации, поступавшего на этот участок, в обратном направлении. О таком кольце также говорят, что в нем осуществляется переключение секций или защита с совместно используемым резервом.

Пример двунаправленного кольца приведен на рис. 5.3 и рис. 5.4. На них показаны схемы прохождения сигналов обоих направлений передачи для одного соединения при нормальном режиме работы (рис. 5.3) и в аварийном режиме при отказе одного из участков кольца, перечеркнутого крестом (рис. 5.4).

Рис. 5.3. Двунаправленное кольцо в нормальном режиме

Рис. 5.4. Двунаправленное кольцо в аварийном режиме

Возможно также двунаправленное кольцо с четырьмя волокнами. Оно обеспечивает более высокий уровень отказоустойчивости, чем кольца с двумя волокнами, однако затраты на его построение существенно больше, поэтому такой вариант применяется реже.

Двунаправленное кольцо в большинстве случаях оказывается более экономичным, требуя меньшую пропускную способность. Это объясняется тем, что сигналы, передаваемые на различных непересекающихся участках такого кольца, могут использовать одни и те же емкости (как в основном, так и в аварийном режимах работы). В то же время однонаправленное кольцо проще в реализации. Анализ типичных ситуаций показывает, что каждый из двух видов кольцевой архитектуры имеет свою область предпочтительного применения.

Однонаправленные кольца больше подходят для случаев центростремительного трафика. Это типично для сетей доступа, предназначенных для подключения пользователей к ближайшему узлу. Двунаправленные кольца более выгодны при достаточно равномерном распределении трафика, при котором становится заметным их преимущество в пропускной способности. Поэтому их применение целесообразно для соединительных сетей.

При обоих вариантах возможно сохранение полной работоспособности сети при любом одиночном отказе.

Топология «кольцо» - это топология, в которой каждый компьютер соединён линиями связи только с двумя другими: от одного он только получает информацию, а другому только передаёт. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приёмник. Это позволяет отказаться от применения внешних терминаторов.
Каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всём кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Чётко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надёжность сети, потому что выход его из строя сразу же парализует весь обмен.
Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). В качестве носителя в сети используется витая пара или оптоволокно. Сообщения циркулируют по кругу.
Рабочая станция может передавать информацию другой рабочей станции, только после того, как получит право на передачу (маркер), поэтому коллизии исключены. Информация передается по кольцу от одной рабочей станции к другой, поэтому при выходе из строя одного компьютера, если не принимать специальных мер выйдет из строя вся сеть.
Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

Каждая рабочая станция сети соединена кабелем с другой рабочей станцией и одним или несколькими серверами. Слово топология означает схему физического расположения кабелей, соединяющих компьютеры в единую сеть. В целом существует три типа топологии компьютерной сети.

    Шинная . Все компьютеры сети последовательно подключаются друг к другу. Сетевое соединение начинается с сервера и заканчивается последней системой в сети.

    Звездообразная . Каждый компьютер в сети подключается к центральной точке доступа.

    Кольцевая . Каждый компьютер в сети подключается к другим по кольцевой или контурной схеме.

В одной сети может быть скомбинировано несколько топологических схем. Такие сети называются гибридными . Например, концентраторы нескольких сетей с звездообразной топологией могут быть соединены посредством шинной схемы, тем самым формируя звездообразно-шинную сеть. Точно таким же образом можно объединять и сети с кольцевой топологией.

Шинная топология

Иногда между двумя наиболее удаленными друг от друга рабочими станциями прокладывается один-единственный кабель, обходящий все остальные станции и серверы. Этот способ соединения называется шинной топологией (рис. 9). Однако такой способ соединения имеет существенный недостаток: если рабочая станция или кабель и соединения по каким-либо причинам выйдут из строя, все остальные объекты, расположенные дальше по линии, потеряют связь с сетью. Такая топология используется при создании локальной сети с помощью кабелей толстого и тонкого Ethernet. Тем не менее появление дешевых и более компактных неэкранированных кабелей типа витой пары, которые также подходят для быстрой передачи данных, делает предыдущий недостаток шинной топологии менее очевидным. При возникновении неполадок с определенным компьютером или кабельным соединением все станции, расположенные за этой системой, могут быть отключены от сети. Проблемы с тонкими Ethernet-сетями (10BASE-5) часто возникают из-за ослабления крепления устройства AUI к коаксиальному кабелю. Кроме того, Т-адаптеры и нагрузочные резисторы тонкой Ethernet-сети 10BASE-2 могут также разболтаться или же их отключит пользователь, тем самым нанеся серьезный вред функционированию всей сети или ее отдельных компонентов.

Еще один недостаток 10BASE-T проявляется при подключении новой системы в сеть между уже установленными системами. В результате может потребоваться разделение сетевого кабеля между компьютерами на более короткие сегменты, что необходимо для подключения сетевой платы и Т-адаптера нового компьютера.

Ðèñ. 9. В последовательной шинной топологии все сетевые устройства подсоединяются к одному кабелю

Кольцевая топология

В дискуссиях о сетях часто упоминается кольцевая топология, в которой каждая рабочая станция подключается к следующей, а последняя подключается к первой (похоже на шинную топологию с соединенными концами). Существует два основных типа сетей, использующих кольцевую топологию:

    FDDI , в которой используется физическая кольцевая топология;

    Token-Ring , использующая логическую кольцевую топологию.

На самом деле физически не обязательно, чтобы кабели соединялись кольцом. Фактически кольцо существует лишь внутри концентратора для Token Ring (так называемый модуль многопользовательского доступа (MultiStation Access Unit  MSAU)). Схема кольцевой топологии Token-Ring показана на рис. 10. Сигнал, посланный одним компьютером, попадает в концентратор, а из концентратора посылается следующему компьютеру, после чего снова попадает в концентратор. Таким образом, данные попадают в каждый компьютер, пока снова не доходят до посылавшего их компьютера, который извлекает их из кольца. Таким образом, хотя физическая топология проводов имеет вид звезды, данные в такой сети передаются по так называемому логическому кольцу .

Логическое кольцо удобнее физической кольцевой топологии, поскольку такая система имеет более высокую отказоустойчивость. В шинной сети повреждение кабеля приводит к остановке всей сети. В Token Ring модуль многопользовательского доступа может просто отключить компьютер, в котором происходят сбои, от логического кольца, что позволит остальной сети продолжить работу.

Ðèñ. 10. Передача данных в сети Token-Ring

Кольцо (топология компьютерной сети)

Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.

Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина », максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

В кольце, в отличие от других топологий (звезда , шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков - пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Сравнение с другими топологиями

Достоинства

  • Простота установки;
  • Практически полное отсутствие дополнительного оборудования;
  • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки

  • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
  • Сложность конфигурирования и настройки;
  • Сложность поиска неисправностей.
  • Необходимость иметь две сетевые платы, на каждой рабочей станции.

Применение

Наиболее широкое применение получила в волоконно-оптических сетях. Используется в стандартах FDDI , Token ring .

Ссылки

  • Топология компьютерных сетей: шина, звезда, кольцо, активное дерево, пассивное дерево



Wikimedia Foundation . 2010 .

Смотреть что такое "Кольцо (топология компьютерной сети)" в других словарях:

    Двойное кольцо это топология, построенная на двух кольцах. Первое кольцо основной путь для передачи данных. Второе резервный путь, дублирующий основной. При нормальном функционировании первого кольца, данные передаются только по … Википедия

    У этого термина существуют и другие значения, см. Звезда (значения). Звезда базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Подобный… … Википедия

    У этого термина существуют и другие значения, см. Шина (значения). Топология типа общая шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы,… … Википедия

    Топология типа общая Древовидная топология, представляет собой топологию ЗВЕЗДА. Если представить как растут ветки у дерева то мы получим топологию Звезда, изначально топология называлась именно древовидная, с течением времени начали в скобках… … Википедия

    Решётка понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решетку. При этом каждое ребро решетки параллельно ее оси и соединяет два смежных узла вдоль этой оси. Одномерная «решётка»… … Википедия

    У этого термина существуют и другие значения, см. Решётка. Решётка понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решётку. При этом каждое ребро решётки параллельно её оси и… … Википедия

    - (от древнерусск. «коло» круг) круглый объект с отверстием внутри (пример: тор или полноторие). В Викисловаре есть статья «ко … Википедия

    Ячеистая топология базовая полносвязная топология компьютерной сети, в которой каждая рабочая станция … Википедия

    Топология типа шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала. Содержание 1 Работа в сети … Википедия

    Компьютерная сеть (вычислительная сеть, сеть передачи данных) система связи двух или более компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные… … Википедия

При кольцевой топологии сети рабочие станции связаны одна с дру­гой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3

Кольцевая топология

с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посы­лает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффектив­ной, так как большинство сообщений можно отправлять “в дорогу” по ка­бельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличи­вается пропорционально количеству рабочих станций, входящих в вычисли­тельную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информа­ции, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограниче­ния на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.


Структура логической кольцевой цепи

Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топо­логий. Отдельные звезды включаются с помощью специальных коммутато­ров (англ. Hub -концентратор), которые по-русски также иногда называют “хаб”. В зависимости от числа рабочих станций и длины кабеля между рабо­чими станциями применяют активные или пассивные концентраторы. Актив­ные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключи­тельно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети про­исходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управ­ление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях мо­жет нарушаться работа всей сети.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: