Как происходит колебательный процесс в схеме. Колебательный контур и его работа

Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Рис. 1.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Рис. 2.

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Рис. 3.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Рис. 4.

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5.

Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Рис. 6.

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Рис. 7.

Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

Рис. 8.

Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Рис. 9.

Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Таким образом,

(1)

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

(2)

Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

(3)

(4)

(5)

(6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

(7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

(8)

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

(9)

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

(10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

(11)

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

(12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

(13)

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Колебательный контур называется идеальным, если он состоит из катушки и емкости и в нем нет сопротивления потерь.

Рассмотрим физические процессы в следующей цепи:

1 Ключ стоит в положении 1. Конденсатор начинает заряжаться, от источника напряжения и в нем накапливается энергия электрического поля,

т.е.конденсатор становится источником электрической энергии.

2. Ключ в положении 2. Конденсатор начнет разряжаться. Электрическая энергия, запасенная в конденсаторе переходит в энергию магнитного поля катушки.

Ток в цепи достигает максимального значения(точка 1). Напряжение на обкладках конденсатора уменьшается до нуля.

В период от точки 1 до точки 2 ток в контуре уменьшается до нуля, но как только он начинает уменьшатся, то уменьшается магнитное поле катушки и в катушке индуцируется ЭДС самоиндукции, который противодействует уменьшению тока, поэтому он уменьшается до нуля не скачкообразно, а плавно. Так как возникает ЭДС самоиндукции, то катушка становится источником энергии. От этой ЭДС конденсатор начинает заряжаться, но с обратной полярностью (напряжение конденсатора отрицательное) (в точке 2 конденсатор вновь заряжается).

Вывод: в цепи LC происходит непрерывное колебание энергии между электрическим и магнитным полями, поэтому такая цепь называется колебательным контуром.

Получившиеся колебания называются свободными илисобственными , поскольку они происходят без помощи постороннего источника электрической энергии, внесенной ранее в контур (в электрическое поле конденсатора). Так как емкость и индуктивность идеальны (нет сопротивления потерь) и энергия из цепи не уходит, амплитуда колебаний с течением времени не меняется и колебания будут незатухающими .

Определим угловую частоту свободных колебаний:

Используем равенство энергий электрического и магнитного полей

Где ώ угловая частота свободных колебаний.

[ ώ ]=1/с

f 0= ώ /2π [Гц].

Период свободных колебаний Т0=1/f .

Частоту свободных колебаний называют частотой собственных колебаний контура.

Из выражения: ώ²LC=1 получимώL=1/Cώ , следовательно, при токе в контуре с частотой свободных колебаний индуктивное сопротивление равно емкостному сопротивлению.

Характеристические сопротивления.

Индуктивное или емкостное сопротивление в колебательном контуре при частоте свободных колебаний называется характеристическим сопротивлением.

Характеристическое сопротивление вычисляется по формулам:

5.2 Реальный колебательный контур

Реальный колебательный контур обладает активным сопротивлением, поэтому при воздействии в контуре свободных колебаний энергия предварительно заряженного конденсатора постепенно тратится, преобразуясь в тепловую.

Свободные колебания в контуре являются затухающими, так как в каждый период энергия уменьшается и амплитуда колебаний в каждый период будет уменьшаться.

Рисунок - реальный колебательный контур.

Угловая частота свободных колебаний в реальном колебательном контуре:

Если R=2… , то угловая частота равна нулю, следовательно свободные колебания в контуре не возникнут.

Таким образом колебательным контуром называется электрическая цепь состоящая из индуктивности и емкости и обладающая малым активным сопротивлением, меньшим удвоенного характеристического сопротивления, что обеспечивает обмен энергией между индуктивностью и емкостью.

В реальном колебательном контуре свободные колебания затухают тем быстрее, чем больше активное сопротивление.

Для характеристики интенсивности затухания свободных колебаний используется понятие «затухание контура» - отношение активного сопротивления к характеристическому.

На практике используют величину, обратную затуханию – добротность контура.

Для получения незатухающих колебаний в реальном колебательном контуре необходимо в течение каждого периода колебаний пополнять электрическую энергию на активном сопротивлении контура в такт с частотой собственных колебаний. Это осуществляется с помощью генератора.

Если подключить колебательный контур к генератору переменного тока, частота которого отличается от частоты свободных колебаний контура, то в цепи протекает ток с частотой равной частоте напряжения генератора. Эти колебания называют вынужденным.

Если частота генератора отличается от собственной частоты контура, то такой колебательный контур является ненастроенным относительно частоты внешнего воздействия, если же частоты совпадают, то настроенным.

Задача: Определить индуктивность, угловую частоту контура, характеристическое сопротивление, если емкость колебательного контура 100 пФ, частота свободных колебаний 1,59 МГц.

Решение:

Тестовые задания:

Тема занятия 8: РЕЗОНАНС НАПРЯЖЕНИЙ

Резонанс напряжений – явление возрастания напряжений на реактивных элементах, превышающих напряжение на зажимах цепи при максимальном токе в цепи, которое совпадает по фазе с входным напряжением.

Условия возникновения резонанса:

    Последовательное соединение LиCс генератором переменного тока;

    Частота генератора должна быть равна частоте собственных колебаний контура, при этом характеристические сопротивления равны;

    Сопротивление должно быть меньше, чем 2ρ, так как только в этом случае в цепи возникнут свободные колебания, поддерживаемые внешним источником.

Полное сопротивление цепи:

так как равны характеристические сопротивления. Следовательно, при резонансе цепь носит чисто активный характер, значит, входное напряжение, и ток в момент резонанса совпадают по фазе. Ток принимает максимальное значение.

При максимальном значении тока напряжение на участках L и C будут большими и равными между собой.

Напряжение на зажимах цепи:

Рассмотрим следующие соотношения:

, следовательно

Q добротность контура –при резонансе напряжения показывает, во сколько раз напряжение на реактивных элементах больше входного напряжения генератора, питающего цепь. При резонансе коэффициент передачи последовательного колебательного контура

резонанса.

Пример:

Uc=Ul=QU =100В,

то есть напряжение на зажимах меньше напряжений на емкости и индуктивности. Это явление называется резонансом напряжений

При резонансе, коэффициент передачи равен добротности.

Построим векторную диаграмму напряжения

Напряжение на емкости равно напряжению на индуктивности, следовательно напряжение на сопротивлении равно напряжению на зажимах и совпадает по фазе с током.

Рассмотрим энергетический процесс в колебательном контуре:

В цепи имеется обмен энергии между электрическим полем конденсатора и магнитным полем катушки. К генератору энергия катушки не возвращается. От генератора в цепь поступает такое количество энергии, которое тратится на резисторе. Это необходимо для того, чтобы в контуре наблюдались незатухающие колебания. Мощность в цепи только активная.

Докажем это математически:

, полная мощность цепи, которая равна активной мощности.

Реактивная мощность.

8.1 Резонансная частота. Расстройка.

Lώ=l/ώC , следовательно

, угловая резонансная частота.

Из формулы видно, что резонанс наступает, если частота питающего генератора равна собственным колебаниям контура.

При работе с колебательным контуром необходимо знать, совпадает ли частота генератора и частота собственных колебаний контура. Если частоты совпадают, то контур остается настроенным в резонанс, если не совпадает – то в контуреприсутствует расстройка.

Настроить колебательный контур в резонанс можно тремя способами:

1 Изменять частоту генератора, при значениях емкости и индуктивности const, то есть изменяя частоту генератора мы подстраиваем эту частоту под частоту колебательного контура

2 Изменять индуктивность катушки, при частоте питания и емкости const;

3 Изменять емкость конденсатора, при частоте питания и индуктивности const.

Во втором и третьем способе изменяя частоту собственных колебаний контура, подстраиваем ее под частоту генератора.

При ненастроенном контуре частота генератора и контура не равны, то есть присутствует расстройка.

Расстройка – отклонение частоты от резонансной частоты.

Существует три вида расстройки :

    Абсолютная – разность между данной частотой и резонансной

    Обобщенная – отношение реактивного сопротивления к активному:

    Относительная – отношение абсолютной расстройки к резонансной частоте:

При резонансе все расстройки равны нулю , если частота генератора меньше частоты контура, то расстройка считается отрицательной,

Если больше – положительной.

Таким образом добротность характеризует качество контура, а обобщенная расстройка- удаленность от резонансной частоты.

8.2 Построение зависимостейX , X L , X C отf .

Задачи:

    Сопротивление контура 15 Ом, индуктивность 636 мкГн, Емкость 600 пФ, напряжение питающей сети 1,8 В. Найти собственную частоту контура, затухание контура, характеристическое сопротивление, ток, активную мощность, добротность, напряжение на зажимах контура.

Решение:

    Напряжение на зажимах генератора 1 В, частота питающей сети 1 МГц, добротность 100, емкость 100 пФ. Найти: затухание, характеристическое сопротивление, активное сопротивление, индуктивность, частоту контура, ток, мощность, напряжения на емкости и индуктивности.

Решение:

Тестовые задания:

Тема занятия 9 : Входные и передаточные АЧХ и ФЧХ последовательного колебательного контура.

9.1 Входные АЧХ и ФЧХ.

В последовательном колебательном контуре:

R – активное сопротивление;

X – реактивное сопротивление.

Колебательный контур

электрическая цепь, содержащая катушку индуктивности и конденсатор, в которой могут возбуждаться электрические колебания. Если в некоторый момент времени зарядить конденсатор до напряжения V 0 , то энергия, сосредоточенная в электрическом поле конденсатора, равна Е с = , где С - ёмкость конденсатора. При разрядке конденсатора в катушке потечёт ток I , который будет возрастать до тех пор, пока конденсатор полностью не разрядится. В этот момент электрическая энергия К. к. E c = 0, а магнитная, сосредоточенная в катушке, E L =L - индуктивность катушки, I 0 - максимальное значение тока. Затем ток в катушке начинает падать, а напряжение на конденсаторе возрастать по абсолютной величине, но с противоположным знаком. Спустя некоторое время ток через индуктивность прекратится, а конденсатор зарядится до напряжения - V 0 . Энергия К. к. вновь сосредоточится в заряженном конденсаторе. Далее процесс повторяется, но с противоположным направлением тока. Напряжение на обкладках конденсатора меняется по закону V = V 0 cos ω 0 t, а ток в катушке индуктивности I = I 0 sin ω 0 t , т. е. в К. к. возбуждаются собственные гармонические колебания напряжения и тока с частотой ω 0 = 2 π/T 0 , где T 0 - период собственных колебаний, равный T 0 = 2π

В реальных К. к., однако, часть энергии теряется. Она тратится на нагрев проводов катушки, обладающих активным сопротивлением, на излучение электромагнитных волн в окружающее пространство и потери в диэлектриках (см. Диэлектрические потери), что приводит к затуханию колебаний. Амплитуда колебаний постепенно уменьшается, так что напряжение на обкладках конденсатора меняется уже по закону: V=V 0 e -δt cosωt, где коэффициент δ = R/2L - показатель (коэффициент) затухания, а ω = - частота затухающих колебаний. Т. о., потери приводят к изменению не только амплитуды колебаний, но и их периода Т = 2 π/ω. Качество К. к. обычно характеризуют его добротностью Q определяет число колебаний, которое совершит К. к. после однократной зарядки его конденсатора, прежде чем амплитуда колебаний уменьшится в е раз (е - основание натуральных логарифмов).

Если включить в К. к. генератор с переменной эдс: U = U 0 cosΩt (), то в К. к. возникнет сложное колебание, являющееся суммой его собственных колебаний с частотой ω 0 и вынужденных с частотой Ω. Через некоторое время после включения генератора собственные колебания в контуре затухнут и останутся только вынужденные. Амплитуда этих стационарных вынужденных колебаний определяется соотношением

Т. е. зависит не только от амплитуды внешней эдс U 0 , но и от её частоты Ω. Зависимость амплитуды колебаний в К. к.

от частоты внешней эдс называется резонансной характеристикой контура. Резкое увеличение амплитуды имеет место при значениях Ω, близких к собственной частоте ω 0 К. к. При Ω = ω 0 амплитуда колебаний V makc в Q раз превышает амплитуду внешней эдс U. Т. к. обычно 10 Q 100, то К. к. позволяет выделить из множества колебаний те, частоты которых близки к ω 0 . Именно это свойство (избирательность) К. к. используется на практике. Область (полоса) частот ΔΩ вблизи ω 0 , в пределах которой амплитуда колебаний в К. к. меняется мало, зависит от его добротности Q. Численно Q равно отношению частоты ω 0 собственных колебаний к ширине полосы частот ΔΩ.

Для повышения избирательности К. к. необходимо увеличивать Q. Однако рост добротности сопровождается увеличением времени установления колебаний в К. к. Изменения амплитуды колебаний в контуре с высокой добротностью не успевают следовать за быстрыми изменениями амплитуды внешней эдс. Требование высокой избирательности К. к. противоречит требованию передачи быстро изменяющихся сигналов. Поэтому, например, в усилителях телевизионных сигналов искусственно снижают добротность К. к. Часто используются схемы с двумя или несколькими связанными между собой К. к. Такие системы при правильно подобранных связях обладают почти прямоугольной резонансной кривой (пунктир).

Кроме описанных линейных К. к. с постоянными L и С, применяются нелинейные К. к., параметры которых L или С зависят от амплитуды колебаний. Например, если в катушку индуктивности К. к. вставлен железный сердечник, то намагниченность железа, а с ним и индуктивность L катушки меняется с изменением тока, текущего через неё. Период колебания в таком К. к. зависит от амплитуды, поэтому резонансная кривая приобретает наклон, а при больших амплитудах становится неоднозначной (). В последнем случае имеют место скачки амплитуды при плавном изменении частоты Ω внешней эдс. Нелинейные эффекты проявляются тем сильнее, чем меньше потери в К. к. В К. к. с низкой добротностью нелинейность вообще не сказывается на характере резонансной кривой.

Лит.: Стрелков С. П.. Введение в теорию колебаний, М. - Л., 1951.

В. Н. Парыгин.

Рис. 2. Колебательный контур с источником переменной эдс U =U 0 cos Ωt.

Рис. 3. Резонансная кривая колебательного контура: ω 0 - частота собственных колебаний; Ω - частота вынужденных колебаний; ΔΩ - полоса частот вблизи ω 0 , на границах которой амплитуда колебаний V = 0,7 V makc . Пунктир - резонансная кривая двух связанных контуров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Постановка задачи: Мы уже много знаем о механических колебаниях: свободные и вынужденные колебания, автоколебания, резонанс и т.д. Приступаем к изучению электрических колебаний. Тема сегодняшнего урока: получение свободных электромагнитных колебаний.

Вспомним вначале: Каким условиям должна соответствовать колебательная система, система, в которой могут возникать свободные колебания. Ответ: в колебательной системе должна возникать возвращающая сила и происходить превращение энергии из одного вида в другой.

(Разбор нового материала по презентации с подробным пояснением всех процессов и записью в тетради первых двух четвертей периода, 3 и 4-ые четверти описать дома, по образцу).

Колебательный контур – это электрическая цепь, в которой можно получить свободные электромагнитные колебания. К.К. состоит всего из двух приборов: катушки индуктивностью L и конденсатора электроёмкостью С. Идеальный колебательный контур не имеет сопротивления.

Чтобы сообщить энергию в К.К., т.е. вывести его из положения равновесия, нужно временно разомкнуть его цепь и поставить ключ с двумя положениями. Когда ключ замкнут на источник тока, то конденсатор заряжается до максимального заряда. Этим подают в К.К. энергию в виде энергии электрического поля. Когда ключ замкнут в правое положение, то источник тока отключен, К.К. предоставлен самому себе.

Такое состояние К.К. соответствует положению математического маятника в крайнем правом положении, когда его вывели из состояния покоя. Колебательный контур выведен из положения равновесия Заряд конденсатора – максимален и энергия заряженного конденсатора – энергия электрического поля максимальна. Будем рассматривать весь процесс, который происходит в нём по четвертям периода.

В 1-ый момент конденсатор заряжен до максимального заряда (нижняя обкладка заряжена положительно), энергия в нём сосредоточена в виде энергии электрического поля. Конденсатор замкнут сам на себя, и он начинает разряжаться. Положительные заряды по закону Кулона притягиваются к отрицательным, и возникает ток разрядки, направленный против часовой стрелки. Если бы на пути тока не было бы катушки индуктивности, то всё произошло бы мгновенно: конденсатор бы просто разрядился. Накопленные заряды компенсировали бы друг друга, энергия электрическая превратилась бы в тепловую. Но в катушке возникает магнитное поле, направление которого можно определить по правилу буравчика – «вверх». Магнитное поле - растущее и возникает явление самоиндукции, которое препятствует росту тока в нём. Ток растёт не мгновенно, а постепенно, в течение всей 1-ой четверти периода. За это время ток будет расти до тех пор, пока его поддерживает конденсатор. Как только конденсатор разрядится, ток больше не растёт, он к этому моменту достигнет максимального значения. Конденсатор разрядился, заряд равен 0, значит и энергия электрического поля равна 0. Но в катушке течёт максимальный ток, вокруг катушки существует магнитное поле, значит, произошло превращение энергии электрического поля в энергию магнитного поля. К концу 1-ой четверти периода в К.К.ток максимальный, энергия сосредоточена в катушке в виде энергии магнитного поля. Это соответствует, тому положению маятника, когда он проходит положение равновесия.

В начале 2-ой четверти периода, конденсатор разряжен, а ток достиг максимального значения и он должен был бы мгновенно исчезнуть, ведь конденсатор его не поддерживает. И ток действительно начинает резко убывать, но он течёт по катушке, и в ней возникает явление самоиндукции, которое препятствует любому изменению магнитного поля, вызывающего это явление. ЭДС самоиндукции поддерживает исчезающее магнитное поле, индукционный ток имеет то же направление, что и существующий. В К.К. ток течёт против часовой стрелки – в пустой конденсатор. В конденсаторе накапливается электрический заряд - на верхней обкладке – положительный заряд. Ток течёт до тех пор, пока его поддерживает магнитное поле, до конца 2-ой четверти периода. Конденсатор зарядится до максимального заряда (если не произойдёт утечки энергии), но противоположного направления. Говорят, конденсатор перезарядился. К концу 2-ой четверти периода ток исчезает, значит, энергия магнитного поля равна 0.Конденсатор перезарядился, его заряд равен (– максимальному). Энергия сосредоточена в виде энергии электрического поля. В течение этой четверти произошло превращение энергии магнитного поля в энергию электрического поля. Состояние колебательного контура соответствует такому положению маятника, при котором он отклоняется в крайнее левое положение.

В 3-ей четверти периода происходит всё также, что и в 1-ой четверти, только противоположного направления. Конденсатор начинает разряжаться. Ток разрядки растёт постепенно, в течение всей четверти, т.к. быстрому росту его препятствует явление самоиндукции. Ток растёт до максимальной величины, пока конденсатор не разрядится. К концу 3-ей четверти энергия электрического поля превратится в энергию магнитного поля, полностью, если не будет утечки. Это соответствует такому положению маятника, когда он снова проходит положение равновесия, но в противоположном направлении.

В 4-ой четверти периода происходит всё так же, как и во 2-ой четверти, только в противоположном направлении. Ток, поддерживаемый магнитным полем, постепенно убывает, поддерживаемый ЭДС самоиндукции и перезаряжает конденсатор, т.е. возвращает его к первоначальному положению. Энергия магнитного поля превращается в энергию электрического поля. Что соответствует возвращению математического маятника в первоначальное положение.

Анализ рассмотренного материала:

1. Можно ли колебательный контур рассматривать, как колебательную систему? Ответ: 1. В колебательном контуре происходит превращение энергии электрического поля в энергию магнитного поля и наоборот. 2. Явление самоиндукции играет роль возвращающей силы. Поэтому колебательный контур рассматривать, как колебательную систему. 3. Колебания в К.К. можно считать свободными.

2. Можно ли колебания в К.К. рассматривать, как гармонические? Анализируем изменение величины и знака заряда на обкладках конденсатора и мгновенного значения тока и его направления в цепи.

На графике видно:

3. Что в колебательном контуре колеблется? Какие физические тела совершают колебательные движения? Ответ: колеблются электроны, они совершают свободные колебания.

4. Какие физические величины изменяются при работе колебательного контура? Ответ: изменяются сила тока в цепи, заряд в конденсаторе, напряжение на обкладках конденсатора, энергия электрического поля и энергия магнитного поля.

5. Период колебаний в колебательном контуре зависит только от индуктивности катушки L и ёмкости конденсатора C. Формула Томсона: Т = 2π можно сравнить и с формулами для механических колебаний.

Практический расчет последовательного или параллельного LC контура.

Доброго дня уважаемые радиолюбители!
Сегодня мы с вами рассмотрим порядок расчета LC контура .

Некоторые из вас могут спросить, а на черта нам это нужно? Ну, во-первых, лишние знания никогда не помешают, а во-вторых, бывают в жизни моменты, когда вам знание этих расчетов может понадобиться. К примеру, очень многие начинающие радиолюбители (естественно, в основном молодые), увлекаются сборкой так называемых “жучков” – устройств позволяющих на расстоянии прослушивать что-нибудь. Конечно я уверен, что это делается без всяких нехороших (даже грязных) мыслей подслушать кого-нибудь, а в благих целях. Например устанавливают “жучок” в комнате с малышом, а на радиовещательный приемник прослушивают не проснулся ли он. Все схемы “радиожучков” работают на определенной частоте, но что делать, когда эта частота вас не устраивает. Вот тут вам придет на помощь знание нижеприведенной статьи.

LC колебательные контура применяются практически в любой аппаратуре, работающей на радиочастотах. Как известно из курса физики, колебательный контур состоит из катушки индуктивности и конденсатора (емкости), которые могут быть включены параллельно (параллельный контур ) или последовательно (последовательный контур ), как на рис.1:

Реактивные сопротивления индуктивности и емкости, как известно, зависят от частоты переменного тока. При увеличении частоты реактивное сопротивление индуктивности растет, а емкости – падает. При уменьшении частоты, наоборот, индуктивное сопротивление падает, а емкостное – растет. Таким образом, для каждого контура есть некоторая частота резонанса, на которой индуктивное и емкостное сопротивления оказываются равными. В момент резонанса резко увеличивается амплитуда переменного напряжения на параллельном контуре или резко увеличивается амплитуда тока на последовательном контуре. На рис.2 показан график зависимости напряжения на параллельном контуре или тока на последовательном контуре от частоты:

На частоте резонанса эти величины имеют максимальное значение. А полоса пропускания контура определяется на уровне 0,7 от максимальной амплитуды, которая есть на частоте резонанса.

Теперь перейдем к практике. Предположим нам нужно сделать параллельный контур, имеющий резонанс на частоте 1 МГц. Прежде всего нужно сделать предварительный расчет такого контура. То есть, определить необходимую емкость конденсатора и индуктивность катушки. Для предварительного расчета есть упрощенная формула:

L=(159,1/F) 2 /C где:
L – индуктивность катушки в мкГн;
С – емкость конденсатора в пФ;
F – частота в МГц

Зададимся частотой 1 МГц и емкостью, к примеру, 1000 пФ. Получим:

L=(159,1/1) 2 /1000 = 25 мкГн

Таким образом, если мы захотим контур на частоту 1 МГц, то нужен конденсатор на 1000 пФ и индуктивность на 25 мкГн. Конденсатор можно подобрать, а вот индуктивность нужно сделать самостоятельно.

N=32 *√(L/D) где:
N – требуемое число витков;
L – заданная индуктивность в мкГн;
D – диаметр каркаса в мм, на котором предполагается намотать катушку.

Предположим, диаметр каркаса – 5 мм, тогда:

N=32*√(25/5) = 72 витка.

Данная формула является приближенной, она не учитывает собственную межвитковую емкость катушки. Формула служит для предварительного вычисления параметров катушки, которые затем настраиваются при настройке контура.

В радиолюбительской практике чаще используются катушки с подстроечными сердечниками из феррита, имеющими длину 12-14 мм и диаметр 2,5 – 3 мм. Такие сердечники, например, применяются в контурах телевизоров и приемников. Для предварительного расчета числа витков для такого сердечника есть другая приближенная формула:

N=8,5*√L , подставляем значения для нашего контура N=8,5*√25 = 43 витка . То есть, в таком случае на потребуется намотать на катушку 43 витка провода.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: