Базы данных реляционные. Понятие реляционной базы данных

Реляционная база данных - основные понятия

Часто, говоря о базе данных, имеют в виду просто некоторое автоматизированное хранилище данных. Такое представление не вполне корректно. Почему это так, будет показано ниже.

Действительно, в узком смысле слова, база данных - это некоторый набор данных, необходимых для работы (актуальные данные). Однако данные - это абстракция; никто никогда не видел "просто данные"; они не возникают и не существуют сами по себе. Данные суть отражение объектов реального мира. Пусть, например, требуется хранить сведения о деталях, поступивших на склад. Как объект реального мира - деталь - будет отображена в базе данных? Для того, чтобы ответить на этот вопрос, необходимо знать, какие признаки или стороны детали будут актуальны, необходимы для работы. Среди них могут быть название детали, ее вес, размеры, цвет, дата изготовления, материал, из которого она сделана и т.д. В традиционной терминологии объекты реального мира, сведения о которых хранятся в базе данных, называются сущностями - entities (пусть это слово не пугает читателя - это общепринятый термин), а их актуальные признаки - атрибутами (attributes).

Каждый признак конкретного объекта есть значение атрибута. Так, деталь "двигатель" имеет значение атрибута "вес", равное "50", что отражает тот факт, что данный двигатель весит 50 килограммов.

Было бы ошибкой считать, что в базе данных отражаются только физические объекты. Она способна вобрать в себя сведения об абстракциях, процессах, явлениях - то есть обо всем, с чем сталкивается человек в своей деятельности. Так, например, в базе данных можно хранить информацию о заказах на поставку деталей на склад (хотя он - не физический объект, а процесс). Атрибутами сущности "заказ" будут название поставляемой детали, количество деталей, название поставщика, срок поставки и т.д.

Объекты реального мира связаны друг с другом множеством сложных зависимостей, которые необходимо учитывать в информационной деятельности. Например, детали на склад поставляются их производителями. Следовательно, в число атрибутов детали необходимо включить атрибут "название фирмы-производителя". Однако этого недостаточно, так как могут понадобиться дополнительные сведения о производителе конкретной детали - его адрес, номер телефона и т.д. Значит, база данных должна содержать не только информацию о деталях и заказах на поставку, но и сведения об их производителях. Более того, база данных должна отражать связи между деталями и производителями (каждая деталь выпускается конкретным производителем) и между заказами и деталями (каждый заказ оформляется на конкретную деталь). Отметим, что в базе данных нужно хранить только актуальные, значимые связи.

Таким образом, в широком смысле слова база данных - это совокупность описаний объектов реального мира и связей между ними, актуальных для конкретной прикладной области. В дальнейшем мы будем исходить из этого определения, уточняя его по ходу изложения.

Реляционная модель данных

Итак, мы получили представление о том, что хранится в базе данных. Теперь необходимо понять, как сущности, атрибуты и связи отображаются на структуры данных. Это определяется моделью данных.

Традиционно все СУБД классифицируются в зависимости от модели данных, которая лежит в их основе. Принято выделять иерархическую, сетевую и реляционную модели данных. Иногда к ним добавляют модель данных на основе инвертированных списков. Соответственно говорят об иерархических, сетевых, реляционных СУБД или о СУБД на базе инвертированных списков.

По распространенности и популярности реляционные СУБД сегодня - вне конкуренции. Они стали фактическим промышленным стандартом, и поэтому отечественному пользователю придется столкнуться в своей практике именно с реляционной СУБД. Кратко рассмотрим реляционную модель данных, не вникая в ее детали.

Она была разработана Коддом еще в 1969-70 годах на основе математической теории отношений и опирается на систему понятий, важнейшими из которых являются таблица, отношение, строка, столбец, первичный ключ, внешний ключ.

Реляционной считается такая база данных, в которой все данные представлены для пользователя в виде прямоугольных таблиц значений данных, и все операции над базой данных сводятся к манипуляциям с таблицами. Таблица состоит из строк и столбцов и имеет имя, уникальное внутри базы данных. Таблица отражает тип объекта реального мира (сущность), а каждая ее строка - конкретный объект. Так, таблица Деталь содержит сведения о всех деталях, хранящихся на складе, а ее строки являются наборами значений атрибутов конкретных деталей. Каждый столбец таблицы - это совокупность значений конкретного атрибута объекта. Так, столбец Материал представляет собой множество значений "Сталь", "Олово", "Цинк", "Никель" и т.д. В столбце Количество содержатся целые неотрицательные числа. Значения в столбце Вес - вещественные числа, равные весу детали в килограммах.

Эти значения не появляются из воздуха. Они выбираются из множества всех возможных значений атрибута объекта, которое называется доменом (domain). Так, значения в столбце материал выбираются из множества имен всех возможных материалов - пластмасс, древесины, металлов и т.д. Следовательно, в столбце Материал принципиально невозможно появление значения, которого нет в соответствующем домене, например, "вода" или "песок".

Каждый столбец имеет имя, которое обычно записывается в верхней части таблицы (Рис. 1 ). Оно должно быть уникальным в таблице, однако различные таблицы могут иметь столбцы с одинаковыми именами. Любая таблица должна иметь по крайней мере один столбец; столбцы расположены в таблице в соответствии с порядком следования их имен при ее создании. В отличие от столбцов, строки не имеют имен; порядок их следования в таблице не определен, а количество логически не ограничено.

Рисунок 1. Основные понятия базы данных.

Так как строки в таблице не упорядочены, невозможно выбрать строку по ее позиции - среди них не существует "первой", "второй", "последней". Любая таблица имеет один или несколько столбцов, значения в которых однозначно идентифицируют каждую ее строку. Такой столбец (или комбинация столбцов) называется первичным ключом (primary key). В таблице Деталь первичный ключ - это столбец Номер детали. В нашем примере каждая деталь на складе имеет единственный номер, по которому из таблицы Деталь извлекается необходимая информация. Следовательно, в этой таблице первичный ключ - это столбец Номер детали. В этом столбце значения не могут дублироваться - в таблице Деталь не должно быть строк, имеющих одно и то же значение в столбце Номер детали. Если таблица удовлетворяет этому требованию, она называется отношением (relation).

Взаимосвязь таблиц является важнейшим элементом реляционной модели данных. Она поддерживается внешними ключами (foreign key). Рассмотрим пример, в котором база данных хранит информацию о рядовых служащих (таблица Служащий) и руководителях (таблица Руководитель) в некоторой организации (Рис. 2 ). Первичный ключ таблицы Руководитель - столбец Номер (например, табельный номер). Столбец Фамилия не может выполнять роль первичного ключа, так как в одной организации могут работать два руководителя с одинаковыми фамилиями. Любой служащий подчинен единственному руководителю, что должно быть отражено в базе данных. Таблица Служащий содержит столбец Номер руководителя, и значения в этом столбце выбираются из столбца Номер таблицы Руководитель (см. Рис. 2 ). Столбец Номер Руководителя является внешним ключом в таблице Служащий.

Рисунок 2. Взаимосвязь таблиц базы данных.

Таблицы невозможно хранить и обрабатывать, если в базе данных отсутствуют "данные о данных", например, описатели таблиц, столбцов и т.д. Их называют обычно метаданными. Метаданные также представлены в табличной форме и хранятся в словаре данных (data dictionary).

Помимо таблиц, в базе данных могут храниться и другие объекты, такие как экранные формы, отчеты (reports), представления (views) и даже прикладные программы, работающие с базой данных.

Для пользователей информационной системы недостаточно, чтобы база данных просто отражала объекты реального мира. Важно, чтобы такое отражение было однозначным и непротиворечивым. В этом случае говорят, что база данных удовлетворяет условию целостности (integrity).

Для того, чтобы гарантировать корректность и взаимную непротиворечивость данных, на базу данных накладываются некоторые ограничения, которые называют ограничениями целостности (data integrity constraints).

Существует несколько типов ограничений целостности. Требуется, например, чтобы значения в столбце таблицы выбирались только из соответствующего домена. На практике учитывают и более сложные ограничения целостности, например, целостность по ссылкам (referential integrity). Ее суть заключается в том, что внешний ключ не может быть указателем на несуществующую строку в таблице. Ограничения целостности реализуются с помощью специальных средств, о которых речь пойдет в Разд. Сервер базы данных .

Язык SQL

Сами по себе данные в компьютерной форме не представляют интерес для пользователя, если отсутствуют средства доступа к ним. Доступ к данным осуществляется в виде запросов к базе данных, которые формулируются на стандартном языке запросов. Сегодня для большинства СУБД таким языком является SQL.

Появление и развития этого языка как средства описания доступа к базе данных связано с созданием теории реляционных баз данных. Прообраз языка SQL возник в 1970 году в рамках научно-исследовательского проекта System/R, работа над которым велась в лаборатории Санта-Тереза фирмы IBM. Ныне SQL - это стандарт интерфейса с реляционными СУБД. Популярность его настолько велика, что разработчики нереляционных СУБД (например, Adabas), снабжают свои системы SQL-интерейсом.

Язык SQL имеет официальный стандарт - ANSI/ISO. Большинство разработчиков СУБД придерживаются этого стандарта, однако часто расширяют его для реализации новых возможностей обработки данных. Новые механизмы управления данными, которые будут описаны в Разд. Сервер базы данных , могут быть использованы только через специальные операторы SQL, в общем случае не включенные в стандарт языка.

SQL не является языком программирования в традиционном представлении. На нем пишутся не программы, а запросы к базе данных. Поэтому SQL - декларативный язык. Это означает, что с его помощью можно сформулировать, что необходимо получить, но нельзя указать, как это следует сделать. В частности, в отличие от процедурных языков программирования (Си, Паскаль, Ада), в языке SQL отсутствуют такие операторы, как if-then-else, for, while и т.д.

Мы не будем подробно рассматривать синтаксис языка. Коснемся его лишь в той мере, которая необходима для понимания простых примеров. С их помощью будут проиллюстрированы наиболее интересные механизмы обработки данных.

Запрос на языке SQL состоит из одного или нескольких операторов, следующих один за другим и разделенных точкой с запятой. Ниже в таблице 1перечислены наиболее важные операторы, которые входят в стандарт ANSI/ISO SQL.

Таблица 1. Основные операторы языка SQL.

В запросах на языке SQL используются имена, которые однозначно идентифицируют объекты базы данных. В частности это - имя таблицы (Деталь), имя столбца (Название), а также имена других объектов в базе, которые относятся к дополнительным типам (например, имена процедур и правил), о которых речь пойдет в Разд. Сервер базы данных . Наряду с простыми, используются также сложные имена - например, квалификационное имя столбца (qualified column name) определяет имя столбца и имя таблицы, которой он принадлежит (Деталь.Вес). Для простоты в примерах имена будут записаны на русском языке, хотя на практике этого делать не рекомендуется.

Каждый столбец в любой таблице хранит данные определенных типов. Различают базовые типы данных - строки символов фиксированной длины, целые и вещественные числа, и дополнительные типы данных - строки символов переменной длины, денежные единицы, дату и время, логические данные (два значения - "ИСТИНА" и "ЛОЖЬ"). В языке SQL можно использовать числовые, строковые, символьные константы и константы типа "дата" и "время".

Рассмотрим несколько примеров.

Запрос "определить количество деталей на складе для всех типов деталей" реализуется следующим образом:

SELECT Название, Количество

FROM Деталь;

Результатом запроса будет таблица с двумя столбцами - Название и Количество, которые взяты из исходной таблицы Деталь. По сути, этот запрос позволяет получить вертикальную проекцию исходной таблицы (более строго, вертикальное подмножество множества строк таблицы). Из всех строк таблицы Деталь образуются строки, которые включают значения, взятые из двух столбцов - Название и Количество.

Запрос "какие детали, изготовленные из стали, хранятся на складе?", сформулированный на языке SQL, выглядит так:

FROM Деталь

WHERE Материал = "Сталь";

Результатом этого запроса также будет таблица, содержащая только те строки исходной таблицы, которые имеют в столбце Материал значение "Сталь". Этот запрос позволяет получить горизонтальную проекцию таблицы Деталь (звездочка в операторе SELECT означает выбор всех столбцов из таблицы).

Запрос "определить название и количество деталей на складе, которые изготовлены из пластмассы и весят меньше пяти килограммов" будет записан следующим образом:

SELECT Название, Количество

FROM Деталь

WHERE Материал = "Пластмасса"

AND Вес < 5;

Результат запроса - таблица из двух столбцов - Название, Количество, которая содержит название и число деталей, изготовленных из пластмассы и весящих менее 5 кг. По сути, операция выборки является операцией образования сначала горизонтальной проекции (найти все строки таблицы Деталь, у которых Материал = "Пластмасса" и Вес < 5), а затем вертикальной проекции (извлечь Название и Количество из выбранных ранее строк).

Одним из средств, обеспечивающих быстрый доступ к таблицам, являются индексы. Индекс - это структура базы данных, представляющая собой указатель на конкретную строку таблицы. Индекс базы данных используется так же, как индексный указатель в книге. Он содержит значения, взятые из одного или нескольких столбцов конкретной строки таблицы, и ссылку на эту строку. Значения в индексе упорядочены, что позволяет СУБД выполнять быстрый поиск в таблице.

Допустим, что сформулирован запрос к базе данных Склад:

SELECT Название Количество, Материал

FROM Деталь

WHERE Номер = "Т145-А8";

Если индексов для данной таблицы не существует, то для выполнения этого запроса СУБД должна просмотреть всю таблицу Деталь, последовательно выбирая из нее строки и проверяя для каждой из них условие выбора. Для больших таблиц такой запрос будет выполняться очень долго.

Если же был предварительно создан индекс по столбцу Номер таблицы Деталь, то время поиска в таблице будет сокращено до минимума. Индекс будет содержать значения из столбца Номер и ссылку на строку с этим значением в таблице Деталь. При выполнении запроса СУБД вначале найдет в индексе значение "Т145-А8" (и сделает это быстро, так как индекс упорядочен, а его строки невелики), а затем по ссылке в индексе определит физическое расположение искомой строки.

Индекс создается оператором SQL CREATE INDEX (СОЗДАТЬ ИНДЕКС). В данном примере оператор

CREATE UNIQUE INDEX Индекс детали

ON Деталь (Номер);

позволит создать индекс с именем "Индекс детали" по столбцу Номер таблицы Деталь.

Для пользователя СУБД интерес представляют не отдельные операторы языка SQL, а некоторая их последовательность, оформленная как единое целое и имеющая смысл с его точки зрения. Каждая такая последовательность операторов языка SQL реализует определенное действие над базой данных. Оно осуществляется за несколько шагов, на каждом из которых над таблицами базы данных выполняются некоторые операции. Так, в банковской системе перевод некоторой суммы с краткосрочного счета на долгосрочный выполняется в несколько операций. Среди них - снятие суммы с краткосрочного счета, зачисление на долгосрочный счет.

Если в процессе выполнения этого действия произойдет сбой, например, когда первая операция будет выполнена, а вторая - нет, то деньги будут потеряны. Следовательно, любое действие над базой данных должно быть выполнено целиком, или не выполняться вовсе. Такое действие получило название транзакции.

Обработка транзакций опирается на журнал, который используется для отката транзакций и восстановления состояния базы данных. Более подробно о транзакциях будет сказано в Разд. Обработка транзакций .

Завершая обсуждение языка SQL, еще раз подчеркнем, что это - язык запросов. На нем нельзя написать сколько-нибудь сложную прикладную программу, которая работает с базой данных. Для этой цели в современных СУБД используется язык четвертого поколения (Forth Generation Language - 4GL), обладающий как основными возможностями процедурных языков третьего поколения (3GL), таких как Си, Паскаль, Ада, так и возможностью встроить в текст программы операторы SQL, а также средствами управления интерфейсом пользователя (меню, формами, вводом пользователя и т.д.). Сегодня язык 4GL - это один из фактических стандартов средств разработки приложений, работающих с базами данных.

II. Сетевая модель

III. Реляционная модель

запись поле

иерархических и сетевых моделей внешних ключей


4. Реляционная модель данных

Реляционная БД

* Отношение

* Атрибут столбца (поля) таблицы.

* Тип данных

* Связь ключом.

* Объединение

Основными функциями РСУБД являются:

· Определение данных

· Обработка данных

· Управление данными

Microsoft Access

Окно БД в Access



Режимы работы с объектами

Кнопки для работы с объектами БД расположены на Панели инструментов окна БД:

Открыть – позволяет перейти в режим редактирования таблицы, выполнения запроса, загрузки формы, построения отчета, запуска макроса.

Конструктор – обеспечивает переход к режиму настройки выбранного объекта.

Создать – позволяет приступить к созданию нового объекта выбранного типа.

7. Работа с таблицами

Чтобы создать таблицу, нужно перейти к списку таблиц и нажать кнопку Создать . Появится новое диалоговое окно Новая таблица :

Таблицу в Access можно создать несколькими способами:

· построить новую таблицу «с нуля», воспользовавшись Конструктором ;

· запустить Мастер таблиц – специальную программу, предлагающую создать таблицу в пошаговом режиме на базе типовых решений, имеющихся в Access;

· импортировать таблицу БД из файла какой-либо программы, например, FoxPro или Excel.

Задание имени поля

Имя поля задается в столбце Имя поля . Имя может содержать не более 64 знаков, при этом допустимы любые символы, кроме точки, восклицательного знака и угловых скобок. Повторение имен полей не допускается.

Определение типа данных

Для каждого поля необходимо указать тип данных, содержащихся в нем. Тип данных выбирается из списка, который можно вызвать щелчком мыши в столбце Тип данных . Access оперирует следующими типами данных:

Ø Текстовый – для хранения обычного текста с максимальным количеством символов 255.

Ø Поле MEMO – для хранения больших объемов текста до 65 535 символов.

Ø Числовой – для хранения действительных чисел.

Ø Дата/время – для хранения календарных дат и текущего времени.

Ø Денежный – эти поля содержат денежные суммы.

Ø Счетчик – для определения уникального системного ключа таблицы. Обычно используется для порядковой нумерации записей. При добавлении в таблицу новой записи значение этого поля увеличивается на 1 (единицу). Значения в таких полях не обновляются.

Ø Логический – для хранения данных, принимающих значения: Да или Нет.

Ø Поле объекта OLE – для хранения объектов, созданных в других приложениях.

Описание свойств полей

Как уже отмечалось, характеристики отдельных полей определяются в области свойств поля (вкладка Общие ). Каждое поле имеет определенный набор свойств – в зависимости от типа поля. Некоторые типы полей имеют схожие наборы свойств полей. Ниже перечислены основные свойства полей.

Ø Размер поля – максимальная длина текстового поля (по умолчанию 50 знаков) или тип данных числового поля. Рекомендуется задавать минимально допустимое значение этого свойства, потому что обработка данных меньшего размера выполняется быстрее.

Если тип данных – числовой, допустимы следующие значения свойства Размер поля :

Замечание . В случае преобразования поля в меньшее по размеру, может произойти потеря данных.

Ø Формат поля – формат отображения данных на экране или печати. Как правило, используется формат, заданный по умолчанию.

Ø Число десятичных знаков – задает для числового и денежного типа данных число десятичных знаков после запятой.

Ø Маска ввода – определяет форму, в которой данные вводятся в поле (средство автоматизации ввода данных).

Ø Подпись – обозначение для поля, которое будет использоваться для отображения поля в таблице, форме или отчете. Если это значение не определено, в качестве подписи будет взято имя поля.

Ø Значение по умолчанию – стандартное значение, которое автоматически вводится в поле при формировании новой записи данных.

Ø Условие на значение – задает ограничения на вводимые значения, тем самым позволяет осуществлять контроль над правильностью ввода данных.

Ø Сообщение об ошибке – задает текст сообщения, выводимый на экран в случае нарушения условия на значение.

Ø Обязательное поле – определяет, может ли данное поле содержать значения Null (т.е. оставаться пустым), или нужно обязательно вводить в это поле данные.

Ø Индексированное поле – используется для операций поиска и сортировки записей по значению, хранящемуся в данном поле, а также для автоматического исключения дублирования записей. Поля типа MEMO , Объект OLE и Гиперссылка не могут индексироваться.

Определение ключевого поля

После задания характеристик всех полей следует выбрать, по крайней мере, одно ключевое поле. Как правило, в качестве ключевых полей указываются поля, которые имеют неповторяющиеся данные или создаются поля с типом данных Счетчик . В любом случае, поле ключа не должно содержать повторяющихся данных. Чтобы определить ключ, необходимо выделить нужное поле (или поля) и нажать кнопку Ключевое поле Правка . Слева от маркера появится изображение ключа.

Сохранение таблицы

Перед вводом информации спроектированную таблицу необходимо сохранить: нажать кнопку Сохранить на панели инструментов или соответствующую команду в п. м. Файл и ввести название таблицы, после чего на экране появляется вопрос «Создать ключевое поле сейчас?» (Да или Нет)

Если выбирается ответ «Да », то Access создаст автоматически поле с именем «Код» и типом данных Счетчик , если «Нет », – то таблица будет создана без ключевого поля. В этом случае необходимо открыть созданную таблицу в режиме Конструктора и определить «вручную» ключевое поле.

Ввод данных

Чтобы перевести таблицу в режим ввода информации, нужно перейти в режим Таблицы . Поля заполняются последовательно. Переход от одного поля к другому удобно выполнять клавишей Tab (или комбинацией Shift+Tab – в обратном направлении). Если при проектировании таблицы для некоторых полей были предусмотрены значения по умолчанию, эти значения автоматически появятся в соответствующих полях. Записи в таблице можно перемещать, копировать и удалять теми же способами, что и в электронных таблицах, то есть сначала выделить строки, а потом выполнить необходимую операцию. Столбец можно выделить щелчком мыши по заголовку. Столбцы можно перемещать вправо и влево, пользуясь методом drag and drop (перетащить и бросить).

При необходимости можно вернуться в режим Конструктора . Это дает возможность что-либо подправить в структуре таблицы.

Сортировка данных в таблице

Данные, находящиеся в таблице, можно отсортировать в порядке возрастания или убывания. Для этого нужно поместить курсор мыши в любую ячейку столбца, значения которого будут отсортированы и из п. м. Записи выбрать команду Сортировка или нажать на панели соответствующую кнопку.

8. Создание связей между таблицами БД

Связь между таблицами устанавливается путем определения в одной таблице (подчиненной ) поля, соответствующего ключу другой таблицы (главной ). Установленная связь свяжет записи, содержащие в заданном поле одинаковые значения. Созданные связи позднее Access будет использовать в запросах, формах или отчетах.

Замечания.

Ø Оба связываемых поля должны иметь одинаковый тип данных .

Ø Свойства Размер поля для обоих связываемых полей числового типа должны быть одинаковыми.

Ø Если ключевым полем главной таблицы является поле с типом данных Счетчик , то это поле можно связать с числовым полем подчиненной таблицы. При этом для числового поля связанной таблицы для свойства Размер поля должно быть задано значение Длинное целое .

Целостность данных

Целостность данных – это набор правил, которые поддерживают корректность связей между записями в связанных таблицах и обеспечивают защиту данных от случайных изменений или удалений.

Эти правила включают:

Ø В подчиненной таблице нельзя вводить записи, которые не связаны с записью главной таблицы.

Ø В главной таблице нельзя изменять значение ключевого поля, если в подчиненной таблице существуют записи, которые с ней связаны.

Ø В главной таблице нельзя удалять записи, если в подчиненной таблице существуют связанные с ней записи.

Каскадные операции

Целостность данных в связанных таблицах обеспечивают каскадные операции двух видов:

Ø операции каскадного обновления;

Ø операции каскадного удаления.

Эти операции можно включать и выключать путем установки соответствующих флажков: «Каскадное обновление связанных полей» и «Каскадное удаление связанных полей».

Если установлен флажок «Каскадное обновление связанных полей», то любые изменения в значении ключевого поля в главной таблице, которая стоит на стороне «один» в отношениях 1:М, ведут к автоматическому обновлению соответствующих значений во всех связанных записях.

При установке флажка «Каскадное удаление связанных таблиц» при удалении записи из главной таблицы обеспечивается автоматическое удаление связанных записей в подчиненных таблицах.

Удаление (изменение) связей

Ø Открыть окно Схема данных ;

Ø активизировать левой кнопкой мыши связь, которую необходимо удалить (изменить);

Ø правой кнопкой мыши вызвать контекстно-зависимое меню и выбрать команду Удалить (Изменить ) соответственно.

9. Типы отношений между таблицами

Существует три типа отношений между таблицами:

Один-к-одному (1:1). Значению ключа в каждой записи в главной таблице могут соответствовать значения в связанном поле только в одной записи подчиненной таблицы. В этом случае связь между таблицами может быть установлена только через ключевые поля обеих таблиц.

Один-ко-многим (1:М). Значению ключа в каждой записи в главной таблице могут соответствовать значения в связанном поле (полях) в нескольких записях подчиненной таблицы. Этот тип отношения довольно часто используется в реляционных БД.

Много-ко-многим (М:М). Возникает между двумя таблицами, когда одна запись с первой таблицы А (выходная связь) может быть связана больше чем с одной записью другой таблицы В (принимающая), в свою очередь, одна запись с другой таблицы может быть связана больше чем с одной записью первой таблицы. Эта схема реализуется только при помощи третьей соединительной таблицы, ключ связи которой состоит, как минимум, из двух полей. Эти поля являются полями внешнего ключа в таблицах А и В. Первичный ключ для соединительной таблицы – это обычно комбинация из внешних ключей.

Если между таблицами имеются связи типа М:М, создается дополнительная таблица пересечений, с помощью которой связь М:М будет сведена к двум связям типа 1:М. Accеss не позволяет определить прямую связь М:М между двумя таблицами.

10. Формирование запросов

Запуск запроса

Для запуска запроса на исполнение из окна Конструктора надо на панели инструментов нажать кнопку «Запуск » ! или выполнить команду Запрос/Запуск . Результаты выборки данных по запросу выводятся на экран в режиме таблицы.

Формирование Условий отбора

Список операторов используемых при задании выражений следующий:

Ø операторысравнения:


= (равно)

<> (не равно)

> (больше)

>= (не меньше)

< (меньше)

<= (не больше)


BETWEEN – позволяет задать диапазон значений. Синтаксис: Between «Выражение»And «Выражение» (например: BETWEEN 10 And 20 означает тоже, что и логическое выражение>= 10 AND <= 20).

IN – позволяет задавать используемый для сравнения список значений (операндом является список, заключенный в круглые скобки). Например: IN ("Брест", "Минск", "Гродно") означает тоже самое, что и логическое выражение "Брест" OR "Минск" OR "Гродно".

Ø логические операторы:

АND (например: >=10 AND <=20)

OR (например: <50 OR >100)

NOT (например: Is Not Null – поле, содержащее какое-либо значение).

Ø операторLIKE – проверяет соответствие текстового или Memo поля по заданному шаблону символов.

Таблица символов шаблона

Примеры использования оператора Like :

LIKE "С *" – строки, начинающиеся с символа С;

LIKE "[ A - Z ] #" – любой символ от А до Z и цифра;

LIKE "[! 0 - 9 ABC] * # #" – строки, начинающиеся с любого символа кроме цифры или букв А, В, С и заканчивающиеся на 2 цифры;

Сложные критерии выборки

Часто приходится выбирать записи по условию, которое задается для нескольких полей таблицы или по нескольким условиям для одного поля. В этом случае применяются «И-запросы» (выбор записей только при условии выполнения всех условий) и«ИЛИ-запросы» (выбор записей при выполнении хотя бы одного из условий).

При задании «ИЛИ-запроса » каждое условие выборки должно размещаться на отдельной строке Бланка запроса .

При задании «И-запроса » каждое условие выборки должно размещаться на одной строке, но в разных полях Бланка запроса .

Эти операции могут быть заданы явно с помощью операторовOR иAND соответственно.

Функции Iif() и Format()

Функция IIf(условие; еслиИстина; еслиЛожь) – возвращает один из двух аргументов в зависимости от результата вычисления выражения.

Функция Format(выражение; инструкция форматирования) – возвращает строку, содержащую выражение, отформатированное согласно инструкциям форматирования.

Для выражений даты/времени можно применять следующие символы в инструкции форматирования:

I. Иерархическая модель

II. Сетевая модель

III. Реляционная модель

В реляционной модели информация представляется в виде прямоугольных таблиц. Каждая таблица состоит из строк и столбцов и имеет имя, уникальное внутри БД. В свою очередь, каждая строка (запись ) такой таблицы содержит информацию, относящуюся только к одному конкретному объекту, а каждый столбец (поле ) таблицы имеет уникальное для своей таблицы имя.

Реляционные базы данных (РБД), в отличие от иерархических и сетевых моделей , позволяют организовывать связи между таблицами в любой момент. Для этого в РБД реализован механизм внешних ключей . В каждой таблице БД имеется хотя бы одно поле, служащее ссылкой для другой таблицы. В терминологии РБД такие поля называются полями внешних ключей. С помощью внешних ключей можно связывать любые таблицы БД на любом этапе работы с БД.


4. Реляционная модель данных

Реляционная БД (РБД) – это совокупность простейших двумерных логически взаимосвязанных таблиц-отношений, состоящих из множества полей и записей, отражающих некоторую предметную область.

Реляционная модель данных была предложена Е. Коддом, известным американским специалистом в области баз данных. Основные концепции этой модели были впервые опубликованы в 1970 г. Будучи математиком по образованию, Кодд предложил использовать для обработки данных аппарат теории множеств (объединение, пересечение, разность, декартово произведение). Он показал, что любое представление данных сводится к совокупности двумерных таблиц особого вида, известного в математике как отношение (по-английски – relation, отсюда и название – реляционные базы данных).

Одна из главных идей Кодда заключалась в том, что связь между данными должны устанавливаться в соответствии с их внутренними логическими взаимоотношениями. Второй важный принцип, предложенный Коддом, заключается в том, что в реляционных системах одной командой могут обрабатываться целые файлы данных, в то время как ранее одной командой обрабатывалась только одна запись.

Базовые понятия реляционных баз данных (РБД)

* Отношение – информация об объектах одного типа, например, о клиентах, заказах, сотрудниках. В реляционной БД отношение хранится в виде таблицы.

* Атрибут – определенная часть информации о некотором объекте – например, адрес клиента или зарплата сотрудника. Атрибут обычно хранится в виде столбца (поля) таблицы.

* Тип данных – понятие, которое в реляционной модели полностью эквивалентно соответствующему понятию в алгоритмических языках. Набор поддерживаемых типов данных определяется СУБД и может сильно различаться в разных системах.

* Связь – способ, которым связана информация в одной таблице с информацией в другой таблице. Связи осуществляются с помощью совпадающих полей, которые называются ключом.

* Объединение – процесс объединения таблиц или запросов на основе совпадающих значений определенных атрибутов.

Правила (нормализации) построения реляционной БД

Нормализация представляет собой процесс реорганизации данных путем ликвидации повторяющихся групп и иных противоречий с целью приведения таблиц к виду, позволяющему осуществлять непротиворечивое и корректное редактирование данных. Окончательная цель нормализации сводится к получению такого проекта БД, в котором каждый факт появляется только в одном месте, т.е. исключена избыточность информации.

1. Каждое поле любой таблицы должно быть уникальным.

2. Каждая таблица должна иметь уникальный идентификатор (первичный ключ ), который может состоять из одного или нескольких полей таблицы.

3. Для каждого значения первичного ключа должно быть одно и только одно значение любого из столбцов данных, и это значение должно относиться к объекту таблицы (т.е. в таблице не должно быть данных, которые не относятся к объекту, определяемому первичным ключом, а также информация в таблице должна полностью описывать объект).

4. Должна иметься возможность изменять значения любого поля (не входящего в первичный ключ), и это не должно повлечь за собой изменения другого поля (т.е. не должно быть вычисляемых полей).

5. Системы управления базами данных (СУБД)

Поддержание баз данных в компьютерной среде осуществляют программные средства – системы управления базами данных (database management system), которые представляют собой совокупность программных и языковых средств общего или специализированного назначения, необходимых для создания баз данных на машинных носителях, поддержания их в актуальном состоянии и организации доступа к ним различных пользователей в условиях принятой технологии обработки данных.

СУБД – это управляющие программы, которые обеспечивают все манипуляции с базами данных: создание базы, ее ведение, ее использование многими пользователями и др., т. е. реализуют сложный комплекс функций по централизованному управлению базой данных и обслуживают интересы пользователей.

СУБД можно рассматривать как программную оболочку, которая находится между базой данных и пользователем. Она обеспечивает централизованный контроль защиты и целостности данных, доступ к данным, их обработку, формирование отчетов на основе базы данных и другие операции и процедуры.

Реляционная система управления базами данных (РСУБД)

Набор средств для управления РБД называется реляционной системой управления базами данных , которая может содержать утилиты, приложения, службы, библиотеки, средства создания приложений и другие компоненты. Будучи связанной посредством общих ключевых полей, информация в РБД может объединяться из множества таблиц в единый результирующий набор.

Основными функциями РСУБД являются:

· Определение данных – какая информация будет храниться, задать структуру БД и их тип.

· Обработка данных – можно выбирать любые поля, сортировать и фильтровать данные. Можно объединять данные и подводить итоги.

· Управление данными – корректировать и добавлять данные.

6. Общая характеристика СУБД ACCESS

Microsoft Access – это функционально полная реляционная СУБД, в которой предусмотрены все необходимые средства для определения и обработки данных, а также для управления ими при работе с большими объемами информации. Различные ее версии входят в состав программного пакета MS Office и работают в среде Windows (3.11/95/98/2000/XP).

Окно БД в Access

После создания нового файла БД или открытия существующего в рабочей области окна Access появляется окно базы данных:


Реляционные БД

Реляционная база данных состоит из одной или нескольких связанных таблиц, структуру которых образуют столбцы и строки.

В реляционных базах данных приняты следующие обозначения:

Отношение - таблица;

Поле- набор однотипных записей для нескольких объектов (столбец);

Кортеж (запись) - строка таблицы, содержащая набор нескольких записей соответствующих одному объекту;

Атрибут - запись в строке одного поля.

Сущность - любой различимый объект, информация о котором хранится в базе данных.

Ключевые поля

Каждое отношение базы данных должно содержать в себе поле (или совокупность нескольких полей), однозначно идентифицирующее каждую запись отношения. Такие поля, позволяют связывать данные нескольких отношений и в конечном счете сформировать единую базу данных. Эти поля называют ключевыми полями.

Различают следующие виды ключей:

Потенциальный ключ - поле, атрибуты которого обеспечивают уникальность записи (в отношении таких полей может быть несколько).

Первичный ключ - один из потенциальных ключей, выбранный в качестве основного (как правило, имеет минимальную длину атрибута).

Внешний (вторичный) ключ - одно или несколько полей отношения, обеспечивающих связь с первичным ключом другого отношения.

В зависимости от количества полей образующих ключ выделяют:

Простой ключ - состоит из единственного атрибута, однозначно определяющего запись (номер зачетной книжки студента).

Составной ключ - состоит из двух и более атрибутов, совокупность которых однозначно определяет запись (серия и номер паспорта человека).

Если в отношении есть уникальное поле, однозначно определяющий каждую запись отношения, то его можно использовать в качестве первичного ключа, но значения его атрибутов должны быть различными для всех записей. Не следует использовать в качестве первичного ключа имена или фамилии людей, т. к. они могут повторятся и в одном отношении могут оказаться люди с одинаковы именем и фамилией. Даже если на данный момент фамилии всех людей зарегистрированных в базе данных разные, поле фамилия не должно использоваться в качестве ключевого, поскольку записи в отношении со временем могут быть изменены в связи с изменением состава людей учтенных в баз данных.

При выборе первичного ключа следует также учитывать, что атрибуты ключевого поля не могут быть пустыми. Если поле допускает пустые значения, то его не следует использовать в качестве первичного ключа.

Также при выборе первичного ключа следует учитывать, что его значения не должны меняются. Если же он меняется, то необходимо обеспечить обновление информации о данном изменении во всех связанных с данным полем отношениях. Применение первичного ключа с постоянным значением позволяет упростить синхронизацию между отношениями в базе данных.

Часто в качестве первичного ключа выбирают искусственно созданное поле, значения атрибутов которого не имеют фактического смысла. Таки полями могут быть Код или Номер , эти поля содержат только числовое обозначение строки, причем зачастую это обозначение выставляет компьютер при помощи счетчика. Такие коды не подвержены изменениям в отличие от полей содержащих фактические данные, т.к. Фамилия, Номер телефона, Адрес и т.д. могут меняться и повторятся.

В том случае если уникальность записи не может быть обеспечена одним полем применяется составной ключ, образованный двумя или более полями. Примером составного ключа могут являться поля серия и номер паспорта, отдельно серия и номер паспорта не могут гарантировать уникальность записи, т.к. есть паспорта с одинаковой серией, так же как и с одинаковым номером, но одновременное совпадение серии и номера двух паспортов невозможно.

База данных (БД) - это поименованная совокупность структурированных данных, относящихся к определенной предметной области и предназначенных для хранения, накопления и обработки с помощью ЭВМ.

Реляционная База Данных (РБД) - это набор отношений, имена которых совпадают с именами схемотношений в схеме БД.

Основные понятия реляционных баз данных:

· Тип данных – тип значений конкретного столбца.

· Домен (domain) – множество всех допустимых значений атрибута.

· Атрибут (attribute) – заголовок столбца таблицы, характеризующий поименованное свойство объекта, например, фамилия студента, дата оформления заказа, пол сотрудника и т.п.

· Кортеж – строка таблицы, представляющая собой совокупность значений логически связанных атрибутов.

· Отношение (relation) – таблица, отражающая информацию об объектах реального мира, например, о студентах, заказах, сотрудниках, жителях и т.д.

· Первичный ключ (primary key) – поле (или набор полей) таблицы, однозначно идентифицирующий каждую из ее записей.

· Альтернативный ключ – это поле (или набор полей), несовпадающее с первичным ключом и уникально идентифицирующий экземпляр записи.

· Внешний ключ – это поле (или набор полей), чьи значения совпадают с имеющимися значениями первичного ключа другой таблицы. При связи двух таблиц с первичным ключом первой таблицы связывается внешний ключ второй таблицы.

· Реляционная модель данных (РМД) - организация данных в виде двумерных таблиц.

Каждая реляционная таблица должна обладать следующими свойствами:

1. Каждая запись таблицы уникальна, т.е. совокупность значений по полям не повторяется.

2. Каждое значение, записывается на пересечении строки и столбца - является атомарным (неразделимым).

3. Значения каждого поля должны быть одного типа.

4. Каждое поле имеет уникальное имя.

5. Порядок расположения записей несущественен.

Основные элементы БД:

Поле - элементарная единица логической организации данных. Для описания поля используются следующие характеристики:

· имя, например, Фамилия, Имя, Отчество, Дата рождения;

· тип, например, строковый, символьный, числовой, датовый;

· длина, например, в байтах;

· точность для числовых данных, например, два десятичных знака для отображения дробной части числа.

Запись - совокупность значений логически связанных полей.

Индекс – средство ускорения операции поиска записей, использующееся для установки связей между таблицами. Таблица, для которой используется индекс, называют индексированной. При работе с индексами необходимо обращать внимание на организацию индексов, являющуюся основой для классификации. Простой индекс представлен одним полем или логическим выражением, обрабатывающим одно поле. Составной индекс представлен несколькими полями с возможностью использования различных функций. Индексы таблицы хранятся в индексном файле.


Целостность данных – это средство защиты данных по полям связи, позволяющее поддерживать таблицы в согласованном (непротиворечивом) состоянии (то есть не допускающее существование в подчиненной таблице записей, не имеющих соответствующих записей в родительской таблице).

Запрос – сформулированный вопрос к одной или нескольким взаимосвязанным таблицам, содержащий критерии выборки данных. Запрос осуществляется с помощью структурированного языка запросов SQL (Srtructured Query Language). В результате выборки данных из одной или нескольких таблиц может быть получено множество записей, называемое представлением.

Представление данных – сохраняемый в базе данных именованный запрос на выборку данных (из одной или нескольких таблиц).

Представление, по существу, является временной таблицей, формируемой в результате выполнения запроса. Сам запрос может быть направлен в отдельный файл, отчет, временную таблицу, таблицу на диске и т.п.

Отчет – компонент системы, основное назначение которого – описание и вывод на печать документов на основе информации из БД.

Общая характеристика работы с РБД:

Наиболее распространенная трактовка реляционной модели данных, по-видимому, принадлежит Дейту, который воспроизводит ее (с различными уточнениями) практически во всех своих книгах. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение.

В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка. Заметим, что основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.


28. АЛГОРИТМИЧЕСКИЕ ЯЗЫКИ. ТРАНСЛЯТОРЫ (ИНТЕРПРЕТАТОРЫ И КОМПИЛЯТОРЫ). АЛГОРИТМИЧЕСКИЙ ЯЗЫК БЕЙСИК. СТРУКТУРА ПРОГРАММЫ. ИДЕНТИФИКАТОРЫ. ПЕРЕМЕННЫЕ. ОПЕРАТОРЫ. ОБРАБОТКА ОДНОМЕРНЫХ И ДВУХМЕРНЫХ МАССИВОВ. ФУНКЦИИ ПОЛЬЗОВАТЕЛЯ. ПОДПРОГРАММЫ. РАБОТА С ФАЙЛАМИ ДАННЫХ.

Язык высокого уровня - язык программирования, понятия и структура которого удобны для восприятия человеком.

Алгоритмический язык (Algorithmic language) - язык программирования - искусственный (формальный) язык, предназначенный для записи алгоритмов. Язык программирования задается своим описанием и реализуется в виде специальной программы: компилятора или интерпретатора. Примерами алгоритмических языков служат – Borland Pascal, C++, Basic и т.д.

Основные понятия алгоритмического языка:

Состав языка :

Обычный разговорный язык состоит из четырех основных элементов: символов, слов, словосочетаний и предложений. Алгоритмический язык содержит подобные элементы, только слова называют элементарными конструкциями, словосочетания - выражениями, предложения - операторами.

Символы , элементарные конструкции, выражения и операторы составляют иерархическую структуру, поскольку элементарные конструкции образуются из последовательности символов.

Выражения - это последовательность элементарных конструкций и символов,

Оператор - последовательность выражений, элементарных конструкций и символов.

Описание языка:

Описание символов заключается в перечислении допустимых символов языка. Под описанием элементарных конструкций понимают правила их образования. Описание выражений - это правила образования любых выражений, имеющих смысл в данном языке. Описание операторов состоит из рассмотрения всех типов операторов, допустимых в языке. Описание каждого элемента языка задается его СИНТАКСИСОМ и СЕМАНТИКОЙ.

Синтаксические определения устанавливают правила построения элементов языка.

Семантика определяет смысл и правила использования тех элементов языка, для которых были даны синтаксические определения.

Символы языка - это основные неделимые знаки, в терминах которых пишутся все тексты на языке.

Элементарные конструкции - это минимальные единицы языка, имеющие самостоятельный смысл. Они образуются из основных символов языка.

Выражение в алгоритмическом языке состоит из элементарных конструкций и символов, оно задает правило вычисления некоторого значения.

Оператор задает полное описание некоторого действия, которое необходимо выполнить. Для описания сложного действия может потребоваться группа операторов.

В этом случае операторы объединяются в Составной оператор или Блок. Действия , заданные операторами, выполняются над данными. Предложения алгоритмического языка, в которых даются сведения о типах данных, называются описаниями или неисполняемыми операторами. Объединенная единым алгоритмом совокупность описаний и операторов образует программу на алгоритмическом языке. В процессе изучения алгоритмического языка необходимо отличать алгоритмический язык от того языка, с помощью которого осуществляется описание изучаемого алгоритмического языка. Обычно изучаемый язык называют просто языком, а язык, в терминах которого дается описание изучаемого языка - Метаязыком .

Трансляторы - (англ. translator - переводчик) - это программа-переводчик. Она преобразует программу, написанную на одном из языков высокого уровня, в программу, состоящую из машинных команд.

Программа, написанная на каком-либо алгоритмическом языке высокого уровня, не может быть непосредственно выполнена на ЭВМ. ЭВМ понимает только язык машинных команд. Следовательно, программа на алгоритмическом языке должна быть переведена (транслирована) на язык команд конкретной ЭВМ. Такой перевод осуществляется автоматически специальными программами-трансляторами, создаваемыми для каждого алгоритмического языка и для каждого типа компьютеров.

Существуют два основных способа трансляции - компиляция и интерпретация.

1.Компиляция: Компилятор (англ. compiler - составитель, собиратель) читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.

При компиляции вся исходная программа сразу превращается в последовательность машинных команд. После этого полученная результирующая программа выполняется ЭВМ с имеющимися исходными данными. Достоинство такого способа состоит в том, что трансляция выполняется один раз, а (многократное) выполнение результирующей программы может осуществляться с большой скоростью. Вместе с тем результирующая программа может занять в памяти ЭВМ очень много места, так как один оператор языка при трансляции заменяется сотнями или даже тысячами команд. Кроме того, отладка и видоизменения транслированной программы весьма затруднены.

2. Интерпретация: Интерпретатор (англ. interpreter - истолкователь, устный переводчик) переводит и выполняет программу строка за строкой.

При интерпретации исходная программа хранится в памяти ЭВМ почти в неизменном виде. Программа-интерпретатор декодирует операторы исходной программы по одному и тут же обеспечивает их выполнение с имеющимися данными. Интерпретируемая программа занимает в памяти компьютера мало места, ее легко отлаживать и видоизменять. Зато выполнение программы происходит достаточно медленно, поскольку при каждом исполнении заново осуществляется поочередная интерпретация всех операторов.

Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять

Каждый конкретный язык ориентирован либо на компиляцию, либо на интерпретацию - в зависимости от того, для каких целей он создавался. Например, Паскаль обычно используется для решения довольно сложных задач, в которых важна скорость работы программ. Поэтому данный язык обычно реализуется с помощью компилятора.

С другой стороны, Бейсик создавался как язык для начинающих программистов, для которых построчное выполнение программы имеет неоспоримые преимущества.

Иногда для одного языка имеется и компилятор, и интерпретатор. В этом случае для разработки и тестирования программы можно воспользоваться интерпретатором, а затем откомпилировать отлаженную программу, чтобы повысить скорость ее выполнения.

Понятие реляционный (англ. relation -- отношение) связано с разработками известного американского специалиста в области систем баз данных, сотрудника фирмы IBM д-ра Е. Кодда (Codd E.F., A Relational Model of Data for Large Shared Data Banks. CACM 13: 6, June 1970), которым впервые был применен термин «реляционная модель данных».

В течение долгого времени реляционный подход рассматривался как удобный формальный аппарат анализа баз данных, не имеющий практических перспектив, так как его реализация требовала слишком больших машинных ресурсов. Только с появлением персональных ЭВМ реляционные и близкие к ним системы стали распространяться, практически не оставив места другим моделям.

Эти модели характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.

Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

  • - каждый элемент таблицы - один элемент данных; повторяющиеся группы отсутствуют;
  • - все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;
  • - каждый столбец имеет уникальное имя;
  • - одинаковые строки в таблице отсутствуют;
  • - порядок следования строк и столбцов может быть произвольным. Таблица такого рода называется отношением.

База данных, построенная с помощью отношений, называется реляционной базой данных.

Отношения представлены в виде таблиц, строки которых соответствуют кортежам или записям, а столбцы - атрибутам отношений, доменам, полям.

Поле, каждое значение которого однозначно определяет соответствующую запись, называется простым ключом (ключевым полем). Если записи однозначно определяются значениями нескольких полей, то такая таблица базы данных имеет составной ключ.

Чтобы связать две реляционные таблицы, необходимо ключ первой таблицы ввести в состав ключа второй таблицы (возможно совпадение ключей); в противном случае нужно ввести в структуру первой таблицы внешний ключ - ключ второй таблицы.

Предложив реляционную модель данных, Э.Ф. Кодд создал и инструмент для удобной работы с отношениями - реляционную алгебру. Каждая операция этой алгебры использует одну или несколько таблиц (отношений) в качестве ее операндов и продуцирует в результате новую таблицу, т.е. позволяет "разрезать" или "склеивать" таблицы.

То, чем принципиально отличаются реляционные модели от сетевых и иерархических, на это можно сказать следующим образом: иерархические и сетевые модели данных - имеют связь по структуре, а реляционные - имеют связь по значению.

Проектирование баз данных традиционно считалось очень трудной задачей. Реляционная технология значительно упрощает эту задачу.

Разделением логического и физического уровней системы она упрощает процесс отображения "уровня реального мира", в структуру, которую система может прямо поддерживать. Поскольку реляционная структура сама по себе концептуально проста, она позволяет реализовывать небольшие и/или простые (и поэтому легкие для создания) базы данных, такие как персональные, сама возможность реализации которых никогда даже бы не рассматривалась в старых более сложных системах.

Теория и дисциплина нормализации может помочь, показывая, что случается, если отношения не структурированы естественным образом.

Реляционная модель данных особенно удобна для использования в базах данных распределенной архитектуры - она позволяет получать доступ к любым информационным элементам, хранящимся в узлах сети ЭВМ. Необходимо обратить особое внимание на высокоуровневый аспект реляционного подхода, который состоит во множественной обработке записей. Благодаря этому значительно возрастает потенциал реляционного подхода, который не может быть достигнут при обработке по одной записи и, прежде всего, это касается оптимизации.

Данная модель позволяет определять:

  • · операции по запоминанию и поиску данных;
  • · ограничения, связанные с обеспечением целостности данных.

Для увеличения эффективности работы во многих СУБД реляционного типа приняты ограничения, соответствующие строгой реляционной модели.

Многие реляционные СУБД представляют файлы БД для пользователя в табличном формате -- с записями в качестве строк и их полями в качестве столбцов. В табличном виде информация воспринимается значительно легче. Однако в БД на физическом уровне данные хранятся, как правило, в файлах, содержащих последовательности записей.

Основным преимуществом реляционных СУБД является возможность связывания на основе определенных соотношений файлов БД.

Со структурной точки зрения реляционные модели являются более простыми и однородными, чем иерархические и сетевые. В реляционной модели каждому объекту предметной области соответствует одно или более отношений. При необходимости определить связь между объектами явно, она выражается в виде отношения, в котором в качестве атрибутов присутствуют идентификаторы взаимосвязанных объектов. В реляционной модели объекты предметной области и связи между ними представляются одинаковыми информационными конструкциями, существенно упрощая саму модель.

СУБД считается реляционной при выполнении следующих двух условий, предложенных еще Э. Коддом:

  • · поддерживает реляционную структуру данных;
  • · реализует, по крайней мере, операции селекции, проекции и соединения отношений.

В последующем был создан целый ряд реляционных СУБД, в той или иной мере отвечающих данному определению. Многие СУБД представляют собой существенные расширения реляционной модели, другие являются смешанными, поддерживая несколько даталогических моделей.

На сегодняшний день реляционные базы данных остаются самыми распространенными, благодаря своей простоте и наглядности, как в процессе создания, так и на пользовательском уровне.

Основным достоинством реляционных баз данных является совместимость с самым популярным языком запросов SQL.

С помощью единственного запроса на этом языке можно соединить несколько таблиц во временную таблицу и вырезать из нее требуемые строки и столбцы (селекция и проекция). Так как табличная структура реляционной базы данных интуитивно понятна пользователям, то и язык SQL является простым и легким для изучения. Реляционная модель имеет солидный теоретический фундамент, на котором были основаны эволюция и реализация реляционных баз данных. На волне популярности, вызванной успехом реляционной модели, SQL стал основным языком для реляционных баз данных.

Но выявлены и недостатки рассмотренной модели баз данных:

  • - так как все поля одной таблицы должны содержать постоянное число полей заранее определенных типов, приходится создавать дополнительные таблицы, учитывающие индивидуальные особенности элементов, при помощи внешних ключей. Такой подход сильно усложняет создание сколько-нибудь сложных взаимосвязей в базе данных;
  • - высокая трудоемкость манипулирования информацией и изменения связей.


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: