Технологии mimo 2x2. MIMO - многоантенные технологии в LTE

Мы с вами живем в эпоху цифровой революции, уважаемый аноним. Не успели мы привыкнуть к какой-то новой технологии, нам уже со всех сторон предлагают еще более новую и продвинутую. И пока мы томимся размышлениями, действительно ли эта технология реально поможет нам получить более быстрый интернет или нас просто очередной раз разводят на деньги, конструкторы в это время разрабатывают еще более новую технологию, которую нам предложат взамен текущей уже буквально через 2 года. Это касается и технологии MIMO антенн.

Что же это за технология - MIMO? Multiple Input Multiple Output - множественный вход множественный выход. Прежде всего, технология MIMO является комплексным решением и касается не только антенн. Для лучшего понимания этого факта стоит совершить небольшой экскурс в историю развития мобильной связи. Перед разработчиками стоит задача передать больший объем информации в единицу времени, т.е. увеличить скорость. По аналогии с водопроводом - доставить пользователю больший объем воды в единицу времени. Мы можем сделать это увеличив "диаметр трубы", или, по аналогии, - расширив полосу частот связи. Первоначально стандарт GSM был заточен под голосовой трафик и имел ширину канала равную 0.2 МГц. Это было вполне достаточно. Кроме того есть проблема обеспечения многопользовательского доступа. Ее можно решить разделив абонентов по частоте (FDMA) или по времени (TDMA). В GSM применяются оба способа одновременно. В итоге мы имеем баланс между максимально возможным количеством абонентов в сети и минимально возможной полосой для голосового трафика. С развитием мобильного интернета эта минимальная полоса стала полосой препятствия для увеличения скорости. Две технологии основанные на платформе GSM - GPRS и EDGE достигли предельной скорости 384 кБит/с. Для дальнейшего увеличения скорости необходимо было расширить полосу для интернет трафика одновременно по возможности используя инфраструктуру GSM. В результате был разработан стандарт UMTS. Основным отличием здесь является расширение полосы сразу до 5 МГц, а для обеспечения многопользовательского доступа - применение технологии кодового доступа CDMA, при котором несколько абонентов одновременно работают в одном частотном канале. Такую технологию назвали W-CDMA, подчеркивая этим, что она работает в широкой полосе. Эта система была названа системой третьего поколения - 3G, но при этом она является надстройкой над GSM. Итак, мы получили широкую "трубу" в 5МГц, что позволило первоначально увеличить скорость до 2 МБит/с.

Как еще можно увеличить скорость, если у нас нет возможности дальше увеличивать "диаметр трубы"? Мы можем распараллелить поток на несколько частей, пустить каждую часть по отдельной небольшой трубе и затем сложить эти отдельные потоки на приемной стороне в один широкий поток. Кроме того, скорость зависит от вероятности ошибок в канале. Уменьшая эту вероятность путем избыточного кодирования, упреждающей коррекции ошибок, применения более совершенных способов модуляции радиосигнала, мы также можем увеличить скорость. Все эти наработки (совместно с расширением "трубы" путем увеличения числа несущих на канал) последовательно применялись в дальнейшем усовершенствовании стандарта UMTS и получили наименование HSPA. Это не замена для W-CDMA, а soft+hard upgrade этой основной платформы.

Разработкой стандартов для 3G занимается международный консорциум 3GPP. В таблицу сведены некоторые особенности разных релизов этого стандарта:

3G HSPA скорость & главные технологические особенности
3GPP релиз Технологии Скорость Downlink (MBPS) Скорость Uplink (MBPS)
Rel 6 HSPA 14.4 5.7
Rel 7 HSPA+
5 MHz, 2x2 MIMO downlink
28 11
Rel 8 DC-HSPA+
2x5 MHz, 2x2 MIMO downlink
42 11
Rel 9 DC-HSPA+
2x5 MHz, 2x2 MIMO downlink,
2x5 MHz uplink
84 23
Rel 10 MC-HSPA+
4x5 MHz, 2x2 MIMO downlink,
2x5 MHz uplink
168 23
Rel 11 MC-HSPA+
8x5 MHz 2x2/4x4 MIMO downlink,
2x5 MHz 2x2 MIMO uplink
336 - 672 70

Технология 4G LTE, помимо обратной совместимости с 3G сетями, что позволило ей одержать верх над WiMAX, способна в перспективе развить еще большие скорости, до 1Гбит/с и выше. Здесь применяются еще более продвинутые технологии переноса цифрового потока в радиоинтерфейс, например OFDM модуляция, которая очень хорошо интегрируется с MIMO технологией.

Итак, что же такое MIMO? Распараллелив поток на несколько каналов можно пустить их разными путями через несколько антенн "по воздуху", и принять их такими же независимыми антеннами на приемной стороне. Таким образом мы получаем несколько независимых "труб" по радиоинтерфейсу не расширяя полосы . Это основная идея MIMO . При распространении радиоволн в радиоканале наблюдаются селективные замирания. Это особенно заметно в условиях плотной городской застройки, если абонент находится в движении или на краю зоны обслуживания соты. Замирания в каждой пространственной "трубе" происходят не одновременно. Поэтому если мы передадим по двум каналам MIMO одну и ту же информацию с небольшой задержкой, предварительно наложив на нее специальный код (метод Аламуоти, наложение кода в виде магического квадрата), мы можем восстановить потерянные символы на приемной стороне, что эквивалентно улучшению отношения сигнал/шум до 10-12 дБ. В итоге такая технология опять же приводит к возрастанию скорости. По сути это давно известный разнесенный прием (Rx Diversity) органично встроенный в MIMO технологию.

В конечном счете, мы должны понимать, что MIMO должно поддерживаться как на базе, так и у нашего модема. Обычно в 4G число каналов MIMO кратно двум - 2, 4, 8 (в Wi-Fi системах получила распространение трехканальная система 3x3) и рекомендуется, чтобы их число совпадало и на базе и на модеме. Поэтому для фиксации этого факта MIMO определяют с каналами прием∗передача - 2x2 MIMO, 4x4 MIMO и т.д. Пока в настоящее время мы имеем дело преимущественно с 2x2 MIMO.

Какие антенны применяются в технологии MIMO? Это обычные антенны, просто их должно быть две (для 2x2 MIMO). Для разделения каналов применяется ортогональная, так называемая X-поляризация. При этом поляризация каждой антенны относительно вертикали сдвинута на 45°, а относительно друг друга - 90°. Такой угол поляризации ставит оба канала в равные условия, поскольку при горизонтально/вертикальной ориентации антенн один из каналов неизбежно получил бы большее затухание из-за влияния земной поверхности. При этом 90° сдвиг поляризации между антеннами позволяет развязать каналы между собой не менее чем на 18-20 дБ.

Для MIMO нам с вами потребуется модем с двумя антенными входами и две антенны на крыше. Однако остается открытым вопрос поддерживается ли эта технология на базовой станции. В стандартах 4G LTE и WiMAX такая поддержка есть как на стороне абонентских устройств, так и на базе. В 3G сети не все так однозначно. В сети уже работают тысячи устройств не поддерживающих MIMO, для которых внедрение этой технологии приносит обратный эффект - пропускная способность сети понижается. Поэтому операторы пока не спешат повсеместно внедрять MIMO в 3G сетях. Чтобы база могла предоставить абонентам высокую скорость она сама должна иметь хороший транспорт, т.е. к ней должна быть подведена "толстая труба", желательно оптиковолокно, что тоже не всегда имеет место. Поэтому в 3G сетях технология MIMO в настоящий момент находится в стадии становления и развития, проходит тестирование как операторами, так и пользователями, причем последними не всегда успешно . Поэтому возлагать надежды на MIMO антенны стоит только в 4G сетях. На краю зоны обслуживания соты можно применять антенны с большим усилением, например зеркальные , для которых уже есть в продаже MIMO облучатели

В сетях Wi-Fi технология MIMO зафиксирована в стандартах IEEE 802.11n и IEEE 802.11ac и поддерживается уже многими устройствами. Пока мы наблюдаем приход в 3G-4G сети технологии 2x2 MIMO, разработчики не сидят на месте. Уже сейчас разрабатываются технологии 64x64 MIMO с умными антеннами имеющими адаптивную диаграмму направленности. Т.е. если мы пересядем с дивана на кресло или уйдем на кухню, наш планшет заметит это и развернет диаграмму направленности встроенной антенны в нужном направлении. Нужен ли кому-то будет этот сайт в то время?

MIMO (Multiple Input Multiple Output, многоканальный вход - многоканальный выход) - метод скоординированного использования нескольких радиоантенн в беспроводных сетевых коммуникациях, распространенный в современных домашних широкополосных маршрутизаторах и в сетях сотовой связи LTE и WiMAX.

Как это работает?

Маршрутизаторы Wi-Fi с MIMO-технологией используют те же сетевые протоколы, что и обычные одноканальные. Они обеспечивают более высокую производительность за счет повышения эффективности передачи и приема данных по линии беспроводной связи. В частности, сетевой трафик между клиентами и маршрутизатором организуется в отдельные потоки, передаваемые параллельно, с последующим их восстановлением принимающим устройством.

Технология MIMO может увеличить пропускную способность, диапазон и надежность передачи при высоком риске помех со стороны другого беспроводного оборудования.

Применение в сетях Wi-Fi

Технология MIMO включена в стандарт с версии 802.11n. Ее использование повышает производительность и доступность сетевых соединений по сравнению с обычными маршрутизаторами.

Количество антенн может варьироваться. Например, MIMO 2x2 предусматривает наличие двух антенн и двух передатчиков, способных осуществлять прием и передачу по двум каналам.

Чтобы воспользоваться этой технологией и реализовать ее преимущества, клиентское устройство и маршрутизатор должны установить между собой MIMO-соединение. В документации к используемому оборудованию должно быть указано, поддерживает ли оно такую возможность. Другого простого способа проверить, применяется ли в сетевом соединении данная технология, нет.

SU-MIMO и MU-MIMO

Первое поколение технологии, представленное в стандарте 802.11n, поддерживало однопользовательский (SU) метод. По сравнению с традиционными решениями, когда все антенны маршрутизатора должны координироваться для связи с одним клиентским устройством, SU-MIMO позволяет распределять каждую из них между разным оборудованием.

Многопользовательская (MU) технология MIMO была создана для использования в сетях Wi-Fi 802.11ac на частоте 5 ГГц. Если предыдущий стандарт требовал, чтобы маршрутизаторы управляли своими клиентскими подключениями поочередно (по одному за раз), антенны MU-MIMO могут обеспечивать связь с несколькими клиентами параллельно. улучшает производительность соединений. Однако даже если маршрутизатор 802.11ac имеет необходимую аппаратную поддержку технологии MIMO, есть и другие ограничения:

  • поддерживается ограниченное количество одновременных клиентских подключений (2-4) в зависимости от конфигурации антенны;
  • координация антенн обеспечивается только в одном направлении - от маршрутизатора до клиента.

MIMO и сотовая связь

Технология используется в разных типах беспроводных сетей. Она все чаще находит применение в сотовой связи (4G и 5G) в нескольких формах:

  • Network MIMO - координированная передача сигнала между базовыми станциями;
  • Massive MIMO - использование большого количества (сотен) антенн;
  • миллиметровые волны - задействование сверхвысокочастотных полос, в которых пропускная способность больше, чем в диапазонах, лицензированных для 3G и 4G.

Многопользовательская технология

Чтобы понять, как работает MU-MIMO, следует рассмотреть, как обрабатывает пакеты данных традиционный беспроводной маршрутизатор. Он хорошо справляется с отправкой и приемом данных, но только в одном направлении. Другими словами, он может поддерживать коммуникацию только с одним устройством одновременно. Например, если загружается видео, то нельзя в то же время транслировать на консоль онлайн-видеоигру.

Пользователь может запускать несколько устройств в сети Wi-Fi, и маршрутизатор очень быстро по очереди переправляет к ним биты данных. Однако в одно и то же время он может обращаться только к одному устройству, что является основной причиной снижения качества соединения, если пропускная способность Wi-Fi слишком низкая.

Поскольку это работает, то внимание на себя обращает мало. Тем не менее эффективность работы маршрутизатора, который передает данные на несколько устройств одновременно, можно повысить. При этом он станет быстрее работать и обеспечит более интересные сетевые конфигурации. Вот почему появились разработки, подобные MU-MIMO, которые в конечном итоге были включены в современные стандарты беспроводной связи. Эти разработки позволяют передовым маршрутизаторам взаимодействовать сразу с несколькими устройствами.

Краткая история: SU против MU

Одно- и многопользовательские MIMO представляют собой разные способы коммуникации маршрутизаторов с несколькими устройствами. Первый из них старше. Стандарт SU разрешал отправку и получение данных сразу по нескольким потокам в зависимости от имеющегося количества антенн, каждая из которых могла работать с различными устройствами. SU был включен в обновление 802.11n 2007 года и начал постепенно внедряться в новые линейки продуктов.

Однако у SU-MIMO были ограничения в дополнение к требованиям к антенне. Хотя может быть подключено несколько устройств, они по-прежнему имеют дело с маршрутизатором, который может работать только с одним за раз. Скорость передачи данных увеличилась, помехи стали меньшей проблемой, но возможностей для улучшения осталось много.

MU-MIMO является стандартом, который развился из SU-MIMO и SDMA (множественного доступа с пространственным разделением каналов). Технология позволяет базовой станции взаимодействовать с несколькими устройствами, используя отдельный поток для каждого из них, как будто все они имеют свой собственный маршрутизатор.

В конечном итоге поддержка MU была добавлена в обновление стандарта 802.11ac в 2013 г. После нескольких лет разработок производители начали включать эту функцию в свои продукты.

Преимущества MU-MIMO

Это захватывающая технология, поскольку она оказывает заметное влияние на повседневное использование Wi-Fi без прямого изменения пропускной способности или других ключевых параметров беспроводного соединения. Сети становятся намного эффективнее.

Для обеспечения стабильного соединения с ноутбуком, телефоном, планшетом или компьютером стандарт не требует наличия у маршрутизатора нескольких антенн. Каждое такое устройство может не делиться своим каналом MIMO с другими. Это особенно заметно при потоковой передаче видео или выполнении других сложных задач. Скорость работы в Интернете субъективно повышается, и соединение устанавливается надежнее, хотя на самом деле становится более разумной организация сети. Также повышается число одновременно обслуживаемых устройств.

Ограничения MU-MIMO

Многопользовательская технология множественного доступа имеет и ряд ограничений, о которых стоит упомянуть. Существующие стандарты поддерживают 4 устройства, но позволяют добавить больше, и им придется делиться потоком, что возвращает к проблемам SU-MIMO. Технология в основном используется в нисходящих каналах связи и ограничена, когда дело доходит до исходящих. Кроме того, маршрутизатор MU-MIMO должен иметь больше информации об устройствах и состоянии каналов, чем требовали предыдущие стандарты. Это усложняет управление и устранение неполадок в беспроводных сетях.

MU-MIMO также является направленной технологией. Это означает, что 2 устройства, расположенные рядом, не могут одновременно использовать разные каналы. Например, если муж смотрит онлайн-трансляцию по телевизору, а рядом его жена передает игру PS4 на свою Vita через Remote Play, им все равно придется делиться пропускной способностью. Маршрутизатор может предоставлять дискретные потоки только устройствам, которые расположены в разных направлениях.

Massive MIMO

По мере продвижения в сторону беспроводных сетей пятого поколения (5G) рост числа смартфонов и новых применений привел к 100-кратному увеличению их требуемой пропускной способности по сравнению с LTE. Новая технология Massive MIMO, которой в последние годы уделяется много внимания, призвана значительно увеличить показатели эффективности телекоммуникационных сетей до беспрецедентных уровней. При дефиците и дороговизне доступных ресурсов операторов привлекает возможность увеличить пропускную способность в полосах частот ниже 6 ГГц.

Несмотря на значительный прогресс, Massive MIMO далек от совершенства. Технология по-прежнему активно исследуется как в академических кругах, так и в промышленности, где инженеры стремятся достичь теоретических результатов с помощью коммерчески приемлемых решений.

Massive MIMO может помочь в решении двух ключевых проблем - пропускной способности и охвата. Для операторов мобильной связи частотный диапазон остается дефицитным и относительно дорогостоящим ресурсом, но является ключевым условием для повышения скорости передачи сигнала. В городах интервал между базовыми станциями обусловлен пропускной способностью, а не охватом, что требует развертывания большого их количества и приводит к дополнительным расходам. Massive MIMO позволяет увеличить емкость уже существующей сети. В областях, где развертывание базовых станций обусловлено охватом, технология позволяет увеличить радиус их действия.

Концепция

Massive MIMO кардинально меняет текущую практику, используя очень большое количество когерентно и адаптивно работающих сервисных антенн 4G (сотни или тысячи). Это помогает фокусировать передачу и прием энергии сигнала в меньших областях пространства, значительно улучшая производительность и энергоэффективность, особенно в сочетании с одновременным планированием большого количества пользовательских терминалов (десятков или сотен). Метод изначально предполагался для дуплексной передачи с временным разделением (TDD), но потенциально может применяться также в режиме дуплексного (PDD) частотного разделения.

Технология MIMO: достоинства и недостатки

Преимуществами метода являются широкое использование недорогих маломощных компонентов, снижение латентности, упрощение уровня управления доступом (MAC), устойчивость к случайным и преднамеренным помехам. Ожидаемая пропускная способность зависит от среды распространения, обеспечивающей асимптотически ортогональные каналы к терминалам, и эксперименты до сих пор не выявили никаких ограничений в этом отношении.

Однако вместе с устранением многих проблем появляются новые, требующие неотложного решения. Например, в системах MIMO необходимо обеспечить эффективную совместную работу множества недорогих компонентов малой точности, собирать данные о состоянии канала и распределять ресурсы для вновь подключенных терминалов. Также требуется использовать дополнительные степени свободы, обеспечиваемые избытком сервисных антенн, снизить внутреннее энергопотребление для достижения общей энергоэффективности и найти новые сценарии развертывания.

Рост количества 4G-антенн, участвующих в реализации MIMO, обычно требует посещения каждой базовой станции для изменения конфигурации и проводки. Первоначальное развертывание сетей LTE потребовало установки нового оборудования. Это дало возможность произвести конфигурацию MIMO 2x2 исходного стандарта LTE. Дальнейшие изменения базовых станций производятся только в крайних случаях, а реализации более высокого порядка зависят от операционной среды. Еще одна проблема заключается в том, что операция MIMO приводит к совершенно другому поведению в сети, чем предыдущие системы, что создает некоторую неопределенность планирования. Поэтому операторы склонны сначала использовать другие разработки, особенно если они могут быть развернуты путем обновления программного обеспечения.

Одно из самых существенных и важных нововведений Wi-Fi за прошедшие 20 лет - технология Multi User - Multiple Input Multiple Output (MU-MIMO). MU-MIMO расширяет функциональность появившегося недавно обновления беспроводного стандарта 802.11ac «Wave 2». Безусловно, это огромный прорыв для беспроводной связи. Данная технология помогает увеличить максимальную теоретическую скорость беспроводного соединения от 3,47 Гбит/с в оригинальной спецификации стандарта 802.11ac до 6,93 Гбит/с в обновлении стандарта 802.11ac Wave 2. Это одна из самых сложных функциональностей Wi-Fi на сегодняшний день.

Давайте разберемся как это работает!

Технология MU-MIMO повышает планку за счет разрешения нескольким устройствам принимать несколько потоков данных. Она базируется на однопользовательской технологии MIMO (SU-MIMO), которая была представлена почти 10 лет назад со стандартом 802.11n.

SU-MIMO увеличивает скорость Wi-Fi-соединения, позволяя паре беспроводных устройств одновременно принимать или отправлять несколько потоков данных.

Рисунок 1. Технология SU-MIMO предоставляет многоканальные входные и выходные потоки одному устройству в одно и то же время. Технология MU-MIMO обеспечивает одновременную связь с несколькими устройствами.

По сути, революционные изменения для Wi-Fi обеспечивают две технологии. Первая из этих технологий, называемая beamforming, позволяет Wi-Fi-маршрутизаторам и точкам доступа более эффективно использовать радиоканалы. До появления этой технологии Wi-Fi-маршрутизаторы и точки доступа работали как электрические лампочки, посылая сигнал во всех направлениях. Проблема заключалась в том, что несфокусированному сигналу ограниченной мощности трудно добраться до клиентских Wi-Fi-устройств.

С помощью технологии beamforming Wi-Fi-маршрутизатор или точка доступа обменивается с клиентским устройством информацией о своем местоположении. Затем маршрутизатор изменяет свою фазу и мощность для формирования лучшего сигнала. Как результат: более эффективно используются радиосигналы, ускоряется передача данных и, возможно, увеличивается максимальная дистанция соединения.

Возможности beamforming расширяются. До сих пор Wi-Fi-маршрутизаторы или точки доступа были по своей сути однозадачными, посылая или принимая данные только от одного клиентского устройства одновременно. В более ранних версиях семейства стандартов беспроводной передачи данных 802.11, включая стандарт 802.11n и первую версию стандарта 802.11ac, существовала возможность одновременного приема или передачи нескольких потоков данных, но до сих пор не существовало метода, позволяющего Wi-Fi-маршрутизатору или точке доступа в одно и то же время «общаться» сразу с несколькими клиентами. Отныне же с помощью MU-MIMO такая возможность появилась.

Это действительно большой прорыв, так как возможность одновременной передачи данных сразу нескольким клиентским устройствам значительно расширяет доступную полосу пропускания для беспроводных клиентов. Технология MU-MIMO продвигает беспроводные сети от старого способа CSMA-SD, когда в одно и то же время обслуживалось только одно устройство, к системе, где сразу несколько устройств могут одновременно «говорить». Для большей наглядности примера, представьте себе переход от однополосной проселочной дороги к широкой автомагистрали

Сегодня беспроводные маршрутизаторы и точки доступа второго поколения стандарта 802.11ac Wave 2 активно завоевывают рынок. Каждый, кто разворачивает Wi-Fi понимать специфику работы технологии MU-MIMO. Предлагаем вашему вниманию 13 фактов, которые ускорит ваше обучение в этом направлении.

1. MU-MIMO использует только «Downstream» поток (от точки доступа к мобильному устройству).

В отличие от SU-MIMO, технология MU-MIMO в настоящее время работает только для п ередачи данных от точки доступа к мобильному устройству. Только беспроводные маршрутизаторы или точки доступа могут одновременно передавать данные нескольким пользователям, будь то один или несколько потоков для каждого из них. Сами же беспроводные устройства (такие, как смартфоны, планшеты или ноутбуки) по-прежнему должны по очереди направлять данные к беспроводному маршрутизатору или точке доступа, хотя при этом при наступлении их очереди они по отдельности могут использовать технологию SU-MIMO для передачи нескольких потоков.

Технология MU-MIMO будет особенно полезной в тех сетях, где пользователи больше скачивают данные, чем загружают.

Возможно, в будущем будет реализована версия технологии Wi-Fi: 802.11ax , где метод MU-MIMO будем применим и для «Upstream» трафика.

2. MU-MIMO работает только в Wi-Fi-диапазоне частот 5 ГГц

Технология SU-MIMO работает как в диапазоне частот 2,4 ГГц, так и 5 ГГц. Беспроводные роутеры и точки доступа второго поколения стандарта 802.11ac Wave 2 могут одновременно обслуживать несколько пользователей только на полосе частот 5 ГГц. С одной стороны, конечно, жаль, что на более узкой и более перегруженной полосе частот 2,4 ГГц мы не сможем использовать новую технологию. Но, с другой стороны, на рынке появляется все больше двухдиапазонных беспроводных устройств, поддерживающих технологию MU-MIMO, которые мы можем использовать для разворачивания производительных корпоративных Wi-Fi-сетей.

3. Технология Beamforming помогает направлять сигналы

В литературе СССР можно встретить понятие Фазированная Антенная Решётка, которая была разработана для военных радаров в конце 80-х. Аналогичная технология была применена в современном Wi-Fi. MU-MIMO использует технологию формирования направленного сигнала (в англоязычной технической литературе известной как «beamforming»). Beamfiorming позволяет направлять сигналы в направлении предполагаемого местоположения беспроводного устройства (или устройств), а не посылать их случайным образом во всех направлениях. Таким образом получается сфокусировать сигнал и существенно увеличить дальность действия и скорость работы Wi-Fi-соединения.

Хотя технология beamforming стала опционально доступна еще со стандартом 802.11n, тем ни менее большинство производителей реализовывали свои проприетарные версии этой технологии. Эти вендоры и сейчас предлагают проприетарные реализации технологии в своих устройствах, но теперь им придется включить хотя бы упрощенную и стандартизированную версию технологии формирования направленного сигнала, если они хотят поддерживать технологию MU-MIMO в своей продуктовой линейке стандарта 802.11ac.

4. MU-MIMO поддерживает ограниченное количество одновременных потоков и устройств

К огромному сожалению, маршрутизаторы или точки доступа с реализованной технологией MU-MIMO не могут одновременно обслуживать неограниченное количество потоков и устройств. Маршрутизатор или точка доступа имеют собственное ограничение на число потоков, которые они обслуживают (зачастую это 2, 3 или 4 потока), и это количество пространственных потоков также ограничивает количество устройств, которые точка доступа может одновременно обслужить. Так, точка доступа с поддержкой четырех потоков может одновременно обслуживать четыре различных устройства, либо, к примеру, один поток направить к одному устройству, а три других потока агрегировать на другое устройство (увеличив скорость от объёединения каналов).​

5. От пользовательских устройств не требуется наличие нескольких антенн

Как и в случае с технологией SU-MIMO, только беспроводные устройства со встроенной поддержкой MU-MIMO могут агрегировать потоки (скорость). Но, в отличие от ситуации с технологией SU-MIMO, беспроводным устройствам не обязательно требуется иметь несколько антенн, чтобы принимать MU-MIMO-потоки от беспроводных маршрутизаторов и точек доступа. Если беспроводное устройство оснащено только одной антенной, оно может принять только один MU-MIMO-поток данных от точки доступа, используя beamforming для улучшения приёма.

Большее количество антенн позволит беспроводному пользовательскому устройству принимать большее количество потоков данных одновременно (обычно из расчета один поток на одну антенну), что, безусловно, положительно скажется на производительности этого устройства. Однако, наличие нескольких антенн у пользовательского устройства негативно сказывается на потребляемой мощности и размере этого изделия, что критично для смартфонов.

Однако технология MU-MIMO предъявляет меньшие аппаратные требования к клиентским устройствам, чем обременительная в техническом плане технология SU-MIMO, то можно с уверенностью предположить, что производители гораздо охотнее станут оснащать свои ноутбуки и планшеты поддержкой технологии MU-MIMO.​

6. Точки доступа выполняют «тяжелую» обработку

Стремясь к упрощению требований к устройствам конечных пользователей, разработчики технологии MU-MIMO постарались переложить на точки доступа большую часть работы по обработке сигнала. Это еще один шаг вперед по сравнению с технологией SU-MIMO, где бремя по обработке сигнала большей частью лежало на пользовательских устройствах. И опять же, это поможет производителям клиентских устройств экономить на мощности, размере и других затратах при производстве своих продуктовых решений с поддержкой MU-MIMO, что должно весьма позитивно сказаться на популяризации данной технологии.

7. Даже бюджетные устройства получают ощутимую выгоду от одновременной передачи через несколько пространственных поток

Подобно агрегации каналов в сети Ethernet (802.3ad и LACP), объединение потоков 802.1ac не увеличивает скорость соединения «точка-точка». Т.е. если вы единственный пользователь и у Вас запущено только одно приложение - вы задействует только 1 пространственный поток.

Однако существует возможность увеличить общую пропускную способность сети за счет предоставления возможности по обслуживанию точкой доступа нескольких пользовательских устройств одновременно.

Но если все используемые в вашей сети пользовательские устройства поддерживают работу только с одним потоком, то MU-MIMO позволит вашей точке доступа обслуживать одновременно до трех устройств, вместо одного за раз, в то время как другим (более продвинутым) пользовательским устройствам придется ожидать своей очереди.




Рисунок 2​.

8. Некоторые пользовательские устройства имеют скрытую поддержку технологии MU-MIMO

Не смотря на то, что в настоящее время все еще не так много маршрутизаторов, точек доступа или мобильных устройств поддерживают MU-MIMO, в компании-производителе Wi-Fi-чипов утверждают, что часть производителей в своем производственном процессе учла аппаратные требования для поддержки новой технологии для некоторых своих устройств для конечных пользователей еще несколько лет назад. Для таких устройств относительно простое обновление программного обеспечения добавит поддержку технологии MU-MIMO, что также должно ускорить популяризацию и распространение технологии, а также стимулировать компании и организации модернизировать свои корпоративные беспроводные сети с помощью оборудования с поддержкой стандарта 802.11ac.

9. Устройства без поддержки MU-MIMO также оказываются в выигрыше

Не смотря на то, что Wi-Fi-устройства обязательно должны иметь поддержку MU-MIMO для того, чтобы использовать эту технологию, даже те клиентские устройства, которые такой поддержкой не имеют, могут получить косвенную выгоду от работы в беспроводной сети, где маршрутизатор или точки доступа поддерживают технологию MU-MIMO. Следует помнить, что скорость передачи данных по сети напрямую зависит от общего времени, в течение которого абонентские устройства подключены к радиоканалу. И если технология MU-MIMO позволит обслуживать часть устройств быстрее, то это означает, что у точек доступа в такой сети останется больше времени на обслуживание других клиентских устройств.

10. MU-MIMO помогает увеличить пропускную способность беспроводной сети

Когда вы увеличиваете скорость Wi-Fi-соединения, вы также увеличиваете пропускную способность беспроводной сети. Так как устройства обслуживаются более быстро, то у сети появляется больше эфирного времени на обслуживание большего количества клиентских устройств. Таким образом, технология MU-MIMO может значительно оптимизировать работу беспроводных сетей с интенсивным трафиком или большим количеством подключенных устройств, таких как общественные Wi-Fi-сети. Это прекрасная новость, так как количество смартфонов и других мобильных устройств с возможностью подключения к Wi-Fi-сети, скорее всего, продолжит увеличиваться.

11. Поддерживается любая ширина канала

Одним из способов расширения пропускной способности Wi-Fi-канала является связывание каналов, когда объединяются два соседних канала в один канал, который в два раза шире, что фактически удваивает скорость Wi-Fi-соединения между устройством и точкой доступа. Стандарт 802.11n предусматривал поддержку каналов шириной до 40 МГц, в оригинальной спецификации стандарта 802.11ac поддерживаемая ширина канала была увеличена до 80 МГц. В обновленном стандарте 802.11ac Wave 2 поддерживаются каналы шириной 160 МГц.



Рисунок 3. На сегодняшний день стандарт 802.11ac поддерживает каналы шириной до 160 МГц в диапазоне частот 5 ГГц

Однако, не следует забывать, что использование в беспроводной сети каналов большей ширины увеличивает вероятность возникновения помех в совмещенных каналах. Поэтому такой подход не всегда будет правильным выбором для разворачивания всех без исключения Wi-Fi-сетей. Тем ни менее, технология MU-MIMO, как мы можем убедиться, может быть использована для каналов любой ширины.

Тем ни менее, даже если ваша беспроводная сеть использует более узкие каналы шириной 20 МГц или 40 МГц, технология MU-MIMO все равно может помочь ей работать быстрее. А вот насколько быстрее, будет зависеть от того, сколько необходимо будет обслуживать клиентских устройств и сколько потоков каждое из этих устройств поддерживает. Таким образом, использование технологии MU-MIMO даже без широких связанных каналов может более чем в два раза увеличить пропускную способность выходного беспроводного соединения для каждого устройства.

12. Обработка сигналов повышает безопасность

Интересным побочным эффектом технологии MU-MIMO является то, что маршрутизатор или точка доступа шифрует данные перед их отправкой через радиоканалы. Достаточно трудно декодировать данные, передаваемые с использованием технологии MU-MIMO, т. к. не ясно какая часть кода в каком пространственном потоке находится. Хотя впоследствии могут быть разработаны специальные инструменты, позволяющие другим устройствам перехватывать передаваемый трафик, на сегодняшний день технология MU-MIMO эффективно маскирует данные от расположенных вблизи устройств прослушивания. Таким образом, новая технология помогает повысить Wi-Fi-безопасность, что особенно актуально для открытых беспроводных сетей, таких как общественные Wi-Fi-сети, а также точек доступа, работающих в персональном режиме или использующих упрощенный режим аутентификации пользователей (Pre-Shared Key, PSK) на базе технологий защиты Wi-Fi-сети WPA или WPA2.

13. MU-MIMO лучше всего подходит для неподвижных Wi-Fi-устройств

Также существует одно предостережение о технологии MU-MIMO: она не очень хорошо работает с быстродвижущимися устройствами, так как процесс формирования направленного сигнала по технологии beamforming становится более сложным и менее эффективным. Поэтому MU-MIMO не сможет обеспечить вам заметную пользу для устройств, часто использующих роуминг в вашей корпоративной сети. Однако, следует понимать, что эти «проблемные» устройства никак не должны повлиять ни на MU-MIMO-передачу данных другим клиентским устройствам, которые менее подвижны, ни на их производительность.

Подписка на новости

На пальцах о MIMO.

Представим, что информация это люди, а модем и базовая станция оператора это два города между которыми проложен один путь, а антенна это вокзал. Перевозить людей будем на поезде, который, для примера, может перевезти не больше ста человек. Пропускная способность между такими городами будет ограничена, т.к. поезд может отвезти только сто человек за один раз.

Чтобы 200 человек смогли прибыть в другой город в один и тот же момент времени между городами строят второй путь и запускают второй поезд одновременно с первым, тем самым увеличивая поток людей в два раза. Точно также работает и MIMO технология, по сути мы просто удваиваем количество потоков. Количество потоков определяет стандарт MIMO, два потока - MIMO 2x2, четыре потока - MIMO 4x4 и т.д. Для передачи данных по сети интернет, будь то 4G LTE или WiFi на сегодня, как правило, используется стандарт MIMO 2x2. Чтобы принимать двойной поток одновременно потребуется две обычных антенны или по аналогии два вокзала, или, для экономии средств одна MIMO антенна, как если бы это был один вокзал с двумя платформами. То есть, MIMO антенна - это две антенны внутри одной.

Панельная MIMO антенна может буквально иметь два набора излучающих элементов("патчей" ) в одном корпусе(например четыре патча работают в вертикальной поляризации, другие четыре в горизонтальной, всего восемь патчей ). Каждый набор подключен к своему гнезду.

А может иметь один набор патчей но имеющий двухпортовая(ортогональную) запитку, таким образом элементы антенны запитываются со сдвигом фазы на 90 градусов, и тогда каждый патч будет работать в вертикальной и горизонтальной поляризации одновременно.

В таком случае один набор патчей будет подключен сразу к двум гнёздам, именно такие MIMO антенны и продаются в нашем интернет магазине.

Подробнее

Мобильная трансляция цифрового потока LTE напрямую относится к новым разработкам 4G. Взяв для анализа 3G сеть, можно обнаружить, что ее скорость передачи данных в 11 раз меньше, чем 4G. Все же скорость, как получения, так и трансляции данных LTE нередко бывает плохого качества. Связано это с нехваткой мощности или уровня сигнала, который получает модем 4G LTE от станции. Для существенного улучшения качества распространения информации внедряют антенны 4G MIMO.

Измененные антенны, по сравнению с обычными системами распределения данных, имеют другую схему передатчика. К примеру, нужен делитель цифровых потоков, чтобы распределять информацию на потоки с низкой скоростью, количество которых связано с числом антенн. Если скорость входящего потока примерно 200 Мегабит в секунду, то создастся два потока – оба по 100 Мегабит в секунду. Каждый поток должен транслироваться посредством отдельной антенны. Поляризация радиоволны, передающейся от каждой из двух антенн, будет отличаться, чтобы расшифровать данные во время приема. Приёмное устройство, чтобы сохранить скорость передачи данных должно так же иметь две приёмные антенны в разных поляризациях.

Достоинства MIMO

MIMO – это раздача сразу нескольких потоков информации всего по одному каналу с последующим прохождением их через пару или большее количество антенн до попадания в приемные независимые устройства для трансляции радиоволн. Это позволяет существенно улучшить пропускную способность сигнала, не прибегая к расширению полосы.

При трансляции радиоволн цифровой поток в радиоканале селективно замирает. Это можно заметить, если вы находитесь в окружении городских многоэтажных домов, двигаетесь на большой скорости или удаляетесь от зоны, которую могут охватить радиоволны. Для избавления от этой проблемы была создана антенна MIMO, способная транслировать информацию по нескольким каналам с незначительной задержкой. Информация предварительно кодируется, а затем восстанавливается на приемной стороне. В итоге не только увеличивается скорость распределения данных, но и значительно улучшается качество сигнала.

По своей конструктивной особенности антенны LTE делятся на обыкновенные и состоящие из двух приемопередающих устройств (MIMO). Обычная система распространения сигнала позволяет добиться скорости не более чем 50 Мегабит в секунду. MIMO дает шансы увеличить скорость трансляции сигнала более чем дважды. Достигается это благодаря монтажу в коробе сразу нескольких антенн, которые располагают на незначительном удалении одна от другой.

Одновременное получение, а также раздача цифрового потока антеннами к получателю происходит через два независимых кабеля. Это позволяет существенно увеличить скоростные параметры. MIMO применяется успешно в таких беспроводных системах, как WiFi, а также сотовые сети и WiMAX. Применение этой технологии, имеющей, как правило, два входа и два выхода, позволяет улучшить спектральные качества WiFi, WiMAX, 4G/LTE и прочих систем, поднять скорость передачи информации и емкость потока данных. Перечисленные достоинства достижимы благодаря трансляции данных от 4G антенны MIMO к получателю посредством нескольких беспроводных соединений. Отсюда и берется название этой технологии(Multiple Input Multiple Output - множественный вход и множественный выход).

. Где применяется MIMO

MIMO очень быстро завоевала популярность за счет увеличения емкости и пропускной способности таких протоколов передачи данных, как WiFi. Можно взять стандарт WiFi 802.11n в качестве наиболее популярного случая использования MIMO. Благодаря технологии связи MIMO в этом протоколе WiFi удается развить скорость более чем 300 Мегабит в секунду.

Помимо ускорения передачи потока информации, беспроводная сеть благодаря MIMO получила улучшенные характеристики в плане качества передачи данных даже в местах, где уровень приемного сигнала достаточно низок. WiMAX благодаря новой технологии получил возможность транслировать данные со скоростью до 40 Мегабит в секунду.

В стандарте 4G (LTE) возможно применение MIMO с конфигурацией до 8x8. Теоретически это позволит транслировать цифровой поток от основной станции к получателю на скорости больше 300 Мегабит в секунду. Еще одним привлекательным моментом от применения новой системы является качественное и устойчивое соединение, наблюдаемое даже на границе действия соты.

Это означает, что даже на существенном расстоянии от станции, а также при расположении в помещении с толстыми стенами, будет замечено только небольшое снижение скоростных характеристик. MIMO можно применять почти в каждой системе передачи информации беспроводным путем. Надо отметить, что потенциал этой системы неисчерпаем.

Неустанно ищут пути по разработке новых конфигураций MIMO антенн, например, до 64x64. В недалеком будущем это даст возможность еще больше улучшить эффективность спектральных показателей, увеличить ёмкость сетей и величину скорости транслирования информации.

MIMO - м ногоантенные технологии в LTE

Функции MIMO (Multiple Input – Multiple Output )

Применение технологий MIMO (multiple input – multiple output) решает две задачи:

Увеличение качества связи за счет пространственного временного/ частотного кодирования и (или) формирования лучей (beamforming),

Повышение скорости передачи при применении пространственного мультиплексирования.

Структура MIMO

В различных реализациях MIMO имеется ввиду одновременная передача в одном физическом канале нескольких независимых сообщений. С целью реализации действия MIMO применяют многоантенные системы: на передающей стороне имеется N t передающих антенн, а на приемной стороне N r приемных. Данная структура приведена на рис. 1.

Рис. 1. MIMO структура

Что такое MIMO?

MIMO (англ. Multiple Input Multiple Output) - метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, при котором передача данных осуществляется с помощью N антенн и их приёма М антеннами. Передающие и приёмные антенны разнесены настолько, чтобы достичь слабой корреляции между соседними антеннами.

История MIMO

История систем MIMO как объекта беспроводной связи пока весьма не продолжительна. Первый патент на использование MIMO-принципа в радиосвязи был зарегистрирован в 1984 году от имени сотрудника Bell Laboratories Джека Винтерса (Jack Winters). Основываясь на его исследованиях, Джек Селз (Jack Salz) из той же компании опубликовал в 1985 году первую статью по MIMO-решениям. Развитие данного направления продолжалось специалистами Bell Laboratories и другими исследователями вплоть до 1995 года. В 1996 году Грэг Ралей (Greg Raleigh) и Джеральд Дж. Фошини (Gerald J. Foschini) предложили новый вариант реализации MIMO-системы, увеличив тем самым ее эффективность. Впоследствии Грэг Ралей, которому присваивают авторство OFDM (Orthogonal Frequency Division Multiplexing – мультиплексирование посредством ортогональных несущих) для MIMO, основал компанию Airgo Networks, которая разработала первый MIMO-чипсет под названием True MIMO.

Однако, несмотря на довольно короткий промежуток времени с момента своего появления, MIMO-направление развивается весьма многопланово и включает в себя разнородное семейство методов, которые можно классифицировать по принципу разделения сигналов в приемном устройстве. При этом в MIMO-системах используются как уже вошедшие в практику подходы к разделению сигналов, так и новые. К ним относятся, например, пространственно-временное, пространственно-частотное, пространственно-поляризационное кодирование, а также сверхразрешение по направлению прихода сигнала в приемник. Благодаря обилию подходов к разделению сигналов удалось обеспечить столь долгую разработку стандартов на использование систем MIMO в средствах связи. Однако все разновидности MIMO направлены на достижение одной цели – увеличение пиковой скорости передачи данных в сетях связи за счет улучшения помехоустойчивости.

Простейшая антенна MIMO – это система из двух несимметричных вибраторов (монополей), ориентированных под углом ±45° относительно вертикальной оси (рис.2).

Рис. 2 Простейшая антенна MIMO

Такой угол поляризации позволяет каналам находиться в равных условиях, поскольку при горизонтально-вертикальной ориентации излучателей одна из поляризационных составляющих неизбежно получила бы большее затухание при распространении вдоль земной поверхности. Сигналы, излучаемые независимо каждым монополем, поляризованы взаимно ортогонально с достаточно высокой взаимной развязкой по кросс-поляризационной составляющей (не менее 20 дБ). Аналогичная антенна используется и на приемной стороне. Такой подход позволяет одновременно передавать сигналы с одинаковыми несущими, модулированными различным образом. Принцип поляризационного разделения обеспечивает удвоение пропускной способности линии радиосвязи по сравнению со случаем одиночного монополя (в идеальных условиях прямой видимости при идентичной ориентации приемных и передающих антенн). Таким образом, по сути любую систему с двойной поляризацией можно считать системой MIMO.

Дальнейшая эволюция MIMO

К тому моменту, когда технология MIMO была специфицирована в релизе 7, шло активное распространение по миру стандарта . Были попытки совместить сети третьего поколения с технологией MIMO, но широкого распространения не получили. По данным Глобальной Ассоциации Поставщиков Мобильного Оборудования (Global mobile Suppliers Association, GSA) от 04.11.2010 на тот момент из 2776 типов устройств с поддержкой HSPA , представленных на рынке, только 28 моделей поддерживают MIMO. К тому же внедрение MIMO сети с низким проникновением MIMO-терминалов приводит к снижению пропускной способности сети. Компания Nokia разработала технологию для минимизации потерь пропускной способности, но она показала бы свою эффективность только в том случае, когда проникновение MIMO-терминалов составило бы не менее 40% абонентских устройств. Добавляя к выше сказанному, стоит напомнить, что 14 декабря 2009 года состоялся запуск первой в мире мобильной сети на базе технологии LTE , которая позволяла достичь гораздо более высоких скоростей. Исходя из этого видно, что операторы были нацелены на скорейшее развертывание сетей LTE, нежели на модернизацию сетей третьего поколения.

На сегодняшний день можно отметить бурный рост объема трафика в сетях подвижной связи 4 поколения, и чтобы обеспечить необходимую скорость всем своим абонентам, операторам приходится искать различные методы по повышению скорости передачи данных или по повышению эффективности использования частотного ресурса. MIMO же позволяет в имеющейся полосе частот передавать почти в 2 раза больше данных за тот же временной промежуток при варианте 2х2. Если же использовать антенную реализацию 4х4, то, к сожалению, максимальная скорость загрузки информации составит 326 Мбит/с, а не 400 Мбит/с, как предполагает теоретический расчет. Это связано с особенностью передачи через 4 антенны. Каждой антенне выделены определенные ресурсные элементы (РЭ) для передачи опорных символов. Они необходимы для организации когерентной демодуляции и оценки каналов. Расположение этих РЭ изображено на рис. 3. Передающим антеннам присваивают номера логических антенных портов. Символы, помеченные R0 передает порт 0, символы R1 – порт 1 и т.д. В итоге 14,3% от всех РЭ выделено на передачу опорных символов, чем и обусловлено различие теоретической и практических скоростей.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: