Автотон, автоконтраст, автоматическая цветовая коррекция. Настройка параметров автоматической корректировки

Таблица 1 – Инструкции для автоматической коррекции параметров инструмента

В процессе обработки режущая кромка инструмента должна точно следовать вдоль запрограммированной траектории. В силу различия используемых инструментов, их размеры должны быть учтены и введены в систему управления перед началом воспроизведения программы. Только в этом случае траектория может быть рассчитана безотносительно к параметрам используемых инструментов. После того, как инструмент установлен в шпиндель и активизирована соответствующая коррекция (компенсация его размеров), система ЧПУ автоматически принимает в расчет эту коррекцию.

Рисунок 1 – Инструментальный комплекс

Адрес Н осуществляет компенсацию длины, а адрес D - компенсацию радиуса.

Компенсация длины возможна двумя способами: по отношению к передней плоскости шпинделя и по отношению к «нулевому инструменту».

Рисунок 2 – Компенсация длины инструмента по отношению к передней плоскости шпинделя и к нулевому инструменту

В первом случае величина компенсации может быть только положительной (для рисунка Рисунок 2 Н1=70.832, Н2=81.712, Н3=100.003), во втором случае выбирают «нулевой инструмент», который имеет нулевое значение компенсации, а остальные величины компенсаций могут быть как положительными, так и отрицательными (для рисунка Рисунок 2 Н1=-20.813, Н2=0, Н3=25.821). В обоих случаях величины компенсации сохраняются в соответствующей таблице.

Центр фрезы движется по эквидистантной траектории, параллельной контуру детали, отстоящей от нее на величину, равную радиусу фрезы. Эквидистантную траекторию называют также траекторией центра фрезы. Значения компенсации для различных инструментов вносят в таблицу; например: D1=14 (при диаметре фрезы 28 мм); D2=22 (при диаметре фрезы 44 мм). Направление смещения определяется, если смотреть на траекторию сверху вниз, то есть со стороны "+Z" в направлении "-Z".

Рисунок 3 – Принцип эквидистантной коррекции

Вдоль контура и тех сопряжений кадров, для которых угол наклона касательной остается неизменным, эквидистанта однозначно определяется параметрами контура. В других же нерегулярных случаях внешних сопряжений кадров система ЧПУ рассчитывает сопряжения отрезков эквидистант соответственно инструкциям G68 или G69.



Рисунок 4 – Однозначное определение контура эквидистантой и расчет внешних сопряжений отрезков эквидистант

В случае нерегулярных сопряжений внутренних контуров система ЧПУ рассчитывает пересечения эквидистант для определения нужной траектории. В некоторых случаях это может привести к полному искажению контура. Чтобы избежать этого, некоторые системы ЧПУ располагают функцией «контроля коллизий»

Рисунок 5 – Расчет внутренних сопряжений отрезков эквидистант

Для того чтобы система ЧПУ успела выполнить смещение относительно запрограммированного контура необходимо добавить к исходной траектории участок подвода. На этом участке происходит активация автоматической коррекции радиуса инструмента. Большинству систем для активации коррекции требуется пройти расстояние, не меньшее величины радиуса инструмента. Обязательным условием для активации коррекции является наличие именно прямолинейного перемещения на рабочей подаче.

Коррекция радиуса инструмента слева – G41. Инструкция G41 инициирует положительную эквидистантную коррекцию слева от заготовки, если смотреть в направлении подачи. Для реализации коррекции радиус фрезы программируют в D-слове, а номер инструмента в Т-слове. Вместе с инструкцией G41 можно программировать линейные перемещения; тогда активизация эквидистантной коррекции произойдет «по пути» движения к конечной точке кадра.

N60 G41 X... Y... Z... D...

N65 G41 X... Y... Z...

Коррекция радиуса инструмента справа – G42. Инструкция G42 инициирует эквидистантную коррекцию справа от заготовки, если смотреть в направлении подачи. Все остальное - идентично инструкции G41.

Коррекция длины инструмента – G43. Компенсация длины инструмента осуществляется путем программирования команды G43 и H слова данных. Обычно компенсация длины активируется совместно с холостым перемещением по оси Z.

Отмена коррекций радиуса и длины инструмента – G40, G49. Компенсация длины инструмента отменяется путем программирования команды G49 или H00. Компенсация радиуса инструмента отменяется программированием команд G40 или D00. Отмена коррекции G40 может сопровождаться прямолинейным движением в активной плоскости. В этом случае выход из эквидистантной траектории осуществляется «по пути» к конечной точке кадра. Если активны функции круговой интерполяции, то действие инструкции G40 не должно сопровождаться перемещением.

Сопряжение эквидистант на стыке кадров (по дуге) – G68; по траектории пересечения эквидистант – G69. Инструкции являются модальными и работают при активной эквидистантной коррекции. Их действие сводится к автоматической генерации дуги (G68) или траектории пересечения эквидистант на стыке «не плавно» сопрягаемых кадров. Инструкция G68 инициирует автоматическое соединение разрыва эквидистант с помощью дуги радиуса r.

Рисунок 6 – Автоматическое соединение разрыва эквидистант по дуге

Инструкция G69 инициирует автоматическое соединение разрыва эквидистант по траектории пересечения эквидистант.

Рисунок 7 – Автоматическое соединение разрыва эквидистант по траектории пересечения эквидистант

Как я уже говорил, вам не обязательно знать принцип работы этих инструментов, но надо знать другое - в каких случаях для получения лучших результатов следует отдать предпочтение тому или иному инструменту.

Чтобы нам было немного легче разобраться с данным вопросом, давайте слегка повторим теорию. Как известно, всё многообразие цветов, отображаемых на мониторе компьютера, генерируется методом смещения трёх основных цветов - красного, зелёного и синего.

Белый цвет получается из смешивания красного, зеленого и синего в равной пропорции и полной интенсивности. Черный является полным отсутствием всех трёх основных цветов. Желтый, например, производится путем смешивания красного и зеленого. Смешайте красный и синий, и получите пурпурный цвет, в то время как зеленый и синий вместе даст бирюзовый. Применяйте в различных пропорциях смещение красного, зеленого и синего цветов и их оттенков во всех возможных оттенков, и вы получите в конечном итоге с миллионы и даже миллиарды цветов.

Photoshop смешивает это три основных цвета с помощью цветовых каналов. Один канал для красного, другой для зеленого, а третий для синего. Мы можем найти эти цветовые каналы в панели каналов, которая, по умолчанию, вложена в один стек с панелью слоев. Нажмите на его закладку в верхней части группы панелей, чтобы её открыть:

Откройте панель каналов, нажав на соответствующую вкладку.

В панели мы видим красный, зеленый и синий каналы, и плюс к этому - четвёртый канал RGB, расположенный в верхней части панели. Не позволяйте каналу RGB сбить вас с толку, это на самом деле не канал вообще. RGB означает "красный, зеленый и синий" и это просто сочетание, композиция работающих вместе красного, зеленого и синего каналов, чтобы дать нам полное цветное изображение.

Если вы посмотрите на миниатюры предварительного просмотра красного, зеленого и синего каналов, вы заметите нечто, что может показаться несколько неожиданным - эти цветовые каналы на самом деле вообще не в цвете! Вместо этого, каждый из них представляет собой полутоновое изображение. На самом деле, если мы посмотрим на них повнимательнее, мы можем увидеть, что черно-белое изображение каждого канала отличается от другого. Для предварительного просмотра того, как каждый канал выглядит в документе, просто нажмите на него. Например, я нажму на Красный канал для его выбора:


Выбор красного канала.

При выбранном красном канале полноцветный вариант моего изображения в документе временно заменяется версией в оттенках серого. Так что же означает черно-белое изображение при активном красном канале? Таким образом Photoshop показывает интенсивность красного цвета в картинке - чем ярче область, тем больше красного добавляется к полноцветной версии, в то время как более темные участки имеют менее насыщенный красный. В областях с чисто белым цветом в черно-белом изображении имеют красный цвет в его полной интенсивности, в то время как участки черного цвета не имеют красного вообще:


Предварительный просмотр красного канала. Яркие области содержат больше красного, чем темные участки.

Для того, чтобы увидеть, как в документе выглядит зеленый канал, я нажму на него в панели каналов.

Это действие временно отключит отображение красного и синего каналов, показывая мне в документе только зеленый канал. Здесь мы видим еще одно изображение в оттенках серого, но оно несколько отличается от того, что мы видели с красным каналом. Это происходит потому что интенсивность зелёного цвета на разных областях фотографии, естественно, отличается от интенсивности красного. Повторяюсь, тем ярче участок, тем интенсивнее в нём зелёный цвет, в то время как более темные участки имеют менее насыщенный зеленый. Любые области чистого белого имеют зеленый полной интенсивности, в то время как участки чистого черного цвета не имеют зеленого вообще:


Предварительный просмотр зеленого канала. Более светлые области = более интенсивный зеленый, более темные участки = менее зеленый.

Если теперь мы посмотрим черно-белое изображение синего канала то оно будет так же отличаться от других и работать точно так же. Моя фотография содержит много синего (или любой другой цвет, который использует синий в качестве основного ингредиента), поэтому синий канал выглядит в целом темнее, чем красный и зеленый каналы:


Предварительный просмотр синего канала. Чем светлее область, тем больше синего цвета участвует в смешивании цвета в полноцветном варианте.

Итак, мы узнали, что Photoshop смешивает красный, зеленый и синий цветовые каналы для воспроизведения всех цветов, которые мы видим на изображении. Теперь, исходя из этого, попробуем разобраться, какой из трёх рассматриваемых инструментов когда нам лучше применять. Каждая из трех автоматических команд манипулирует цветовыми каналами по-разному, производя различные результаты. Далее я кратко опишу работу каждого из них, прежде, чем мы посмотрим на них в действии.

Инструмент Auto Contrast является самым основным и понятным из трех рассматриваемых в этом уроке. Когда мы его выбираем, Photoshop анализирует композит всех трех цветовых каналов (другими словами, он рассматривает все три так, как если бы они были одним черно-белым изображением) и просто преобразует темные пиксели в чисто черные, осветляет светлые пиксели до чистого белого и перераспределяет все другие тональные значения между ними. Результатом является изображение с улучшенной общей контрастностью. Важно отметить, что, поскольку он рассматривает все три цветовых канала как одно составное изображение, Auto Contrast не меняет цвета в изображении. Он просто повышает общий контраст, что делает его хорошим выбором для изображений, которые не страдают от каких-либо цветовых проблем.

Auto Tone аналогичен Auto Contrast в том, что он также затемняет темные пиксели до чисто черного, осветляет светлые пиксели в чистый белый и перераспределяет все другие тональные значения между ними, но у него имеется одно серьёзное отличие. Он делает это не на основе трёх каналов, смешанных в один, а на основе каждого канала по отдельности , что означает, что красный, зеленый и синий каналы будут скорректированы также по отдельности. Мы знаем, что Photoshop использует значения яркости в каждом отдельном цветовом канале для того, чтобы определить, сколько каждого цвета смешать в полноцветной версии, так что путем изменения цветовых каналов независимо друг от друга, мы изменим цвета на полноцветном фото, т.к. значения яркости в каналах изменено. Это означает, что, в отличие от Auto Contrast, который не делает ничего больше, кроме увеличения общего контраста, Auto Tone одновременно с повышением контраста изменяет цвета в изображении. Если изображение имеет нежелательный цветовой оттенок, Auto Tone может быть в состоянии это исправить.

Auto Color похож на Auto Tone. Он также затемняет темные пиксели в черный и осветляет светлые пиксели в белый на основе каждого канала по отдельности, так что красный, зеленый и синий каналы будут скорректированы отдельно и независимо друг от друга. Но Auto Color идет на шаг дальше. Вместо того, чтобы просто перераспределить все тональные значения между ними, он пытается исправить любой нежелательный цветовой оттенок путем нейтрализации полутонов в изображении. Это, как правило (но не всегда) делает Auto Color лучшим выбором для автоматического одновременного исправления контраста и решения цветовых проблем.

В следующем материале я расскажу, как правильно и эффективно применять инструменты автоматической настройки изображений.

«Параметры автоматической цветокоррекции» отвечают за автоматический подбор настроек тона и цвета с помощью корректировок «Уровни» и «Кривые». Они также управляют командами «Автотон», «Автоконтраст» и «Автоматическая цветовая коррекция».

«Параметры автоматической цветокоррекции» отвечают за автоматический подбор настроек тона и цвета с помощью корректировок «Уровни» и «Кривые». Они также управляют командами «Автотон», «Автоконтраст» и «Автоматическая цветовая коррекция». Здесь можно указать процент отсечения теней и светлых участков и назначить цветовые значения теням, средним тонам и светлым участкам.

Эти параметры можно однократно применить в корректировках «Уровни» или «Кривые» или сохранить в качестве значений по умолчанию для команд «Автотон», «Автоконтраст», «Автоматическая цветовая коррекция» и кнопки «Авто» в диалоговых окнах «Уровни» и «Кривые».

Диалоговое окно «Параметры автоматической цветокоррекции»


А. Параметр «Автоконтраст» Б. Параметр «Автоматическая тоновая коррекция» В. Параметр «Автоматическая цветовая коррекция» Г. Установка целевых цветов, точки черного и точки белого
  1. Щелкните на значке «Уровни» или «Кривые» на панели «Коррекция».
  2. Щелкните кнопку «Авто» на панели «Коррекция», удерживая клавишу «Alt» (Windows) или «Option» (Mac OS).
  3. Укажите, какой алгоритм должен использоваться для корректировки общего тонального диапазона изображения. Усиление монохроматического контраста Отсекает значения во всех каналах одинаково. Сохраняет общее отношение между цветами, но делает светлые участки светлее, а тени - темнее. Этот алгоритм использует команда «Автоконтраст». Усиление контраста в каналах Максимизирует тональный диапазон в каждом канале, чтобы выполнить более глубокую корректировку. Так как все каналы корректируются по отдельности, алгоритм «Улучшить контраст по каналам» может убрать или создать новые цветовые оттенки. Этот алгоритм использует команда «Автотон». Поиск темных и светлых цветов Находит среди самых светлых и самых темных пикселов изображения пикселы со средними значениями и использует их для максимизации контраста с минимизацией отсечения. Этот алгоритм использует команда «Автоматическая цветовая коррекция».
  4. Включите параметр «Привязать к нейтральным средним тонам», чтобы команда выполнила поиск среднего нейтрального цвета на изображении и отрегулировала значение гаммы (средних тонов), превратив этот цвет в нейтральный. Этот алгоритм использует команда «Автоматическая цветовая коррекция».
  5. Чтобы указать, насколько сильно должны отсекаться черные и белые пикселы, введите процентные значения в текстовые поля «Усечение». Рекомендуется использовать значения от 0,0% до 1%.

    По умолчанию команды Photoshop отсекают белые и черные пикселы на 0,1%, то есть игнорируют 0,1% с каждого конца диапазона при идентификации самых светлых и самых темных пикселов на изображении. Так как качество изображений, обеспечиваемое современными сканерами и цифровыми камерами, очень высокое, эти значения отсечения по умолчанию могут оказаться слишком большими.

  6. Чтобы определить (нацелить) цветовые значения для самых темных, нейтральных и самых светлых областей изображения, щелкните образец цвета.
  7. Сделайте одно из следующего.

      Чтобы использовать настройки открытой корректировки «Уровни» или «Кривые», нажмите кнопку «ОК». Если после этого нажать кнопку «Авто», те же настройки будут снова применены к изображению.

      Чтобы сохранить настройки в качестве параметров по умолчанию, нажмите кнопку «Сохранить в качестве значений по умолчанию», а затем нажмите кнопку «ОК». В следующий раз, когда вы откроете «Уровни» или «Кривые» на панели «Коррекция», те же настройки можно будет применить, щелкнув кнопку «Авто». Команды «Автотон», «Автоконтраст», «Автоматическая цветовая коррекция» используют процент отсечения по умолчанию.

    Примечание. При сохранении параметров автоматической корректировки цвета по умолчанию для команд «Автоматическая цветовая коррекция», «Автотон» и «Автоконтраст» не играет роли, какой алгоритм был выбран в шаге 2. Эти три команды автоматической корректировки используют только значения, установленные для целевых цветов и отсечения. Единственным исключением является команда «Автоматическая цветовая коррекция», которая также использует параметр «Привязать к нейтральным средним тонам».

Одной из главных задач, решаемых при создании контрольно-управляющих систем, является обеспечение необходимой точности измерительного канала и его долговременной метрологической стабильности.

Существенной составляющей общей погрешности измерительного канала является систематическая погрешность. Для получения возможности коррекции этой погрешности необходимо знать, как она себя ведет при изменении величины измеряемого сигнала. Ее поведение определяется формой реальной функции преобразования измерительного канала, точнее тем, как отклоняется эта функция от идеальной. Идеальная характеристика измерительного канала представляет собой линейную зависимость изменения величины сигнала на выходе канала от величины сигнала на входе канала. Характер изменения реальной характеристики в общем случае может быть не линейным.

Как бы не отличалось поведение реальной функции преобразования от идеальной, все отличия можно свести к сумме трех составляющих – погрешности смещения нуля, масштабной погрешности и погрешности нелинейности (рис.1). Разделение общей погрешности преобразования на такие составляющие существенно в первую очередь с практической точки зрения – определение величины каждой составляющей и коррекция каждой из них осуществляется по-своему.

Причины появления систематической погрешности канала связаны в первую очередь с инструментальными погрешностями его составных узлов и элементов. Погрешность смещения нуля, как аддитивная погрешность, складывается из погрешностей смещения нуля операционных усилителей или иных элементов принципиальной схемы канала. Масштабная погрешность по своему поведению является мультипликативной. Она обуславливается неправильным установлением коэффициентов передачи элементов схемы канала. Для коррекции погрешности смещения нуля и масштабной погрешности (сведения их к допустимому диапазону) в стандартной схеме включения элементов и узлов, как правило, предусматривается включение корректирующих элементов – обычно подстроичных резисторов.

Коррекция осуществляется на этапе первичной настройки устройства в лабораторных условиях с использованием необходимой измерительной техники. Однако после того как устройство будет помещено в реальные условия эксплуатации проведенная коррекция погрешностей может «рассыпаться» из-за воздействия на элементы схемы различных дестабилизирующих факторов.

Р и с. 1. Разложение систематической погрешности измерительного канала на отдельные составляющие

Самым очевидным дестабилизирующим фактором является изменение температуры. Другим распространенным фактором является нестабильность источников питания. И наконец, свою лепту в систематическую погрешность может вносить еще один медленно меняющийся фактор – старение элементов. Действие этих факторов (их изменения во время работы устройства) могут приводить к тому, что погрешности, скорректированные на этапе настройки устройства, вновь будут выходить за допустимые пределы. Общий вывод, вытекающий из этого, состоит в том, что такими простыми способами обеспечить долговременную метрологическую стабильность работы устройства, по крайней мере, затруднительно. В частности, это может потребовать применения прецизионной и дорогой элементной базы, чего конечно хочется избежать.


Добиться долговременной метрологической стабильности при использовании не дорогой и распространенной элементной базы можно только при условии, что погрешности элементов будут постоянно (периодически) отслеживаться и корректироваться. Очевидно, что постоянно проводить настройки вручную в ходе работы устройства невозможно. Обеспечить это можно только осуществляя эти действия в автоматическом режиме. В свою очередь организовать такой режим можно только тогда, когда центральное ядро контрольно-измерительной системы реализовано как «интеллектуальное» – на основе микропроцессорной техники.

Рассмотрим сначала общие принципы организации автоматической коррекции систематических погрешностей канала, а затем ограничения ее проведения, вытекающие из условий реальной реализации измерительных каналов.

Линейные составляющие систематической погрешности (погрешностей смещения нуля и масштабной) определяются и корректируются с использованием достаточно простых подходов.

Постоянство погрешности смещения нуля на всем диапазоне входных воздействий позволяет для определения ее величины ограничиться проведением всего одного измерения. Как видно из рис.1, при нулевом входном воздействии отклонение реальной функции преобразования канала от идеальной определяется погрешностью смещения нуля. Поэтому для определения этой погрешности необходимо на вход канала подать входной сигнал равный нулю и измерить значение сигнала, получаемое при этом на выходе канала. Это значение будет соответствовать определяемой погрешности. Для подачи на вход канала сигнала равного нулю, нужно во входную цепь установить ключ, коммутирующий вход канала на время оценки погрешности на общую земляную шину (рис.2,а).

Р и с. 2. Построение входных цепей для возможности коррекции погрешности смещения нуля (а) и масштабной погрешности (б)

Очевидно, что коррекция погрешности смещения нуля будет сводиться в дальнейшем к вычитанию ее величины из значений на выходе канала, получаемых при проведении текущих измерений.

Линейный характер масштабной погрешности позволяют для определения ее поведения также обойтись одним измерением. Подключая ко входу измерительного канала известный по величине источник опорного напряжения и проводя измерение его величины, легко оценить во сколько раз полученный результат отличается от ожидаемого. Иными словами, поделив значение результата измерения опорной величины на истинное значение этой величины, мы получим поправочный коэффициент, который в дальнейшем можно будет использовать для коррекции результатов текущих измерений. Для подачи на вход канала сигнала, равного опорному, нужно во входную цепь установить ключ, подключающий ко входу канала на время оценки погрешности источник опорного напряжения (рис.2,б). Коррекция масштабной погрешности будет сводиться к умножению значений на выходе канала, получаемых при проведении текущих измерений, на полученный поправочный коэффициент.

Из приведенной последовательности действий видно, что определение поправочного коэффициента для коррекции масштабной погрешности необходимо проводить после определения погрешности смещения нуля и с учетом ее величины.

Конечно, если коррекции двух линейных составляющих систематической погрешности окажется достаточно, чтобы свести общую погрешность канала в допустимые приделы, можно ограничиться описанными простыми приемами уменьшения общей погрешности канала. Если же этого будет недостаточно, то нужно идентифицировать поведение нелинейной составляющей систематической погрешности, чтобы при проведении текущих измерений дополнительно учитывать еще и ее величину. Для точного определения характера нелинейного поведения систематической погрешности нужно проводить сквозной контроль – подавать на вход канала с калиброванного источника напряжений сигнал во всем возможном диапазоне его изменения и проводить оценочные измерения. В большинстве практических случаев ограничиваются измерением значений нескольких источников опорного напряжения. После чего интерполируют поведение реальной характеристики по этим нескольким реперным точкам.

Действия по определению текущих значений систематических погрешностей канала должны проводиться под управлением программы микропроцессорного ядра контрольно-управляющей систем. Контроль за уровнем систематической погрешности может производиться периодически. Период обновления оценок погрешности выбирается исходя из степени изменчивости дестабилизирующих факторов. В частности контроль может производиться все то время, пока контрольно-измерительная система не занимается текущими измерениями и обработкой результатов измерений. При этом к каждому очередному измерению будет всегда готова оценка погрешности, соответствующая моменту времени, непосредственно предшествующего моменту текущего измерения.

Проведение периодической автоматической коррекции не исключает необходимости использования в узлах измерительного канала каких-либо элементов настройки. Однако при этом они будут использоваться не для минимизации тех или иных погрешностей, а для того чтобы вывести реальную функцию преобразования канала в диапазон, где эти погрешности могут быть правильно оценены.

Например, может оказаться, что реальная функция преобразования располагается относительно идеальной так, как показано на рис. 3.а. По идеальной функции преобразования видно, что канал рассчитан на измерение положительных входных напряжений, поэтому отрицательное значение погрешности смещения нуля для реальной функции преобразования оценено быть не может. Для того чтобы погрешность смещения нуля можно было оценить необходимо с помощью аппаратных элементов настройки вывести реальную функцию преобразования полностью в положительную область выходных напряжений.

В случае, который иллюстрируется рис. 3.б. наличие масштабной погрешности приводит к тому, что реальная функция преобразования находится выше идеальной. При подаче на вход канала опорного напряжения, равного максимальному входному напряжению, масштабную погрешность оценить не получится – на выходе канала напряжение, которое можно оценить, будет ограничиваться уровнем, соответствующим конечной точке шкалы идеальной функции преобразования. Выходом из этой ситуации является или выбор меньшего опорного напряжения или смещение реальной функции преобразования ниже идеальной. Смещение реальной функции преобразования должно осуществляться с помощью аппаратных элементов настройки.

Р и с. 3. Варианты расположения идеальной и реальной функций преобразования измерительного канала относительного друг друга

Отметим, что выбор поправочного коэффициента для коррекции масштабной погрешности может осуществляться с учетом вида нелинейной составляющей систематической погрешности. Например, выбирая наклон реальной функции преобразования относительно идеальной, нетрудно добиться того чтобы погрешности нелинейности «располовинились» (рис. 4) и тем самым отклонения реальной функции преобразования относительно идеальной были сведены к минимальным.

Р и с. 4. Минимизация нескорректированной нелинейной составляющей систематической погрешности.

Погрешности нелинейности будут при этом разного знака, а их абсолютные значения по величине меньше.

Кроме систематических погрешностей, рассмотренных выше, в измерительных каналах приходится иметь дело со случайными погрешностями. Поведение систематических и случайных погрешностей различно, поэтому отличаются и методы их коррекции. Известно, что при постоянстве во времени измеряемой величины наиболее эффективным методом уменьшения случайных погрешностей является проведение многократных изменений с последующим усреднением результатов. При этом погрешность среднего значения результата измерения уменьшается в раз, где n – число измерений.

Значительные трудности возникают при уменьшении случайной погрешности при измерении изменяющейся во времени величины. При этом для получения наилучшей оценки измеряемой величины применяют процедуру фильтрации. В зависимости от вида используемых преобразований различают линейную и нелинейную фильтрацию, где реализация отдельных процедур может быть осуществлена как аппаратными, так и программными средствами.

Фильтрация может применяться не только для подавления помех, наводящихся на входные цепи передачи аналогового сигнала, а при необходимости и для ограничения спектра входного и восстановления спектра выходного сигнала (об этом уже говорилось ранее). При необходимости могут применяться фильтры с перестраиваемой частотой среза.

Применение автоматической коррекции систематических погрешностей можно рассматривать как проведение адаптации канала к его собственному состоянию. Применение современной элементной базы позволяет сегодня реализовывать входные цепи, адаптирующиеся к характеристикам входного сигнала, в частности, к его динамическому диапазону. Для такой адаптации необходим входной усилитель с управляемым коэффициентом передачи. Если по результатам предшествующих измерений удалось установить, что динамический диапазон сигнала мал по сравнению с диапазоном входного сигнала АЦП, то коэффициент усиления усилителя увеличивают до тех пор, пока динамический диапазон сигнала не будет соответствовать диапазону работы АЦП. Таким образом удается добиться минимизации погрешности дискретизации сигнала и, следовательно, повышения точности проведения измерений. Изменение коэффициента усиления сигнала на входе учитывается при этом программно при обработке результатов измерений цифровым контроллером.

Критерии оценки соответствия динамического диапазона сигнала и диапазона работы АЦП будут рассмотрены далее, будут рассмотрены и способы адаптации входного канала к частотным свойствам входного сигнала.

Автоматическая коррекция изображения

Наверно каждому из нас хотелось бы, чтобы коррекцию изображения можно было выполнить за один шаг, а не тратить огромное количество времени и сил на исправление дефектов. К счастью такой инструмент есть. Хотя естественно, полагаться на него во всем не нужно, он не избавит вас от необходимости ручной коррекции изображения, однако в некоторых случаях этого оказывается достаточно, чтобы «исправить» изображение должным образом. Поэтому не стоит полностью игнорировать возможности автоматической тоновой коррекции. Во всяком случае, перед началом коррекции изображения имеет смысл сначала попробовать воспользоваться автоматическими средствами.

Для автоматической коррекции изображения:

1. Откройте изображение.
2. Выполните команду Adjust > Auto Adjust (Настройка > Автонастройка).

Эта команда не вызывает диалоговых окон и не имеет настроек. Коррекция происходит автоматически и вы сразу же получаете результат коррекции.
Фильтр Auto Adjust (Автонастройка) выравнивает тени, промежуточные и светлые тона изображения, автоматически перераспределяя значения пикселей внутри тонового диапазона. Эта настройка выполняется в каждом цветовом канале изображения, приводя к изменениям цвета и тона изображения. Пример использования Автонастройки приведен на рис. 1.

Лаборатория настройки изображения

В Corel Photo-Paint имеется средство для исправления типичных проблем изображения, присущих цифровым фотографиям, полученным с помощью фотоаппарата или камеры. В ранних версиях Photo-Paint, для исправления тех или иных дефектов, приходилось использовать несколько фильтров. Начиная с Corel Photo-Paint Х3, в состав программы была включена Image Adjustment Lab (Лаборатория по корректировке изображений). Идея создания этой лаборатории заключалась в том, чтобы свести все наиболее часто используемые при коррекции фильтры, в один инструмент. Это позволило экономить силы, время и нервы при цветовой и тональной коррекции фотографий. Чтобы получить доступ к средствам лаборатории выполните команду Adjust > Image Adjustment Lab (Настройка > Лаборатория по корректировке изображений). Когда Вы впервые откроете диалоговое окно с изменяемыми размерами (рис. 2), Вы обратите внимание, что он включает рабочую область предварительного просмотра слева, регулирующие ползунки справа и ряд кнопок на панели вверху.

Если у вас есть опыт в работе с другими диалоговыми окнами фильтров в Photo-Paint, использование элементов предварительного просмотра и кнопок панели верхней части окна (рис. 3) в Лаборатории по корректировке изображений будет вам знакомо.

1. Кнопка Rotates image 90 degrees counterclockwise (Поворот изображения на 90 градусов против часовой стрелки) – служит для поворота изображения на 90 градусов против часовой стрелки в окне предварительного просмотра.
2. Кнопка Rotates image 90 degrees clockwise (Поворот изображения на 90 градусов по часовой стрелке) – служит для поворота изображения на 90 градусов против часовой стрелки в окне предварительного просмотра.
3. Кнопка Pan tool (Панорама) – активирует инструмент Панорама, для прокрутки и масштабирования изображения в окне предварительного просмотра. Чтобы увеличить масштаб, щелкните девой кнопкой мыши и правой, чтобы уменьшить. Удерживайте нажатой левую кнопку мыши при перетаскивании, для панорамирования непосредственно в области предварительного просмотра.
4. Кнопка Zoom in (Крупнее) – активирует инструмент Крупнее, по сути тот же инструмент Масштаб. При щелчке левой кнопкой мыши – масштаб увеличивается, при щелчке правой– уменьшается.
5. Кнопка Zoom out (Мельче) – активирует инструмент Мельче, являющийся противоположностью инструмента Крупнее. При щелчке левой кнопкой мыши – масштаб уменьшается, при щелчке правой – увеличивается.
6. Кнопка Displays an image to fit in the window (Отображение изображения в соответствии с размером окна) – масштабирует изображение в соответствии с размерами области просмотра так, чтобы оно целиком уместилось в этой области.
7. Кнопка Displays an image at normal size (Отображение изображения обычного размера) – показывает изображение в масштабе 1:1 в области просмотра.
8. Кнопка Full Preview (Полноэкранный просмотр) – «переключает» область просмотра в «одно-оконный» режим. В этом режиме вы можете видеть изменения, которые вы вносите в изображение, но при этом не сможете видеть исходное изображение, каким оно было до внесения изменений.
9. Кнопка (Полноэкранный просмотр «До и после») – «переключает» область просмотра в режим просмотра «До и после», в котором область просмотра разделена на две части, как на рис. 2. Слева отображается исходное изображение, справа – откорректированное изображение, что позволяет одновременно видеть и исходное изображение и результаты изменений.
10. Кнопка (Разделенный просмотр «До и после») – аналогична кнопке Before and after full preview (Полноэкранный просмотр «До и после»), однако позволяет менять размеры областей Original (Исходное) и Working Preview (Рабочий просмотр). Помимо этого изображение в правой части, является как бы «продолжением» изображения в левой части области просмотра.

Ниже области предварительного просмотра вы можете использовать кнопки Reverses the last operation (Отмена последней операции), Redoes the last undo operation (Восстановление операции, которая была отменена ранее) или Reset to original (Сброс до исходного состояния), чтобы изменить недавние изменения, которые Вы внесли.
Для быстрой коррекции, используйте кнопку Auto Adjust (Автонастройка) в сочетании с инструментами – кнопками в виде пипеток, Select White Point (Выбор белой точки) и Select Black Point (Выбор Черной Точки).

Ползунки позволяют вам изменить цвет и тон изображения. Используйте ползунки Temperature (Температура), Tint (Оттенок) и Saturation (Насыщенность) для тональной и цветовой коррекции. Используйте ползунки Brightness (Яркость) и Contrast (Контрастность), чтобы добиться необходимой яркости и контраста. Или, используйте ползунки Highlights (Светлые тона), Shadows (Тени) и/или Midtones (Промежуточные тона), для регулирования яркости определенных тональных диапазонов. Позиционируйте указатель мыши на каждом ползунке, чтобы просмотреть информацию в области Hints (Советы), расположенной ниже ползунков.

По окончании экспериментов с инструментами, щелкните кнопку Create Snapshot (Создать снимок), чтобы сохранить ваши текущие настройки. Пронумерованный миниатюры с текущими настройками добавляются ниже области просмотра всякий раз, когда вы делаете новый снимок. Щелкните непосредственно на миниатюре, чтобы загрузить изображение в область просмотра и настройки примененных в снимке параметров (положение ползунков). Можете попробовать множество различных настроек параметров для оценки результатов, без необходимости запоминать их. На рис. 4 показано несколько снимков с применением различных параметров.

Во время цветовой и тоновой коррекции, чтобы заметить еле заметную разницу в настройках фильтров зачастую трудная задача, требующая опыта. Помимо этого, часто требуется сохранять копии изображения с различными результатами проб и ошибок. При работе с Image Adjustment Lab (Лабораторией по корректировке изображений), вам не нужно этого делать, как говорилось выше, достаточно сделать снимки.

А теперь, давайте рассмотрим пример использования Лаборатории по корректировке изображений, для улучшения фотографий.
На рис. 5 представлена фотография обычного сельского вида, сделанная жарким летним днем.

Несмотря на отсутствие видимых дефектов или искажений цветов, сама фотография оставляет такое впечатление, как будто она «выцвела на солнце». Цвета в изображении тусклые, контраст и цветовая насыщенность также оставляют желать лучшего. Для улучшения данной фотографии, нужно выполнить следующие действия.

1. Откройте изображение.
2. Выполните команду Adjust > Image Adjustment Lab (Настройка > Лаборатория по корректировке изображений).
3. В окне Image Adjustment Lab (Лаборатория по корректировке изображений) переключитесь в один из режимов просмотра, например, в Before and after full preview (Полноэкранный просмотр «До и после») (рис. 6).

Как видно на рисунке, окно Image Adjustment Lab (Лаборатория по корректировке изображений) в правой части, ниже ползунков, имеет гистограмму. При первом же взгляде на нее, становится заметно, что она имеет пик в средних тонах, но практически нет пикселей в светах и тенях.

Обратите внимание, что область просмотра разделена пунктирной линией, которую можно перемещать влево или вправо, увеличивая и уменьшая области До и После внесения изменений. Сравните также рис. 2 и 7, где показаны разные режимы просмотра, Before and after split preview (Разделенный просмотр «До и после») и Before and after full preview (Полноэкранный просмотр «До и после»).

4. Для придания изображению более красочного и привлекательного вида, я установил в окне Image Adjustment Lab (Лаборатория по корректировке изображений) следующие значения параметров: Tint (Оттенок) – 10; Saturation (Насыщенность) – 47; Contrast (Контрастность) – 31; Highlights (Светлые тона) — (– 47); Midtones (Промежуточные тона) – 12 (рис. 7).

Выбор данных параметров достаточно очевиден. Т. к. на переднем плане много зелени, я сделал небольшой «сдвиг» ползунка Tint (Оттенок) в область зеленых цветов, а для получения более сочных цветов, увеличил значение Saturation (Насыщенности) и Contrast (Контрастности). Далее, исходя из полученных промежуточных результатов, настроил яркость в светлых и темных областях. В средних тонах, корректировка яркости не понадобилась.

На рис. 8 исходное изображение слева и откорректированное справа.

Обратите внимание на гистограмму в окне Image Adjustment Lab (Лаборатория по корректировке изображений) после внесения изменений. Она немного растянулась, появились пики ближе к светлой и темной области. Для применения изменений, нажмите в диалоговом окне ОК .

При любой коррекции изображения, следует учитывать тот факт, что каждый человек выполняет цветовую и тоновую коррекцию по-своему. Понятие красоты весьма субъективное. Разным людям будут нравится совершенно разные результаты коррекции. Поэтому, если вы выполняете ретушь или коррекцию фотографий на заказ, вам придется считаться с вкусами заказчика, которые могут вовсе не совпадать с вашими. Я буду об этом еще не раз упоминать в книге. Точно также, полученный результат в данном примере, может кому-то показаться не улучшением, а ухудшением оригинала. Это дело вкуса. Главная моя задача, показать, как применять те или иные возможности и инструменты Photo-Paint.

Теперь рассмотрим на примере, использование двух инструментов, находящихся в Лаборатории по корректировке изображений – Select White Point (Выбор белой точки) и Select Black Point (Выбор Черной Точки). Эти два инструмента служат для повышения контраста изображения. Для их использования не предусмотрено каких-либо настроек, это так сказать, «интеллектуальные» инструменты, выполняющие автоматическую коррекцию контраста. Для примера, я взял копию своего старого советского паспорта. Как видно из рис. 9, изображению паспорта не хватает, как минимум, контраста. Задача достичь 100 %-го соответствия оригиналу не ставилась в данном примере.

Для повышения контраста, нужно щелкнуть на кнопке Select White Point (Выбор белой точки) и указателем, принявшим вид пипетки, щелкнуть в самом светлом месте герба. Затем щелкнуть на кнопке Select Black Point (Выбор Черной Точки) и щелкнуть указателем в области просмотра, в самой темной точке обложки, это мелкий «узор» темно-красного цвета. Как видите, Photo-Paint автоматически откорректировал контрастность изображения. Паспорт, даже после автоматической коррекции стал выглядеть намного лучше.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: