Системы биометрической идентификации. Биометрическая аутентификация: удобство или безопасность? Описание предметной области

Привычные системы аутентификации на сегодня не всегда удовлетворяют требованием политики информационной безопасности предприятия или компании. Все большую популярность набирает биометрическая аутентификация пользователя, разрешающая аутентифицировать пользователя с помощью считывания его физиологических данных.

Методы аутентификация основывающийся на паролях имеют недостаток: многоразовый пароль можно скомпрометировать разными способами. можно потерять, скопировать. Биометрические методы аутентификации не имеют эти недостатки. К основным плюсам таких методов относят:

  • большой уровень достоверности аутентификации по биометрическим параметрам из-за их уникальности
  • неотделимость биометрических параметров от пользователя
  • сложность фальсификации биометрических признаков

В качестве биопараметров используют следующие:

  • форма кисти руки
  • отпечаток пальца
  • размер и форма лица
  • узор сетчатки глаза и радужной оболочки
  • особенности голоса

Схема работы биометрической системы аутентификации

При процессе регистрации в системе пользователь должен показать один или несколько раз биометрический признак, по которому происходит дальнейшая аутентификация. Эти признаки в системе регистрируются как контрольный образец пользователя. Этот образец обрабатывается системой для получения ЭИП (эталонный идентификатор пользователя). ЭИП — числовая последовательность, из которой нельзя восстановить первоначальный образец. При прохождении аутентификации пользователем, сравнивается эталонные ЭИП и ЭИП при прохождении аутентификации. Поскольку эти 2 параметра никогда не совпадут, существует параметр отвечающий за степень совпадения. На основе этой степени совпадения система решает о прохождении аутентификации.

Ошибочный отказ (FRR)- это отказ, когда система не подтверждает законного пользователя. Такие отказы бывают 1 на 100.

Ошибочное подтверждение (FAR) — подтверждение, когда система подтверждает аутентификацию незаконного пользователя. ТАкие ошибки бывают 1 на 10000.

Дактилоскопическая система аутентификации

Одна из причин широкого использования таких систем, это наличие громадных банков данных по отпечаткам пальцев. Основные пользователи таких систем являются сотрудники гос. служб или банковские компании. Основные компоненты дактилоскопической системы аутентификации:

  • сканер
  • ПО идентификации
  • ПО аутентификации

Тема биометрической идентификации личности далеко не нова — достаточно вспомнить, что идея идентификации по отпечаткам пальцев возникла еще в XIX веке. Однако сложность и дороговизна технологий наряду с неготовностью людей оставлять третьей стороне свои биометрические признаки отодвинули массовое использование технологии на многие годы.

Проблематика компьютерной биометрии (по лицу, голосу, отпечаткам, подписи) начала активно развиваться в 1960-х годах, когда было создано биометрическое подразделение Национального института стандартов и технологий США (NIST). Потребителями биометрических технологий были в основном государство (биометрические паспорта) и силовые ведомства (контроль доступа на режимные объекты).

В последние несколько лет тема находится на гребне волны — биометрические технологии проникают повсеместно. Уже никого не удивишь сканером отпечатка пальца на мобильном устройстве, крупные банки начинают применять идентификацию клиентов по голосу и по лицу, есть пилотные проекты по внедрению биометрических платежных сервисов в розничных сетях. Среди последних новостей — появление биометрических банковских карт и планы создания в России Национальной биометрической платформы. Аналитики компании Tractica прогнозируют более чем 5-кратный рост доходов от реализации аппаратных и программных биометрических решений — с $2,4 млрд по итогам прошлого года до $15,1 млрд к 2025 году.

Прогнозы других аналитических компаний еще более оптимистичны. Например, по оценкам J"son & Partners Consulting, в ближайшие 6 лет среднегодовой темп роста выручки на рынке биометрии составит 18,6% и к 2022 году вырастет до $40 млрд.

Вслед за ростом рынка подтягивается государство, взнося все новые изменения в законодательство. В начале осени Госдума поддержала законопроект об удаленной идентификации клиентов кредитных организаций, вносящий изменения в 115-ФЗ «О противодействии легализации (отмыванию) доходов…». Подобные законопроекты дают дополнительный стимул к расширению применения биометрических технологий.

Аналитики Tractica прогнозируют, что примерно треть рынка биометрии будут занимать биометрические технологии аутентификации. Они становятся особенно актуальными в свете современной установки на сокращение операционных издержек на разных уровнях и повышение информационной безопасности в компаниях.

По данным компании Indeed-Id, за счет внедрения систем однократной аутентификации (SSO), которые автоматизируют процедуры доступа в приложения и периодической смены паролей, а также сокращают число инцидентов, связанных с забыванием паролей и блокировкой учетных записей, обеспечивается возврат инвестиций (ROI) в объеме от 2500 рублей в год на каждого пользователя.

В свою очередь внедрение биометрической аутентификации может еще больше увеличить сумму экономии за счет полного отказа от паролей. Не стоит также забывать, что, по мнению экспертов по информационной безопасности, биометрические методы аутентификации являются наиболее безопасными.

С февраля 2018 г. вступают в силу нововведения стандарта PCI DSS 3.2, в частности требование применения многофакторной аутентификации для защиты неконсольного административного доступа и удаленного доступа всех пользователей к информационной среде держателей карт (пункт 8.3: Secure all individual non-console administrative access and all remote access to the CDE using multi-factor authentication). В качестве факторов аутентификации стандарт PCI DSS определяет следующие: «то, что вы знаете» (Something you know) — пароль или кодовая фраза; «то, что у вас есть» (Something you have) — токен или смарт-карта; «то, что есть вы» (Something you are) — биометрические признаки. По стандарту, многофакторная аутентификация требует применения как минимум двух перечисленных факторов.

Традиционные методы аутентификации

В последнее время в СМИ все чаще появляется информация о проблемах, связанных с уязвимостями и неудобством традиционных методов аутентификации. К традиционным мы относим:

Пара «логин-пароль» . Этот метод сегодня применяется практически повсеместно, и проблемы, с ним связанные, всем хорошо известны. Основная из них — человеческий фактор: сколько бы не напоминали эксперты о необходимости соблюдать правила обращения с паролями (в сущности несложных), ситуация лучше не становится, а в чем-то даже ухудшается. Красноречиво свидетельствует об этом сравнение данных опросов «Лаборатории Касперского», проведенных в 2014 и 2016 годах среди российских пользователей. По-прежнему лишь около трети респондентов создают отдельные пароли для каждого аккаунта, большинство предпочитает использовать одну и ту же комбинацию символов для нескольких учетных записей. При этом увеличилась доля пользователей, которые обходятся одним-единственным паролем для всех аккаунтов.

Конечно, на корпоративном уровне проблему частично можно решить введением жестких парольных политик и требований к сложности и частоте смены пароля — эти меры способны повысить уровень безопасности данного метода аутентификации. Однако на практике они скорее всего приведут к увеличению количества сотрудников, которые будут записывать пароли на бумагу или в гаджеты. Если посмотреть на результаты опросов «Лаборатории Касперского» в данном аспекте, и тут ситуация не улучшается. Держать в голове несколько сложных паролей неудобно, а бороться с неудобством можно, только устранив ее причину.

Цифровые сертификаты считаются оптимальным методом аутентификации пользователей в информационных системах. Инфраструктура открытых ключей (PKI) позволяет быстро и удобно управлять всем жизненным циклом сертификата, а пользователь избавляется от необходимости запоминать сложные логины и пароли. Это удобно для пользователя и администратора, однако никуда не уходят риски потери/ кражи носителя, а также сложности персонификации: воспользоваться USB-токеном или смарт- картой может любой человек, в том числе тот, кто не имеет на это права. Распространенная проблема — забывание ключа в разъеме компьютера или считывателя. Подобные вопросы можно решить, выпустив единую карту, которая будет служить и пропуском для СКУД, и ключом входа на рабочую станцию, и, самое главное, будет привязана к зарплатному счету сотрудника. Последнее резко повышает ответственность сотрудника в обращении с картой и исключает случаи ее передачи посторонним лицам. Но при такой конфигурации стоимость решения увеличивается минимум на 2 тыс. рублей для одного сотрудника, без учета расходов на услуги по персонализации карты. Причем при увольнении существующую карту использовать повторно уже не получится, для каждого нового сотрудника необходимо выпускать новую.

Можно еще вспомнить про одноразовые пароли (OTP), которые отправляются пользователям по SMS или генерируются на специальном устройстве (брелоке). Но для доступа к персональной рабочей станции ОТР — не самая удачная идея. Затраты на SMS-шлюз и задержки при доставке SMS создадут больше проблем, нежели выгод. Что касается брелоков, существуют риски кражи и потери, поскольку при таком подходе сложно обеспечить персонификацию.

Альтернатива - биометрическая аутентификация

Давайте разберемся, насколько биометрические технологии на их нынешнем уровне развития готовы конкурировать с традиционными методами аутентификации, применяемыми в корпоративном секторе. Сразу оговоримся: мы не будем рассматривать методы на грани фантастики, такие как аутентификация по ДНК, сетчатке глаза (не путать с радужной оболочкой), походке и т.п. Мы рассмотрим решения, которые доступны на рынке и реально применимы в корпоративном сегменте, обеспечивая безопасный доступ к рабочим станциям.

В качестве биометрических признаков эти методы используют:

  • отпечаток пальца;
  • рисунок вен ладони;
  • голос;
  • радужную оболочку глаза;
  • лицо (2D-изображение);
  • лицо (3D-изображение).

Аутентификация по отпечатку пальца — один из наиболее распространенных методов биометрической аутентификации. По данным различных источников, эта технология занимает половину всего рынка биометрической аутентификации. Уровень ее развития таков, что современное сканирующее устройство уже нельзя обмануть с помощью оттиска на бумаге, желатине или стекле — технология достаточно безопасна. Основная проблема метода в том, что папиллярный узор пальца нестабилен, в результате чего система перестает узнавать человека. С такой проблемой столкнулся один из наших заказчиков в период дачного сезона. Сотрудники, успевшие хорошо потрудиться на дачном участке, вынуждены были в массовом прядке отправляться в службу ИБ для перезаписи шаблона.

Аутентификация по рисунку вен ладони дает высокую точность распознавания, хотя некоторые заболевания, в частности анемия конечностей, или последствия физических нагрузок на руки, могут затруднять работу считывателя. Однако эта технология довольно дорогая, к тому же в некоторых реализациях она контактная, что делает ее менее гигиеничной. Сильные стороны данного метода в том, что рисунок вен ладони сложно украсть и подделать, а также по прошествии времени он не меняется.

Аутентификация по голосу, 2D-изображению лица — технологии, наиболее доступные по стоимости. Однако они чувствительны к внешним факторам, что снижает уровень их удобства. В случае распознавания лица есть риски ошибок, связанных с недостаточным освещением, в случае голоса — вызванных посторонним шумом или низким качеством принимающего устройства. Не стоит также забывать о возможном искажении голоса из-за болезни. Кроме того, существуют сервисы по подмене внешности и голоса. Недавно подобная технология под названием Face2Face была продемонстрирована в США. С ее помощью можно с легкостью обмануть систему голосовой или 2D-аутентификации. Не помогает даже технология liveness, которая в режиме реального времени верифицирует объект, предлагая человеку наклонить/повернуть голову или произнести случайно сгенерированную фразу. Спасением от Face2Face и других подобных технологий подмены может служить применение камер, работающих в инфракрасном спектре. Но это уже будет решение совсем другой ценовой категории, так что разумнее задуматься о применении более продвинутого метода биометрической аутентификации.

Аутентификация по радужной оболочке глаза. До недавнего времени данный метод был практически не доступен для массового использования при аутентификации на рабочих станциях. Причин этому несколько, в первую очередь дороговизна сканирующих устройств. Также немаловажно действие некоторых патентов на биометрию радужной оболочки глаза. Завершение действия патентов дало новый толчок к развитию технологии. Отличительной особенностью данного метода являются очень высокие показатели безопасности, особенно при использовании одновременно двух глаз, однако стоимость таких устройств доходит до нескольких тысяч долларов. Более доступные по цене сканеры на нашем рынке работают только с одним глазом. При условии, что технология полностью бесконтактная и не восприимчива к внешним факторам, в ближайшем будущем все это может привести к тому, что данный метод станет одним из наиболее популярных на рынке биометрии.

Аутентификация по 3D-изображению лица — наиболее перспективная и активно развивающаяся технология. Например, в новом iPhone сканер отпечатка пальца заменен камерой, которая создает 3D-снимок лица и позволяет разблокировать телефон, просто взглянув на него. Можно не сомневаться: подобные технологии будут появляться и у других производителей смартфонов. Это, в свою очередь, даст новый толчок развитию, удешевлению и более широкому распространению указанного метода аутентификации. Сегодня уже можно купить ноутбуки со встроенными 3D-камерами, что позволяет использовать данный метод аутентификации сотрудников без покупки дополнительного оборудования. Однако одновременно с популярностью технологии возрастают риски компрометации в связи с удешевлением и доступностью 3D-камер и технологий трехмерной печати.

Сравнительная оценка биометрических технологий

Все перечисленные технологии присутствуют на рынке в виде коммерческих продуктов. При их реализации производители применяют различные математические алгоритмы, а также используют дополнительные механизмы защиты от подмены.

Мы оценили доступные на рынке технологии биометрической аутентификации, в качестве критериев сравнения использовали безопасность технологии (т.е. надежность плюс устойчивость к фальсификации), удобство использования, а также ценовую доступность.

На наш взгляд, основными параметрами, характеризующими безопасность биометрической аутентификации, являются коэффициент ложного принятия (FAR — False Accept Rate), т.е. вероятность того, что система аутентифицирует чужого сотрудника, и коэффициент ложного отказа (FRR — False Reject Rate), т.е. вероятность того, что система не аутентифицирует своего сотрудника. Другая характеристика безопасности технологии — степень сложности фальсификации — отражает объем усилий и затрат, которые потребуются для компрометации системы, т.е. подмены реального биометрического признака человека. Сложность фальсификации зависит от сложности и стоимости специализированных технологий, применяемых для сбора биометрических данных и изготовления копии биометрического признака.

Удобство биометрической технологии зависит от чувствительности к изменениям внешней среды (для офиса наиболее актуальны освещенность и шум), а также от собственно биометрических параметров. Не последнюю роль играет контактность или бесконтактность. Скорость срабатывания (количество времени, необходимое для аутентификации) тоже влияет на удобство технологии, но, поскольку по этому параметру все рассматриваемые технологии сопоставимы, мы не будем его учитывать при сравнении.

Недостатки биометрических технологий

Несмотря на множество достоинств биометрической аутентификации, у нее есть ряд недостатков. Всем знакома ситуация, когда после ухода с работы возникает необходимость заглянуть в какие-то материалы, сохраненные на рабочем ПК. Обычно в таком случае человек звонит коллеге, которому доверяет, сообщает ему пароль, а тот получает доступ к ПК и сообщает нужную информацию. При биометрической аутентификации такой номер не пройдет, поэтому сегодня в систему аутентификации встраивается функционал альтернативного доступа, например, по одноразовому паролю. Однако такой вариант сводит на нет преимущества биометрии в части безопасности, создавая дополнительную лазейку для взломщика. Впрочем, бурное развитие облачных технологий снижает вероятность возникновения подобных ситуаций.

Другая проблема биометрии — невозможность замены биометрического шаблона в случае его компрометации. Сменить логин или пароль можно в любой момент, то же относится к картам, токенам, мобильным телефонам и т.д. Но как провести подобную процедуру с лицом или голосом, а тем более с рисунком вен? В случае считывания отпечатка пальца у человека (при отсутствии анатомических дефектов) есть 10 попыток, но для других биометрических методов 100-процентного решения проблемы на текущий момент нет. А с учетом скорости развития технологий и тенденции к их удешевлению проблема компрометации биометрических систем аутентификации будет становиться все более актуальной, поскольку взлом будет доступен все большему кругу лиц. Однако, на наш взгляд, проблема компрометации для случаев аутентификации на офисных рабочих станциях стоит не так остро — сложно представить, что кто-то из сотрудников будет подносить к компьютеру распечатанную на 3D-принтере часть своего коллеги.

На сегодняшний день любая существующая технология аутентификации не идеальна, но по сравнению с традиционными биометрические методы существенно выигрывают: по безопасности, удобству, а нередко и по цене. Более того, в отличие от традиционных технологий аутентификации биометрические технологии постоянно совершенствуются. Например, современный смартфон с 3D-камерой легко отличит плоское изображение от настоящего лица. Микросхема, встроенная в сканер отпечатка пальца, позволяет определять, принадлежит ли палец живому человеку. А существующие алгоритмы распознавания голоса способны оценивать психологическое состояние человека и выявлять случаи, когда фразу для аутентификации пользователь произносит под давлением. На рынке появляется все больше пользовательских устройств со встроенными средствами биометрической аутентификации, и это не только сканеры отпечатка пальца. Яркий пример — уже упомянутый iPhone Х с технологией распознавания лица. А появление ноутбуков со встроенной 3D-камерой — предпосылка к реализации на их базе сканеров лица или радужной оболочки. Распространение биометрических технологий в консьюмерском сегменте способствуют тому, что они становятся более доступными и понятными для корпоративного сектора. Недалек тот день, когда биометрические технологии аутентификации станут для нас традиционными, а привычные пароли и сертификаты перейдут в разряд устаревших.

  • 3.2.Процедура концептуального проектирования сфз яо
  • 3.3.Основы анализа уязвимости яо
  • 3.4. Вопросы для самоконтроля
  • 4. Подсистема обнаружения
  • 4.1. Периметровые средства обнаружения
  • 4.1.1. Тактико-технические характеристики периметровых систем
  • 4.1.2. Физические принципы действия периметровых средств
  • 4.1.3. Описание периметровых средств обнаружения
  • 4.2. Объектовые средства обнаружения
  • 4.2.1. Вибрационные датчики
  • 4.2.2. Электромеханические датчики
  • 4.2.3. Инфразвуковые датчики
  • 4.2.4. Емкостные датчики приближения
  • 4.2.5. Пассивные акустические датчики
  • 4.2.6. Активные инфракрасные датчики
  • 4.2.7. Микроволновые датчики
  • 4.2.8. Ультразвуковые датчики
  • 4.2.9. Активные акустические датчики
  • 4.2.10. Пассивные инфразвуковые датчики
  • 4.2.11. Датчики двойного действия
  • 4.3. Вопросы для самоконтроля
  • 5. Подсистема контроля и управления доступом
  • 5.1. Классификация средств и систем контроля и управления доступом
  • 5.1.1. Классификация средств контроля и управления доступом
  • 5.1.2. Классификация систем контроля и управления доступом
  • 5.1.3. Классификация средств и систем куд по устойчивости к нсд
  • 5.2. Назначение, структура и принципы функционирования подсистем контроля и управления доступом
  • 5.3. Считыватели как элементы системы контроля и управления доступом
  • 5.4. Методы и средства аутентификации
  • 5.5. Биометрическая аутентификация
  • 5.6. Вопросы для самоконтроля
  • 6. Подсистема телевизионного наблюдения
  • 6.1. Задачи и характерные особенности современных стн
  • 6.2. Характеристики объектов, на которых создаются стн
  • 6.3. Телекамеры и объективы
  • 6.3.1. Современные тк
  • 6.3.2. Объективы
  • 6.3.3. Технические характеристики тк
  • 6.3.4. Классификация тк
  • 6.4. Устройства отображения видеоинформации - мониторы
  • 6.5. Средства передачи видеосигнала
  • 6.5.1. Коаксиальные кабели
  • 6.5.2. Передача видеосигнала по «витой паре»
  • 6.5.3. Микроволновая связь
  • 6.5.4. Радиочастотная беспроводная передача видеосигнала
  • 6.5.5. Инфракрасная беспроводная передача видеосигнала
  • 6.5.6. Передача изображений по телефонной линии
  • Сотовая сеть
  • 6.5.7. Волоконно-оптические линии связи
  • 6.6. Устройства обработки видеоинформации
  • 6.6.1. Видеокоммутаторы.
  • 6.6.2. Квадраторы.
  • 6.6.3. Матричные коммутаторы
  • 6.6.4. Мультиплексоры
  • 6.7. Устройства регистрации и хранения видеоинформации
  • 6.7.1.Специальные видеомагнитофоны
  • 6.7.2. Цифровые системы телевизионного наблюдения
  • 6.7.3. Мультиплексор с цифровой записьюCaliburDvmRe-4eZTфирмыKalatel, сша.
  • 6.8. Дополнительное оборудование в стн
  • 6.8.1. Кожухи камер
  • 6.8.2. Поворотные устройства камер
  • 6.9. Особенности выбора и применения средств (компонентов) стн
  • 6.10.Вопросы для самоконтроля
  • 7. Подсистема сбора и обработки данных
  • 7.1. Назначение подсистемы сбора и обработки данных
  • 7.2. Аппаратура сбора информации со средств обнаружения – контрольные панели.
  • 7.3. Технологии передачи данных от со
  • 7.4. Контроль линии связи кп-со
  • 7.5. Оборудование и выполняемые функции станции сбора и обработки данных
  • 7.6. Дублирование / резервирование арм оператора сфз
  • 7.7. Вопросы для самоконтроля
  • 8. Подсистема задержки
  • 8.1. Назначение подсистемы задержки
  • 8.2. Заграждения периметра
  • 8.3. Объектовые заграждения
  • 8.4. Исполнительные устройства
  • 8.5. Вопросы для самоконтроля
  • 9.Подсистема ответного реагирования
  • 9.1. Силы ответного реагирования
  • 9.2. Связь сил ответного реагирования
  • 9.3. Организация систем связи с использованием переносных радиостанций
  • 9.4. Вопросы для самоконтроля
  • 10. Подсистема связи
  • 10.1.Современные системы радиосвязи
  • 10.1.1. Основы радиосвязи
  • 10.1.2. Традиционные (conventional) системы радиосвязи.
  • 10.1.3. Транкинговые системы радиосвязи
  • 10.2. Система связи сил ответного реагирования
  • 10.3. Организация систем связи с использованием переносных радиостанций
  • 10.4. Системы радиосвязи с распределенным спектром частот
  • 10.5. Системы радиосвязи, используемые на предприятиях Минатома России
  • 10.6. Вопросы для самоконтроля
  • 11. Оценка уязвимости систем физической защиты ядерных объектов
  • 11.1.Эффективность сфз яо
  • 11.2.Показатели эффективности сфз яо
  • 11.3.Компьютерные программы для оценки эффективности сфз яо
  • 11.4. Вопросы для самоконтроля
  • 12. Информационная безопасность систем физической защиты ядерных объектов
  • 12.1. Основы методология обеспечения информационной безопасности объекта
  • 12.2. Нормативные документы
  • 12.3. Классификация информации в сфз яо с учетом требований к ее защите
  • 12.4. Каналы утечки информации в сфз яо
  • 12.5. Перечень и анализ угроз информационной безопасности сфз яо
  • 12.6. Модель вероятного нарушителя иб сфз яо
  • 12.7. Мероприятия по комплексной защите информации в сфз яо
  • Подсистема зи
  • Организационные
  • Программные
  • Технические
  • Криптографические
  • 12.8. Требования по организации и проведении работ по защите информации в сфз яо
  • 12.9. Требования и рекомендации по защите информации в сфз яо
  • 12.9.1. Требования и рекомендации по защите речевой информации
  • 12.9.2. Требования и рекомендации по защите информации от утечки за счет побочных электромагнитных излучений и наводок
  • 12.9.3. Требования и рекомендации по защите информации от несанкционированного доступа
  • 12.9.4. Требования и рекомендации по защите информации в сфз яо от фотографических и оптико-электронных средств разведки
  • 12.9.5. Требования и рекомендации по физической защите пунктов управления сфз яо и других жизненно-важных объектов информатизации
  • 12.9.6. Требования к персоналу
  • 12.10. Классификация автоматизированных систем сфз яо с точки зрения безопасности информации
  • 12.10.1. Общие принципы классификация
  • 12.10.2. Общие требования, учитываемые при классификации
  • 12.10.3.Требования к четвертой группе Требования к классу «4а»
  • Требования к классу «4п»
  • 12.10.4. Требования к третьей группе Требования к классу «3а»
  • Требования к классу «3п»
  • 12.10.4.Требования ко второй группе Требования к классу «2а»
  • Требования к классу «2п»
  • 12.10.5. Требования к первой группе Требования к классу «1а»
  • Требования к классу «1п»
  • 12.11. Информационная безопасность систем радиосвязи, используемых на яо
  • 12.11.1 Обеспечение информационной безопасности в системах радиосвязи, используемых на предприятиях Минатома России
  • 12.11.2. Классификация систем радиосвязи, используемых на яо, по требованиям безопасности информации
  • Требования ко второму классу
  • Требования к классу 2а
  • Требования к первому классу
  • Требования к классу 1б
  • Требования к классу 1а
  • 12.12. Вопросы для самоконтроля
  • Список литературы
  • 5.5. Биометрическая аутентификация

    При рассмотрении систем биометрической аутентификации особое внимание должно быть уделено точностным характеристикам:

      вероятности ошибочного отказа сотруднику (False Reject Rate, FRR);

      вероятности ошибочного пропуска злоумышленника (False Acceptance Rate);

      ординате точки пересечения кривых FRR и FAR (Equal Error Rate).

    Рисунок радужной оболочки. Радужная оболочка (окрашенная часть, ирис) каждого глаза абсолютно уникальна. Даже у однояйцовых близнецов рисунки радужек разные. Радужная оболочка защищена от внешней среды роговицей и тканевой жидкостью; в отличие от сетчатки, однако, радужная оболочка ясно видна на расстоянии. Случайные рисунки ириса созданы сплетением сетчатой структуры соединительной ткани и других видимых признаков (слоев, борозд, корон, впадин, пятен и т. п.) Рисунок ириса стабилен в течение всей жизни. Пример рисунка ириса показан на рис.5.2 (с сайта www.iriscan.com).

    Рис. 5.2. Рисунок ириса

    Система System 2000EAC фирмы IriScan использует технологию анализа радужной оболочки. Основной режим работы системы – идентификация. Процесс идентификации по ирису начинается с получения изображения глаза. Для считывания пользователю достаточно посмотреть на специальное отверстие с расстояния примерно 1 м. Далее на изображении выделяются границы зрачка и радужки, исключаются зоны, прикрытые веком, устраняются блики, определяется фокус для обработки изображения. Затем изображение ириса обрабатывается и кодируется. Поиск в базе данных осуществляется в реальном времени, поэтому скорость идентификации достаточно высока (при 10 тыс. зарегистрированных пользователей она составляет 2 сек). Непосредственно в устройстве может храниться информация о 1500 пользователей. При хранении данных на компьютере число пользователей не ограничено. Для работы в режиме аутентификации возможно подключение считывателей.

    Очки и контактные линзы не являются помехой работе системы. Реакция ириса на свет и естественное колебание зрачка делают невозможным обмануть систему при помощи подстановки фотографии.

    Основные характеристики системы приведены в табл.5.2.

    Таблица 5.2. Основные характеристики системы аутентификации по рисунку ириса глаза

    Расположение кровеносных сосудов сетчатки глаза. Ряд биометрических систем проводит автоматическую аутентификацию человека на основании уникальной картины расположения кровеносных сосудов сетчатки глаза (глазного дна). Исследованиями подтверждена уникальность рисунка кровеносных сосудов сетчатки глаза.

    При работе подобных систем пользователи должны смотреть в видоискатель прибора. Участок сетчатки сканируется неполяризованным светом низкой интенсивности, испускаемым ИК - диодами. Различная интенсивность отраженного света отображает расположение кровеносных сосудов.

    Продукт Icam 2001 компании EyeDentify относится к разряду рассматриваемых продуктов. Основные характеристики этой системы приведены в табл.5.3.

    Таблица 5.3. Основные характеристики системы аутентификации на основании уникальной картины расположения кровеносных сосудов сетчатки глаза

    Системы аутентификации на основе анализа особенностей глаза обладают очень высокой точностью. В частности, система фирмы IriScan считается самой точной биометрической системой в настоящее время. Недостатки подобных систем - высокая цена и неудобство использования. Процесс получения изображения глаза неприятен пользователям – многие стараются избежать аутентификации, защищая свои глаза.

    Область применения технологий аутентификации по особенностям глаза – объекты высокой степени секретности.

    Папиллярные узоры. Кожа человека состоит из двух слоев. Наружный слой называется эпидермисом, а второй, более глубокий, - дермой. Поверхность дермы, прилегающая к эпидермису, образует многочисленные выступы - так называемые дермальные сосочки. На ладонных поверхностях кистей, в частности пальцев, дермальные сосочки складываются в ряды. Поэтому эпидермис, повторяющий строение внешнего слоя дермы, на этих участках тела образует небольшие складки, отображающие и повторяющие ход рядов дермальных сосочков. Эти складки называются папиллярными линиями и отделяются друг от друга неглубокими бороздками. Папиллярные линии, особенно на поверхностях пальцев кисти, образуют различные узоры, называемые папиллярными узорами.

    Рисунок папиллярного узора на протяжении всей жизни человека остается неизменным, размер узора окончательно фиксируется к 18 – 20 годам. Папиллярный узор каждого пальца любого человека индивидуален и присущ только этому пальцу. После любых повреждений эпидермиса, не затрагивающих сосочков дермы, папиллярный узор в процессе заживления восстанавливается в прежнем виде. Если повреждены сосочки дермы, то образуется рубец, в определенной мере деформирующий в этом месте узор, но не изменяющий его первоначального общего рисунка и деталей строения в других местах.

    Для ввода образа отпечатка пальца используется несколько типов датчиков. Существуют датчики, измеряющие электроемкость выступов и впадин на коже пальца. Действие оптических датчиков основано на том факте, что зоны контакта выступающих папиллярных линий имеют более низкий коэффициент отражения света. Ультразвуковые датчики позволяют минимизировать влияние на результат распознавания грязи и пыли. Перспективна технология получения, обработки и хранения голограмм отпечатков.

    Характеристики наиболее популярных систем аутентификации по отпечаткам пальцев приведены в табл. 5.4.

    Таблица 5.4. Основные характеристики системы аутентификации по отпечаткам пальцев

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл

    Puppy Logon System

    Ultra-Scan 500 series

    Identicator DFR-90

    ЛОМО Интэк

    Академмедфонд

    В некоторых системах предусмотрена корректировка изображения в соответствии с состоянием кожи пальца – возможны настройки контрастности и яркости и регулировка уровня белого.

    Папиллярные узоры ладоней имеют меньше уникальных черт, чем узоры пальцев. Однако несколько продуктов, использующих такой принцип идентификации, находятся в стадии разработки или уже выходят на рынок. Все они разрабатываются для объектов с невысокими требованиями к уровню безопасности.

    Достоинства систем идентификации по папиллярным узорам - небольшие размеры устройств, удобство (можно встраивать сканеры даже в клавиши), невысокая (и постоянно снижающаяся) стоимость систем, высокая точность. К недостаткам технологии следует отнести возможность влияния на результат следов предыдущего отпечатка, порезов, грязи. В отечественных источниках указывают на психологическую проблему при применении дактилоскопии – у большинства людей снятие отпечатков пальцев устойчиво ассоциируется с криминалистикой.

    Области применения технологии – управление доступом в режимные помещения, к источникам информации (в т. ч. к компьютерам и вычислительным сетям), юридическое подтверждение права на использование различных документов и пластиковых карт.

    Форма кисти руки . В некоторых биометрических системах при аутентификации человека анализируется форма кисти руки, пальцев. Ведутся исследования в области автоматического измерения геометрических характеристик руки целиком.

    Несмотря на изменение формы кисти как с течением жизни человека, так и за относительно короткие сроки, практически постоянными остаются отношения размеров, форма пальцев, расположение суставов. В современных системах распознавания по форме руки применяется компенсация – образец корректируется при каждой успешной аутентификации. Принцип аутентификации по кисти руки человека поясняет рис. 5.5, а некоторые характеристики наиболее распространенных систем приведены в табл. 5.5.

    Рис. 5.5. Аутентификация по форме кисти руки

    Система Digi-2 фирмы BioMet Partners, Inc. идентифицирует человека по форме и трехмерным характеристикам двух пальцев (указательного и среднего), расположенных в форме латинской буквы V.

    Устройство ID3D HandKey фирмы Recognition Systems, Inc. анализирует ширину ладони и пальцев в нескольких местах, длину, ширину и толщину пальцев. Рука освещается инфракрасными лучами, а установленная сверху видеокамера регистрирует ее вид. В поле зрения камеры оказываются также боковое зеркало, дающее информацию о толщине ладони. В случае, когда сканирование полной кисти невозможно (например, отсутствует палец), устройство может работать с частью кисти. Ошибка первого рода составляет для устройства 0,1%, а на испытаниях, проведенных Сандийской Национальной лабораторией, вероятность трехкратного отказа зарегистрированному пользователю составила 0,03%. Возможное количество пользователей для автономного устройства – 20736, при хранении базы на компьютере число пользователей не ограничено.

    Существует отечественный аналог этого устройства - "ГЕОР".

    Таблица 5.5. Основные характеристики систем аутентификации по кисти руки

    Системы аутентификации по форме руки просты и удобны в эксплуатации. К недостаткам следует отнести громоздкость считывателей и меньшую, чем, например, у сканеров отпечатков пальцев, точность. Области применения – аутентификация посетителей в офисах, производственных помещениях, т. е. в местах, где из-за грязи затруднено применение сканеров отпечатков пальцев.

    Особенности лица. Наиболее распространенный метод аутентификации лиц основан на так называемых картах линий одинаковой интенсивности. Эти карты состоят из линий, соединяющих элементы изображения с равным уровнем яркости (интенсивности отраженного света). Аутентификация человека выполняется путем сравнения формы линий одинаковой интенсивности. Метод имеет ряд достоинств: легко реализуется программными и аппаратными средствами, позволяет отражать в описании трехмерную структуру лица, обеспечивает высокую точность распознавания личности, даже если человек в очках или с бородой.

    Применяется метод аутентификации человеческого лица по профилю, извлеченному из трехмерных данных изображения лица. Точность распознавания в данном методе слабо зависит от расстояния между наблюдаемым объектом (лицом) и камерой, а также от угла поворота головы.

    В табл. 5.6 приведены некоторые характеристики наиболее распространенных систем аутентификации по лицу.

    Таблица 5.6. Основные характеристики систем аутентификации по лицу

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл.

    Порядка 100-300 долл., включая стоимость видеооборудования

    Программа TrueFace Logon компании Miros Software сравнивает изображение с видеокамеры с эталонным, записанном, например, на смарт-карте. Слабая освещенность или цвет кожи программе не помеха. Алгоритм приспосабливается к изменениям прически, наличию или отсутствию очков, выражению лица и т. д. Программа разрабатывалась для аутентификации пользователей в корпоративных вычислительных сетях.

    Программа FaceIt PC для ОС Windows 95 корпорации Visionics Corp. сканирует изображение лица в режиме реального времени, что увеличивает стоимость оборудования (требуется плата захвата видеоизображения и предъявляются повышенные требования к производительности компьютера). Программа способна анализировать движущиеся лица, может выделять лицо в группе людей. Утверждается, что предусмотрена защита от обмана системы посредством предъявления фотографии. Время идентификации в режиме «движущегося изображения» составляет 0,1-0,2 сек, а в режиме «статического изображения» - 3 сек.

    Системы аутентификации, анализирующие особенности лица , отвечают практически всем требованиям, предъявляемым к биометрическим системам. Такие БС просты и удобны в использовании, имеют приемлемую скорость работы, хорошо воспринимаются пользователями, дешевы. Недостатки – возможность ввести систему в заблуждение, сильная зависимость точности распознавания от освещенности.

    Области применения - криминалистика, сфера компьютерной безопасности.

    Термографическая карта лица. Метод лицевой термографии базируется на результатах исследований, показавших, что вены и артерии лица каждого человека создают уникальную температурную карту. Специальная инфракрасная камера сканирует фиксированные зоны лица. Результат сканирования – термограмма – является уникальной характеристикой человека. Даже у однояйцовых близнецов термографическая картина различается. На точность системы не влияет ни высокая температура тела, ни охлаждение кожи лица в морозную погоду, ни естественное старение организма человека. Термограмма сохраняется после пластической операции, не зависит от освещенности (можно проводить идентификацию даже в темноте).

    Компания Technology Recognition Systems разработала аппаратно – программную систему идентификации человека по термографической карте лица. Система обладает очень высокой надежностью. Главный недостаток системы - очень высокая стоимость инфракрасных видеокамер (комплект для предприятия предлагается за 55 тыс. долл).

    Рисунок вен за запястье. Рисунок сухожилий и сосудов на запястье человека индивидуален. На этом основано устройство аутентификации, сканирующее поверхность запястья с помощью инфракрасного излучения.

    Преимущество предлагаемой технологии – невозможность случайного или умышленного повреждения рисунка сосудов запястья, в отличие, например, от рисунка отпечатков пальцев.

    В настоящий момент надежность и практичность указанной технологии не доказана.

    Форма уха. Результаты исследований, опубликованные в Европе, США и Японии, показывают, что уши людей сильно различаются по морфологическим и анатомическим признакам. Параметры ушей в целом формируются в возрасте 16–17 лет. Несмотря на то, что уши немного изменяются и далее на протяжении всей жизни человека, для практических приложений этим изменением можно пренебречь.

    В настоящее время проблема наследования особенностей ушей носит лишь теоретический характер.

    Особенности голоса. Использование технологии распознавания человека по голосу основано на анализе таких характеристик голоса, как тембр, спектр сигнала, акцент, интонация, сила звука, скорость речи, вибрации в гортани, носовые звуки и т.д.

    В зависимости от того, необходима ли идентификация (узнавание) или аутентификация (подтверждение) личности, применяются различные методы распознавания.

    Существуют методы идентификации говорящего, как зависимые от содержания речи, так и не зависимые от него. В некоторых методах точность распознавания увеличена благодаря использованию текстовой подсказки, когда проверяемый человек повторяет фразу, «произнесенную» машиной.

    Существует так называемый гибридный метод анализа речи. С помощью данного метода можно объединять акустическую и лингвистическую обработку (т. е. обработку звука и выделение слов и фраз).

    В других комбинированных методах параллельно с анализом голосовых признаков обрабатываются изображения формы рта. В качестве признаков речевого сигнала используется спектр мощности сигнала, а в качестве дополнительной информации - признаки геометрической формы рта.

    Основная техническая проблема при распознавании голоса – зашумленность сигнала.

    Характеристики некоторых биометрических систем голосовой аутентификации приведены в табл 5.7.

    Таблица 5.7. Основные характеристики систем голосовой аутентификации

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл.

    Определяется стоимостью программного обеспечения и составляет в среднем 50 – 200 долл.

    «Кристалл»

    Texas Instruments

    Системы аутентификации по голосу позволяют на базе обычного телефонного оборудования и недорогих звуковых плат проводить аутентификацию удаленных пользователей. Аутентификация по голосу оказалась наиболее подходящей биометрической технологией для системы платежей по кредитным картам проекта CASCADE .

    Достоинством таких систем является низкая цена оборудования (причем необходимое аппаратное обеспечение входит в стандартную комплектацию современных компьютеров). Недостатки - малая скорость работы, более низкая надежность по сравнению с большинством биометрических методов. На результатах проверки может сказываться небрежность, физическое и эмоциональное состояние человека, болезнь и т. п. (это относится ко всем биометрическим системам, основанным на анализе психологических параметров организма).

    Область применения технологии - управление удаленным доступом в закрытые программные системы.

    Особенности почерка. Методы распознавания по особенностям почерка делятся на две группы: анализ только изображения и анализ изображения вместе с анализом динамики письма.

    При анализе почерка выполняются такие этапы работы, как считывание и оцифровывание знаков, сегментация (в процессе сегментации производится сглаживание, устранение помех), подавление шумов, выделение непроизводных элементов, распознавание, идентификация символов. Сначала выделяются отдельные строки текста, затем отдельные знаки, а на последнем этапе - признаки выделенных знаков.

    При анализе почерка интерес представляют такие его особенности, как расположение точек над знаками, палочек у символов, точек поворота, положение мест отрыва пера от бумаги, точек пересечения, петель, прямолинейных участков, сегментов, длины и положения линий подъема и спуска и т. п. В качестве признаков могут использоваться такие структурные характеристики знаков, как отверстия, вогнутости контура, концевые точки.

    При анализе особенностей динамики письма сбор информации может происходить двумя способами. Во-первых, может использоваться перо со средствами восприятия силы его нажима на поверхность. Во-вторых, информация может быть получена при использовании чувствительной пластины со средствами восприятия положения точки на поверхности пластины. При появлении на поверхности написанных от руки символов регистрируются одновременно динамические усилия, воздействующие на кончик узла при письме, и положение наносимых обозначений относительно точки отсчета. Далее могут анализироваться такие динамические характеристики письма, как скорость, ускорение, порядок штрихов и т. д.

    Табл. 5.8 содержит данные о некоторых биометрических системах аутентификации человека по почерку.

    Ручка SmartPen разработана фирмой IMEC . Ручка беспроводная, в нее вмонтирован радиопередатчик с криптографической защитой. Ручкой можно расписываться на обычной бумаге.

    Ручка, разработанная фирмой IBM , имеет три пьезоэлектрических датчика: один измеряет давление вдоль оси пера, два других – ускорение. За 12,5 сек выполняется около 1000 измерений параметров.

    Таблица 5.8. Основные характеристики биометрических системах аутентификации человека по почерку

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл.

    Порядка 100-300 долл.

    «Кристалл»

    Известны биометрические системы, анализирующие до 42 статических и динамических параметров подписи.

    Системы аутентификации по почерку имеют относительно невысокую стоимость. Недостатком таких систем является то, что на результатах распознавания может сказываться физическое и эмоциональное состояние человека. Системы имеют невысокую скорость работы.

    Области применения этих БС – удостоверение подписей и подтверждение личности в банковской и компьютерной сфере.

    Динамические характеристики работы на клавиатуре. Рассматриваемая биометрическая технология основана на уникальности динамических характеристик («клавиатурного почерка») каждого человека.

    В системах аутентификации по динамическим характеристикам измеряются промежутки времени между нажатиями клавиш, длительности их удержания и взаимного перекрытия.

    Приближенная оценка вероятностей ошибок первого и второго рода для данной биометрической технологии составляет соответственно FRR=9%, FAR=8%.

    Недостаток биометрической технологии лежит в юридической области - при использовании программного обеспечения, анализирующего клавиатурный почерк, возможен скрытый контроль над сотрудниками (наблюдение за активностью их работы на компьютере). Другой недостаток – система может быть эффективно использована только лицами, обладающими устойчивым клавиатурным почерком и имеющими достаточно высокую скорость ввода.

    Область применения – системы управления доступом к компьютерам и терминалам.

    Кражи идентификационных данных вызывают все большую обеспокоенность в обществе - по данным Федеральной комиссии по торговле США, жертвами хищения идентифицирующих сведений ежегодно становятся миллионы, а «кража личности» стала самой распространенной жалобой потребителей. В цифровую эпоху традиционных методов аутентификации - паролей и удостоверений личности - уже недостаточно для борьбы с хищением идентификационных сведений и обеспечения безопасности. «Суррогатные репрезентации» личности легко забыть где-либо, потерять, угадать, украсть или передать.

    Биометрические системы распознают людей на основе их анатомических особенностей (отпечатков пальцев, образа лица, рисунка линий ладони, радужной оболочки, голоса) или поведенческих черт (подписи, походки). Поскольку эти черты физически связаны с пользователем, биометрическое распознавание надежно в роли механизма, следящего, чтобы только те, у кого есть необходимые полномочия, могли попасть в здание, получить доступ к компьютерной системе или пересечь границу государства. Биометрические системы также обладают уникальными преимуществами - они не позволяют отречься от совершенной транзакции и дают возможность определить, когда индивидуум пользуется несколькими удостоверениями (например, паспортами) на разные имена. Таким образом, при грамотной реализации в соответствующих приложениях биометрические системы обеспечивают высокий уровень защищенности.

    Правоохранительные органы уже больше века в своих расследованиях пользуются биометрической аутентификацией по отпечаткам пальцев, а в последние десятилетия происходит быстрый рост внедрения систем биометрического распознавания в правительственных и коммерческих организациях во всем мире. На рис. 1 показаны некоторые примеры. Хотя многие из этих внедрений весьма успешны, существуют опасения по поводу незащищенности биометрических систем и потенциальных нарушений приватности из-за несанкционированной публикации хранимых биометрических данных пользователей. Как и любой другой аутентификационный механизм, биометрическую систему может обойти опытный мошенник, располагающий достаточным временем и ресурсами. Важно развеивать эти опасения, чтобы завоевать доверие общества к биометрическим технологиям.

    Принцип действия биометрической системы

    Биометрическая система на этапе регистрации записывает образец биометрической черты пользователя с помощью датчика - например, снимает лицо на камеру. Затем из биометрического образца извлекаются индивидуальные черты - например, минуции (мелкие подробности линий пальца) - с помощью программного алгоритма экстракции черт (feature extractor). Система сохраняет извлеченные черты в качестве шаблона в базе данных наряду с другими идентификаторами, такими как имя или идентификационный номер. Для аутентификации пользователь предъявляет датчику еще один биометрический образец. Черты, извлеченные из него, представляют собой запрос, который система сравнивает с шаблоном заявленной личности с помощью алгоритма сопоставления. Он возвращает рейтинг соответствия, отражающий степень схожести между шаблоном и запросом. Система принимает заявление, только если рейтинг соответствия превышает заранее заданный порог.

    Уязвимости биометрических систем

    Биометрическая система уязвима для двух видов ошибок (рис. 2). Когда система не распознает легитимного пользователя, происходит отказ в обслуживании, а когда самозванец неверно идентифицируется в качестве авторизованного пользователя, говорят о вторжении. Для таких сбоев существует масса возможных причин, их можно поделить на естественные ограничения и атаки злоумышленников.

    Естественные ограничения

    В отличие от систем аутентификации по паролю, которые требуют точного соответствия двух алфавитно-цифровых строк, биометрическая аутентификационная система полагается на степень схожести двух биометрических образцов, а поскольку индивидуальные биометрические образцы, полученные в ходе регистрации и аутентификации, редко идентичны, то, как показано на рис. 3, биометрическая система может делать ошибки аутентификации двух видов. Ложное несоответствие происходит, когда два образца от одного и того же индивидуума имеют низкую схожесть и система не может их сопоставить. Ложное соответствие происходит, когда два образца от разных индивидуумов имеют высокое подобие и система некорректно объявляет их совпадающими. Ложное несоответствие ведет к отказу в обслуживании легитимного пользователя, тогда как ложное соответствие может привести к вторжению самозванца. Поскольку ему не надо применять какие-то специальные меры для обмана системы, такое вторжение называют атакой нулевого усилия. Большая часть исследований в области биометрии за последние пятьдесят лет была сосредоточена на повышении точности аутентификации - на минимизации ложных несоответствий и соответствий.

    Атаки злоумышленников

    Биометрическая система также может дать сбой в результате злоумышленных манипуляций, которые могут проводиться через инсайдеров, например сисадминов, либо путем прямой атаки на системную инфраструктуру. Злоумышленник может обойти биометрическую систему, если вступит в сговор с инсайдерами (или принудит их), либо воспользуется их халатностью (например, невыходом из системы после завершения транзакции), либо выполнит мошеннические манипуляции с процедурами регистрации и обработки исключений, которые изначально были разработаны для помощи авторизованным пользователям. Внешние злоумышленники также могут вызвать сбой в биометрической системе посредством прямых атак на пользовательский интерфейс (датчик), модули экстракции черт или сопоставления либо на соединения между модулями или базу шаблонов.

    Примеры атак, направленных на системные модули и их межсоединения: трояны, «человек посередине» и атаки воспроизведения. Поскольку большинство видов таких атак также применимы к системам аутентификации по паролю, существует ряд контрмер наподобие криптографии, отметок времени и взаимной аутентификации, которые позволяют предотвратить или минимизировать эффект таких вторжений.

    Две серьезные уязвимости, которые заслуживают отдельного внимания в контексте биометрической аутентификации: атаки подделки на пользовательский интерфейс и утечка из базы шаблонов. Эти две атаки имеют серьезное негативное влияние на защищенность биометрической системы.

    Атака подделки состоит в предоставлении поддельной биометрической черты, не полученной от живого человека: пластилиновый палец, снимок или маска лица, реальный отрезанный палец легитимного пользователя.

    Фундаментальный принцип биометрической аутентификации состоит в том, что, хотя сами биометрические признаки не являются секретом (можно тайно получить фото лица человека или отпечаток его пальца с предмета или поверхности), система тем не менее защищена, так как признак физически привязан к живому пользователю. Успешные атаки подделки нарушают это базовое предположение, тем самым серьезно подрывая защищенность системы.

    Исследователи предложили немало методов определения живого состояния. Например, путем верификации физиологических характеристик пальцев или наблюдения за непроизвольными факторами, такими как моргание, можно удостовериться в том, что биометрическая особенность, зарегистрированная датчиком, действительно принадлежит живому человеку.

    Утечка из базы шаблонов - это ситуация, когда информация о шаблоне легитимного пользователя становится доступной злоумышленнику. При этом повышается опасность подделки, так как злоумышленнику становится проще восстановить биометрический рисунок путем простого обратного инжиниринга шаблона (рис. 4). В отличие от паролей и физических удостоверений личности, краденый шаблон нельзя просто заменить новым, так как биометрические признаки существуют в единственном экземпляре. Краденые биометрические шаблоны также можно использовать для посторонних целей - например, для тайной слежки за человеком в различных системах или для получения приватной информации о его здоровье.

    Защищенность биометрического шаблона

    Важнейший фактор минимизации рисков безопасности и нарушения приватности, связанных с биометрическими системами, - защита биометрических шаблонов, хранящихся в базе данных системы. Хотя эти риски можно до некоторой степени уменьшить за счет децентрализованного хранения шаблонов, например на смарткарте, которую носит с собой пользователь, подобные решения нецелесообразны в системах типа US-VISIT и Aadhaar, которым нужны средства дедупликации.

    Сегодня существует немало методов защиты паролей (в их числе шифрование, хэширование и генерация ключей), однако базируются они на предположении, что пароли, которые пользователь вводит на этапе регистрации и аутентификации, идентичны.

    Требования к защищенности шаблона

    Основная трудность при разработке схем защиты биометрического шаблона состоит в том, чтобы достигнуть приемлемого компромисса между тремя требованиями.

    Необратимость. Злоумышленнику должно быть затруднительно вычислительным путем восстановить биометрические черты из сохраненного шаблона либо создать физические подделки биометрического признака.

    Различимость. Схема защиты шаблона не должна ухудшать точность аутентификации биометрической системой.

    Отменяемость. Должна быть возможность из одних и тех же биометрических данных создать несколько защищенных шаблонов, которые нельзя будет связать с этими данными. Это свойство не только позволяет биометрической системе отзывать и выдавать новые биометрические шаблоны в случае компрометации базы данных, но и предотвращает перекрестное сопоставление между базами данных, за счет чего сохраняется приватность данных о пользователе.

    Методы защиты шаблонов

    Имеется два общих принципа защиты биометрических шаблонов: трансформация биометрических черт и биометрические криптосистемы.

    В случае трансформации биометрических черт (рис. 5, а ) защищенный шаблон получен за счет применения необратимой функции трансформации к оригиналу шаблона. Такая трансформация обычно основана на индивидуальных характеристиках пользователя. В процессе аутентификации система применяет ту же функцию трансформации к запросу, и сопоставление происходит уже для трансформированного образца.

    Биометрические криптосистемы (рис. 5, б ) хранят только часть информации, полученной из биометрического шаблона, - эта часть называется защищенным эскизом (secure sketch). Хотя его самого недостаточно для восстановления оригинального шаблона, он все же содержит необходимое количество данных для восстановления шаблона при наличии другого биометрического образца, похожего на полученный при регистрации.

    Защищенный эскиз обычно получают путем связывания биометрического шаблона с криптографическим ключом, однако защищенный эскиз - это не то же самое, что биометрический шаблон, зашифрованный с помощью стандартных методов. При обычной криптографии зашифрованный шаблон и ключ расшифровки - это две разные единицы, и шаблон защищен, только если защищен и ключ. В защищенном шаблоне же инкапсулируются одновременно и биометрический шаблон, и криптографический ключ. Ни ключ, ни шаблон нельзя восстановить, имея только защищенный эскиз. Когда системе предоставляют биометрический запрос, достаточно похожий на шаблон, она может восстановить и оригинальный шаблон, и криптоключ с помощью стандартных методов распознавания ошибок.

    Исследователи предложили два основных метода генерации защищенного эскиза: нечеткое обязательство (fuzzy commitment) и нечеткий сейф (fuzzy vault). Первый можно использовать для защиты биометрических шаблонов, представленных в виде двоичных строк фиксированной длины. Второй полезен для защиты шаблонов, представленных в виде наборов точек.

    За и против

    Трансформация биометрических черт и биометрические криптосистемы имеют свои «за» и «против».

    Сопоставление в схеме с трансформацией черт часто происходит напрямую, и возможна даже разработка функций трансформации, не меняющих характеристик исходного пространства признаков. Однако бывает сложно создать удачную функцию трансформации, необратимую и терпимую к неизбежному изменению биометрических черт пользователя со временем.

    Хотя для биометрических систем существуют методы генерации защищенного эскиза, основанные на принципах теории информации, трудность состоит в том, чтобы представить эти биометрические черты в стандартизованных форматах данных наподобие двоичных строк и наборов точек. Поэтому одна из актуальных тем исследований - разработка алгоритмов, преобразующих оригинальный биометрический шаблон в такие форматы без потерь значащей информации.

    Методы fuzzy commitment и fuzzy vault имеют и другие ограничения, в том числе неспособность генерировать много несвязанных шаблонов из одного и того же набора биометрических данных. Один из возможных способов преодоления этой проблемы - применение функции трансформации черт к биометрическому шаблону до того, как она будет защищена с помощью биометрической криптосистемы. Биометрические криптосистемы, которые объединяют трансформацию с генерацией защищенного эскиза, называют гибридными.

    Головоломка приватности

    Нерасторжимая связь между пользователями и их биометрическими чертами порождает обоснованные опасения по поводу возможности раскрытия персональных данных. В частности, знание информации о хранимых в базе биометрических шаблонах можно использовать для компрометации приватных сведений о пользователе. Схемы защиты шаблонов до некоторой степени могут снизить эту угрозу, однако многие сложные вопросы приватности лежат за рамками биометрических технологий. Кто владеет данными - индивидуум или провайдеры сервиса? Сообразно ли применение биометрии потребностям в безопасности в каждом конкретном случае? Например, следует ли требовать отпечаток пальца при покупке гамбургера в фастфуде или при доступе к коммерческому Web-сайту? Каков оптимальный компромисс между безопасностью приложения и приватностью? Например, следует ли разрешать правительствам, предприятиям и другим лицам пользоваться камерами наблюдения в публичных местах, чтобы тайно следить за законной деятельностью пользователей?

    На сегодня удачных практических решений для подобных вопросов нет.

    Биометрическое распознавание обеспечивает более надежную аутентификацию пользователей, чем пароли и удостоверяющие личность документы, и является единственным способом обнаружения самозванцев. Хотя биометрические системы не являются абсолютно надежными, исследователи сделали значительные шаги вперед по пути идентификации уязвимостей и разработки мер противодействия им. Новые алгоритмы для защиты биометрических шаблонов частично устраняют опасения по поводу защищенности систем и приватности данных пользователя, но понадобятся дополнительные усовершенствования, прежде чем подобные методы будут готовы к применению в реальных условиях.

    Анил Джейн ([email protected]) - профессор факультета компьютерных наук и инженерного проектирования Мичиганского университета, Картик Нандакумар ([email protected]) - научный сотрудник сингапурского Института инфокоммуникационных исследований.

    Anil K. Jain, Kathik Nandakumar, Biometric Authentication: System Security and User Privacy. IEEE Computer, November 2012, IEEE Computer Society. All rights reserved. Reprinted with permission.

    Биометрическая защита в смартфонах и ноутбуках позволяет разблокировать устройство за десятые доли секунды или быстро запустить приложение. Сканер отпечатка пальца сегодня есть во множестве смартфонов, планшетов и ноутбуков.

    Парадокс, но чем изощреннее становятся пароли, тем труднее защищать данные - обычным пользователям сложно придумывать и запоминать пароли, которые с каждым годом заставляют делать всё сложнее. А биометрическая авторизация избавляет от многих неудобств, связанных с применением сложных паролей.

    Технология идентификации по отпечатку пальца, форме лица и другим уникальным физиологическим данным человека, известна уже десятки лет, но не стоит на месте, а постоянно развивается. Сегодня биометрические технологии лучше, чем были десять лет назад, и прогресс не стоит на месте. Но хватит ли «запаса прочности» у обычной биометрии или ей на смену придут экзотические методы многофакторной аутентификации?

    Истоки биометрии


    История современных методов идентификации начинается в 1800-х годах, когда писарь Первого бюро полицейской префектуры Парижа Альфонсо Бертильон предложил метод установления тождества преступников. Бертильон разработал системный подход, измеряя несколько характеристик тела: рост, длину и объём головы, длину рук, пальцев и т.д. Кроме того, он отмечал цвет глаз, шрамы и увечья.

    Система идентификации Бертильона имела недостатки, но помогла раскрыть несколько преступлений. И позже легла в основу куда более надежной дактилоскопии.

    В 1877 году британский судья в Индии Уильям Гершель выдвинул гипотезу об уникальности папиллярного рисунка кожи человека. Фрэнсис Гальтон, двоюродный брат Чарльза Дарвина, разработал метод классификации отпечатков пальцев. Уже в 1902 году технологию идентификации человека по отпечаткам применили при расследовании уголовных преступлений.

    Впрочем, даже в Древней Месопотамии люди использовали отпечатки ладоней на глиняных табличках для идентификации.

    Технология, позволяющая нам сегодня быстро разблокировать смартфон, берет свое начало в 1960-х, когда компьютеры научились сканировать отпечаток пальца. Параллельно развивалась технология идентификации по лицу, где первый крупный прорыв произошел в 1968 год: правильно «опознать» больше тестовых образцов, чем человек.

    Первый предложенный способ сбора данных с помощью технологий - оптический. Опечаток пальца - это совокупность бугорков и впадин, которые создают определенный рисунок, уникальный для каждого человека папиллярный узор. Поэтому его достаточно просто сфотографировать и сравнить с теми, что хранятся в базе.


    Позже был придуман ёмкостный метод сканирования: узор на пальце определяют микроконденсаторы. Метод основан на заряде и разряде конденсаторов в зависимости от расстояния до кожи в каждой отдельной точке поля - если конденсатор расположен под бугорком, он посылает один вид сигнала, а если под впадинкой, то другой.

    Сигналы объединяются и сравниваются с зашифрованной информацией об отпечатке, которая хранится на устройстве.

    Существуют и другие методы сбора данных: они основаны на работе радиочастотных сканеров, термосканеров, чувствительных к давлению сканеров, ультразвуковых сканеров и так далее. Каждый способ имеет свои достоинства и недостатки, но в мобильных устройствах массово распространены полупроводниковые емкостные сканеры, простые и надёжные.

    Поиск надежного пароля


    Цифровые биометрические базы данных используются в США с 1980-х годов, но только в 1990-х удалось начать внедрять биометрию в устройства, предназначенные для обычных пользователей. Сначала биометрия не привлекла большого интереса, поскольку оставалась дорогой, неудобной и непонятной для конечного потребителя. Первый встроенный в ноутбук сканер считывал отпечаток пальца около 1 минуты .

    Постепенно стоимость внедрения биометрии снижалась, а требования к безопасности росли. Пользователи использовали одинаковые пароли для всего подряд и не меняли их годами. Производители техники смогли предложить им универсальное решение - тот же самый один пароль для всего, который не нужно менять и который невозможно выкрасть из компьютера пользователя, подобрать брутфорсом или подглядеть через плечо.

    В 1994 году Джон Даугман разработал и запатентовал первые алгоритмы компьютерной идентификации по радужной оболочке глаза. Хотя алгоритмы и технологии с тех пор значительно улучшились, именно алгоритмы Даугмана по-прежнему являются основой для всех популярных вариаций этого метода. Сегодня сканирование радужной оболочки глаза, его сетчатки, а также анализ ДНК по надежности превосходят отпечаток пальца, но требуют более сложных и дорогостоящих технических решений.

    К 2000-м годам стала развиваться и другая биометрическая технология - распознавание лица в реальном времени. Технология во многом похожа на анализ отпечатка пальца: характерные черты лица сравниваются с образцом, хранящимся в базе данных. На лице определяется расстояние между важными точками, а также собирается подробная информация о форме: например, учитывается контур ноздрей, глаз и даже текстуры кожи.

    Уязвимость отпечатка


    Как показали исследователи из Мичиганского государственного университета, первые массовые сканеры отпечатков можно обмануть с помощью обычного струйного принтера и специальной бумаги. Исследователи отсканировали рисунки кожи на нескольких пальцах и просто напечатали их в 2D токопроводящими чернилами на специальной бумаге , которую обычно применяют для печати электронных схем. Процесс очень быстрый. Это была не первая попытка найти уязвимость в биометрической защите, но ранее на создание качественного образца уходило не менее 30 минут.

    Если вы придумали и запомнили сложный пароль, то у вас никто его не «утащит» из головы. А в случае биометрии достаточно найти качественный отпечаток вашего пальца. Эксперты показали , что можно снять отпечаток при помощи мармеладного мишки, если его приложить к поверхности смартфона. Также отпечаток можно воспроизвести по фотографии или с помощью приложения, имитирующего экран разблокировки.

    Люди оставляют свои отпечатки повсюду, как если бы записывали свои пароли на всех встречающихся предметах и поверхностях. Но пароль хотя бы можно поменять, а если биометрический материал скомпрометирован, то вы не можете поменять себе глаз или палец.
    Кроме того, базы данных всё время взламывают. Это в меньшей степени касается смартфонов, хранящих информацию в зашифрованном виде. Но много биометрической информации есть у государственных структур, и это не самые надежные хранители.

    Будущее биометрической защиты


    Пароль никто не должен знать никто кроме вас. В идеальном случае вы никому его не говорите, нигде не записываете, не оставляете никаких лазеек (ответ на «секретный вопрос» - кличка вашей собаки), чтобы исключить возможность простого взлома. Конечно, при должном желании взломать можно очень многое, но уже другими способами. Например, через уязвимость в древнем протоколе SS7 перехватывают SMS и обходят двухфакторную аутентификацию - в этом плане биометрия даже надежнее. Правда, вы должны быть весьма важной персоной, чтобы кто-то потратил достаточно денег и усилий на взлом вашего смартфона или ноутбука с использованием всех доступных методов.

    Очевидная проблема биометрии - её публичность. Все знают, что у вас есть пальцы, глаза и лицо. Однако «открытые биометрические данные» - это лишь вершина айсберга. Ведутся эксперименты со всеми возможными характерными признаками, от мониторинга вашего сердечного пульса (такое решение уже тестирует MasterCard) до имплантации чипов под кожу, сканирования рисунка внутриглазных сосудов, формы мочек ушей и т.д.

    В проект Abicus от Google планируется отслеживать уникальные черты человеческой речи, что позволит в будущем устанавливать подлинность вашей личности даже во время разговора по телефону.

    Экспериментальные камеры видеонаблюдения отслеживают человека буквально по его походке - эту технологию трудно представить в качестве защиты смартфона, но она хорошо работает в единой экосистеме умного дома.

    Компания TeleSign запустила идентификатор поведения , основанный на интернет-серфинге пользователя. Приложение записывает, как пользователь перемещает мышь, в каких местах экрана чаще всего кликает. В результате программа создаёт уникальный цифровой отпечаток поведения пользователя.

    Вены в запястьях, ладонях и пальцах также могут использоваться как уникальные идентификаторы - более того, они могут дополнять существующие методы идентификации по отпечатку пальца. И это намного проще, чем использовать вместо пароля электроэнцефалограмму , которую снимают электроды на голове.

    Вероятно, будущее биометрической защиты - в простоте. Совершенствование современных методов - самый простой способ обеспечить массовый приемлемый уровень защиты. Например, можно сканировать отпечаток с 3D-проекцией всех крошечных деталей, а также учитывать рисунок сосудов.

    Технологии биометрической идентификации улучшаются так быстро, что трудно предсказать, как они будут выглядеть через несколько лет. Одно можно предположить довольно уверенно - останутся в прошлом пароли, которые тяжело было использовать, менять и запоминать.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: