Самые современные солнечные батареи. Солнечные батареи с рекордным кпд

Институт Fraunhofer по изучению систем солнечной энергии, Soitec, CEA-Leti и Берлинский центр Гельмгольца объявили, что достигли нового мирового рекорда эффективности преобразования энергии Солнца в электрическую энергию, использовав новую структуру солнечных элементов с четырьмя слоями. Как и некоторые другие многослойные фотоэлементы, эта микросхема предназначена для работы с концентратором, который концентрирует поток солнечных лучей в 297,3 раза, то есть площадь линз концентратора примерно в 300 раз больше площади фотоэлемента. КПД 44,7% относится к широкому спектру солнечного излучения: от ультрафиолета до инфракрасного. Энергия волн длиной 200-1800 нм забирается четырьмя слоями ячейки. Это важный шаг к удешевлению использования солнечной электроэнергии и приближение к важному рубежу в 50% эффективности.

Солнечные элементы, составленные из четырех слоев из соединенных прямым способом III-IV полупроводников, достигли эффективности в 44,7%.


В мае 2013 года немецко-французская команда из Fraunhofer ISE, Soitec, CEA-Leti и Helmholtz Center Berlin уже объявляла о создании солнечных элементов с эффективностью в 43,6%. На базе этого результата и благодаря дальнейшей интенсивной исследовательской работе и шагов по оптимизации и была получена эффективность 44,7%.
Эти солнечные элементы используются в фотоэлектрическом концентраторе (ФЭК), технологии, эффективность которой более чем вдвое превышает эффективность обычных фотоэлектрических станций в богатых солнечными лучами местах. Использование полупроводников III-V, которые изначально использовалась в космических технологиях, помогло реализовать высокую эффективность для преобразования солнечного света в электричество. При этом соединении солнечных элементов, ячейки, сделанные из полупроводников III-V, уложены друг на друга. Каждый слой поглощает волны различной длины из солнечного спектра.


Внешняя квантовая эффективность четырехэлементной солнечной батареи (для каждого из четырех слоев – свой цвет).



Вольтамперная характеристика для поставивших рекорд солнечных элементов.


"Мы невероятно гордимся нашей командой, которая уже в течение трех лет работает над этим солнечным элементом", – говорит Франк Димрот, заведующий отделом и руководитель проекта, отвечающий за развитие этого направления в Институте Fraunhofer. “Этот вид соединения солнечных элементов усовершенствовался на протяжении нескольких лет, в результате тщательной экспериментальной работы. Помимо улучшенных материалов и оптимизации структуры, важную роль играет и новая технология "пластинная связка". С помощью этой технологии мы имеем возможность соединить два полупроводниковых кристалла, которые нельзя вырастить один поверх другого, сохраняя при этом их высокое качество. Таким образом, мы можем создать оптимальное сочетание, чтобы достичь высокой эффективности солнечных элементов”.
"Этот мировой рекорд, увеличивший уровень эффективности более чем на 1% менее чем за 4 месяца, демонстрирует крайне высокий потенциал нового вида соединения солнечных элементов ячейки." – говорит Андре-Жак Обертон-Эрве, председатель и исполнительный директор Soitec. "Новое достижение подтверждает тенденцию к достижению более высокой эффективности, что играет ключевую роль в конкурентоспособности наших собственных систем солнечных элементов. Мы очень гордимся этим достижением, и оно демонстрирует успешность нашего сотрудничества".
"Новый рекорд укрепляет доверие к такому способу, как прямая связь полупроводников. Этот способ был разработан в рамках нашего сотрудничества с Soitec и Институтом Fraunhofer. Мы очень гордимся этим новым результатом, открывающим широкие перспективы для “солнечных” технологий, основанных на новом виде соединения элементов", – сказал генеральный директор Leti Лоран Малье.
Модули концентратора производятся Soitec (проект начинался в 2005 году под названием "Concentrix Solar" и был ответвлением похожего проекта Института Fraunhofer). Эта эффективная технология используется в электростанциях, расположенных в местах с высокой долей прямого солнечного излучения. На данный момент у Soitec есть установки в 18 странах, в том числе в Италии, Франции, Южной Африке и штате Калифорния.

Солнечные батареи – это уникальная система, позволяющая преобразовывать солнечные лучи в электрическую и тепловую энергию. Растущий спрос на гелиопродукцию, на сегодня, обуславливается ее быстрой окупаемостью и долговечностью, доступностью теплоносителя. Но, какое напряжение способны вырабатывать солнечные батареи? О том, насколько эффективны гелиосистемы, и от чего зависит коэффициент их полезного действия – читайте в статье.

Солнечные батареи с высоким КПД: виды преобразователей

КПД солнечный батарей – это величина, которая равняется отношению мощности электроэнергии к мощности падающих на панель устройства солнечных лучей. Современные солнечные батареи обладают КПД в диапазоне от 10 до 45%. Такая большая разница обуславливается различиями между материалами изготовления и конструкцией пластин батарей.

Так, пластины солнечных батарей могут быть:

  • Тонкопленочными;
  • Многопереходными.

Солнечные батареи последнего типа, на сегодня, являются наиболее дорогими, но и наиболее продуктивными. Это связано с тем, что каждый переход в пластине поглощает волны с определенной длиной. Таким образом, устройство охватывает весь спектр солнечных лучей. Максимальный КПД батарей с многопереходными панелями, полученный в лабораторных условиях, составляет 43,5%.

Энергетики с уверенностью заявляют, что через несколько лет этот показатель возрастет до 50%. КПД тонкопленочных пластин зависит, в большей степени, от материала их изготовления.

Так, тонкопленочные солнечные батареи делятся на такие виды:

  • Кремниевые;
  • Кадмиевые.

Наиболее популярными солнечными батареями, которые можно использовать в бытовых целях, считаются установки с кремниевыми пленочными пластинами. Объем таких устройств на рынке составляет 80%. Их КПД достаточно низкий – всего 10%, но они отличаются доступностью и надежностью. На несколько процентов показатель полезного действия выше у кадмиевых пластин. Пленки с частицами селенида, меди, индия и галлия имеют более высокий КПД, который равняется 15%.

От чего зависит эффективность солнечных батарей

На КПД фотоэлектрических преобразователей влияет масса факторов. Так, как было отмечено выше, количество вырабатываемой энергии зависит от структуры панели преобразователя, материала их изготовления.


Кроме того, эффективность солнечных преобразователей зависит от:

  • Силы солнечного излучения. Так, при снижении солнечной активности, мощность гелиоустановок снижается. Чтобы батареи обеспечивали потребителя энергией и в ночное время, их снабжают специальными аккумуляторами.
  • Температуры воздуха. Так, солнечные батареи с охлаждающими устройствами являются более продуктивными: нагрев панелей негативно сказывается на их способности преобразовывать энергию в ток. Так, в морозную ясную погоду КПД гелиобатарей выше, нежели в солнечную и жаркую.
  • Угла наклона устройства и падения солнечных лучей. Для обеспечения максимальной эффективности, панель солнечной батареи должна быть направлена строго под солнечное излучение. Наиболее эффективными считаются модели, уровень наклона которых можно менять относительно расположения Солнца.
  • Погодных условий. На практике отмечено, что в районах с пасмурной, дождливой погодой эффективность солнечных преобразователей значительно ниже, нежели в солнечных регионах.

Кроме того, на эффективность солнечных преобразователей влияет и уровень их чистоты. Для того, чтобы устройство могло работать продуктивно, его пластины должны потреблять как можно больше солнечного излучения. Сделать это можно лишь в том случае, если приборы чистые.

Скопление на экране снега, пыли и грязи может уменьшить КПД устройства на 7%.

Мыть экраны рекомендуется 1-4 раза в год в зависимости от степени загрязнений. При этом, для очистки можно использовать шланг с насадкой. Технический осмотр преобразовательных элементов следует проводить раз в 3-4 месяца.

Мощность солнечных батарей на квадратный метр

Как было замечено выше, в среднем, один квадратный метр фотоэлектрических преобразователей обеспечивает выработку 13-18% от мощности попадающих на него солнечных лучей. То есть, при самых благоприятных условиях, с квадратного метра солнечных батарей можно получить 130-180 Вт.

Мощность гелиосистем можно увеличивать, наращивая панели и увеличивая площадь фотоэлектрических преобразователей.

Получить большую мощность можно и, установив панели с более высоким КПД. Тем не менее, достаточно низкий (в сравнении, например, с индукционными преобразователями) коэффициент полезного действия доступных солнечных батарей является главной преградой на пути к их широкому использованию. Увеличение мощности и КПД гелиосистем является первостепенными задачами современной энергетики.

Самые эффективные солнечные батареи: рейтинг

Наиболее эффективные солнечные преобразователи, на сегодня, производит фирма Sharp. Трехслойные, мощные, концентрирующие солнечные панели имеют эффективность в 44,4%. Стоимость их невероятно высока, поэтому они нашли применение лишь в авиационно-космической промышленности.


Наиболее доступными и эффективными являются современные солнечные батареи от компаний:

  • Panasonic Eco Solutions;
  • First Solar;
  • MiaSole;
  • JinkoSolar;
  • Trina Solar;
  • Yingli Green;
  • ReneSola;
  • Canadian Solar.

Компания Sun Power производят самые надежные солнечные преобразователи с КПД в 21,5%. Продукция этой компании пользуется абсолютной популярностью на коммерческих и производственных объектах, уступая, разве что, устройствам от Q-Cells.

КПД солнечных батарей (видео)

Современные солнечные батареи, как экологически чистые устройства преобразования энергии с неиссякаемым теплоносителем, набирают всю большую популярность. Уже сегодня девайсы с фотоэлектрическими преобразователями используют для бытовых целей (зарядки телефонов, планшетов). Эффективность солнечных установок пока уступает альтернативным способам получения энергии. Но, повышение КПД преобразователей – это первостепенная задача современной энергетики.

Я кричу и плачу, наверное так нужно было начать видео, но многие начинают сразу думать не в ту сторону. Да про КПД солнечных панелей очень много материала. Да так много, что каждый ищет солнечную панель с КПД 30 -50% и не важно сколько они стоят. Стоп, что? Вы реально из тех людей что думают, что на сегодняшний день КПД у панелей то, что есть в открытом доступе это мало. Реально 22 -28% это разве мало?

А хотите пример того, что реально имеет низкий КПД, и речь тут пойдет про солнечные панели 1990 года выпуска с КПД около 10%, и знаете, теперь я точно могу сказать с уверенностью, что та сказка, которой все кто в этом не понимают разносят по интернету, это откровенная неправда. И чтобы такое с уверенностью сказать мне потребовалось купить 2 панели за свои деньги, установить их в работу, и около года пронаблюдать за ними при разных вариантах подключения.

Что же вердикт готов.

КПД старших солнечных панелей более раннего производства до 2010 года, ощутимо ниже КПД современных панелей, и тут даже речь идет не об удешевлении последних, а именно о технологии производства. Мы не будем затрагивать тот факт, что современные более тонкие, имеют новое поглощающее покрытие, которое более эффективное, чем у старых панелей, и меньше выгорает. Нет мы просто поговорим про КПД.

Для начала, что такое КПД — коэффициент полезного действия.

Итак, простым языком, это как эффективно солнечные панели работают в настоящее время, но не в будущем, так как чем дальше и дольше работает солнечная панель, тем КПД становится все ниже. А если вытягивать и нагружать солнечные панели коротким замыканием, спиралькой, либо лампами ИК, как некоторые это делают. КПД солнечных панелей будет таять просто в несколько раз быстрее.

Так вот, подобной информации реально нет хоть и такой черновой, тем более с таким износом солнечные панели проблемно найти в нашей стране. И что мы в итоге получаем?

Все просто, когда солнце есть, солнечные панели выдают почти всю свою мощность, да просело рабочее и холостое напряжение. Да немного просел ток, порядка на 0.5 — 1А. И можно было бы на этом закончить учитывая слова большинства блогеров, а нет, просело у нас и КПД, теперь солнечные панели меньше выдают как по напряжению, так и по току, в облачную погоду или на отражённом свете. Вот это и есть падение КПД или износ панели. Вроде и работает, а вроде и при плохой погоде нет.

Думаете все, но не тут то было, я уже привык рассказывать все или почти все, даже если в меня летят в настоящем времени тапки, а в будущем их собирают говоря, а че ты типа не знал:) Я вам поведаю еще одну проблему изношенных солнечных панелей.

А именно! Дело все в том, что из-за износа солнечной панели и сильно пострадавшего и выгоревшего абсорбирующего и светопоглощающего покрытия, кстати, это покрытие некоторые люди кто не в теме, называют рассеивающим покрытием или еще как. Но правильно абсорбирующего и светопоглощающего, его задача защитить кремниевую пластину, и структуру самого элемента, и более эффективно поглощать солнечный свет! От большей части КПД зависит от этого тонкого слоя.

Так вот, когда оно разрушается и выгорает, солнечные элементы начинают сильней греться, и мощность их падает. Эффект очень похож на полу пробитый или перегретый полупроводник, который вроде работает, но греется и его характеристики падают. Так вот, так как солнечный элемент — это тот же проводник с п-н переходом, только большего размера все правила по электроники также подходят и для солнечного элемента.

Да и самое важное, объединять старые солнечные и новые нельзя, ибо когда выдаваемая мощность на слабых упадет, а на новых еще будет идти, старые панели будут на себя тянуть часть мощности как нагрузка, тем самым вместо работы будут греть улицу!

Вот такие дела. И теперь я буду чаще про это говорить, чтобы у большинства как сказочников, так и людей, которые не в теме, отложилась более грамотная информация. А если есть реальные наблюдения, то значит и есть информация, как продлить срок жизни солнечных элементов.

Сейчас вы узнаете то, о чем никогда не расскажут продавцы солнечных панелей.

Ровно год назад, в октябре 2015 года, в качестве эксперимента я решил записаться в ряды «зеленых», спасающих нашу планету от преждевременной гибели, и приобрел солнечные панели максимальной мощностью 200 ватт и грид-инвертор рассчитанный максимум на 300 (500) ватт вырабатываемой мощности. На фотографии вы можете увидеть структуру поликристаллической 200-ваттной панели, но через пару дней после покупки стало ясно, что в одиночной конфигурации у неё слишком низкое напряжение, недостаточное для правильной работы моего грид-инвертора.

Поэтому мне пришлось её поменять на две 100-ваттных монокристаллических панели. Теоретически они должны быть немного эффективнее, по факту же они просто дороже. Это панели высокого качества, российского бренда Sunways. За две панели я заплатил 14 800 рублей.

Вторая статья расходов - грид-инвертор китайского производства. Производитель никак себя не обозначил, но устройство сделано качественно, а вскрытие показало, что внутренние компоненты рассчитаны на мощность до 500 ватт (вместо 300, написанных на корпусе). Стоит такой грид всего 5 000 рублей. Грид - это гениальное устройство. С одной стороны к нему подключается + и - от солнечных панелей, а с другой стороны он с помощью обычной электрической вилки подключается совершенно в любую электрическую розетку в вашем доме. В процессе работы грид подстраивается под частоту в сети и начинает "выкачивать" переменный ток (сконвертированный из постоянного) в вашу домашную сеть 220 вольт.

Грид работает только при наличии напряжения в сети и его нельзя рассматривать как резервный источник питания. Это его единственный минус. А колоссальным плюсом грид инвертора является то, что вам в принципе не нужны аккумуляторы. Ведь именно аккумуляторы являются самым слабым звеном в альтернативной энергетике. Если та же солнечная панель гарантированно отработает более 25 лет (то есть через 25 лет она потеряет примерно 20% своей производительности), то срок службы обыкновенного свинцового аккумулятора в аналогичных условиях составит 3-4 года. Гелевые и AGM аккумуляторы прослужат дольше, до 10 лет, но они и стоят в 5 раз дороже обычных аккумуляторов.

Поскольку у меня есть сетевое электричество, то мне никакие аккумуляторы не нужны. Если же делать систему автономной, то нужно добавить к бюджету еще 15-20 тысяч рублей на аккумулятор и контроллер к нему.

Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы.

Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить.

Что делать в России? Не ставить солнечные панели, которые могут выработать энергии больше, чем текущее дневное энергопотребление в доме. Именно по этой причине у меня всего две панели суммарной мощностью 200 ватт, которые с учетом потерь инвертора могут отдать в сеть примерно 160-170 ватт. А мой дом стабильно круглосуточно потребляет примерно 130-150 ватт в час. То есть вся выработанная солнечными панелями энергия будет гарантированно потреблена внутри дома.

Для контроля вырабатываемой и потребляемой энергии я пользуюсь Smappee. Я уже писал про него в прошлом году. У него два трансформатора тока, которые позволяют вести учет как сетевой, так и вырабатываемой солнечными панелями электроэнергии.

Начнём с теории, и перейдем к практике.

В интернете есть много калькуляторов солнечных электростанций. Из моих исходных данных согласно калькулятору следует, что среднегодовая выработка электроэнергии моих солнечных панелей составит 0,66 квтч/сутки, а суммарная выработка за год - 239,9 квтч.

Это данные для идеальных погодных условий и без учета потерь на конвертацию постоянного тока в переменный (вы же не собираетесь переделывать электроснабжение своего домохозяйства на постоянное напряжение?). В реальности полученную цифру можно смело делить на два.

Сравниваем с реальными данными по выработке за год:

2015 год - 5,84 квтч
Октябрь - 2,96 квтч (с 10 октября)
Ноябрь - 1,5 квтч
Декабрь - 1,38 квтч
2016 год - 111,7 квтч
Январь - 0,75 квтч
Февраль - 5,28 квтч
Март - 8,61 квтч
Апрель - 14 квтч
Май - 19,74 квтч
Июнь - 19,4 квтч
Июль - 17,1 квтч
Август - 17,53 квтч
Сентябрь - 7,52 квтч
Октябрь - 1,81 квтч (до 10 октября)

Всего: 117,5 квтч

Вот график выработки и потребления электроэнергии в загородном доме за последние 6 месяцев (апрель-октябрь 2016 года). Именно за апрель-август солнечными панелями была выработана львиная доля (более 70%) электрической энергии. В остальные месяцы года выработка была невозможна по большей части из-за облачности и снега. Ну и не забываем, что КПД грида по конвертации постоянного тока в переменный примерно 60-65%.

Солнечные панели установлены практически в идеальных условиях. Направление строго на юг, поблизости нет высоких домов отбрасывающих тень, угол установки относительно горизонта - ровно 45 градусов. Этот угол даст максимальную среднегодовую выработку электроэнергии. Конечно можно было купить поворотный механизм с электроприводом и функцией слежения за солнцем, но это бы увеличило бюджет всей установки практически в 2 раза, тем самым отодвинув срок её окупаемости в бесконечность.

По выработке солнечной энергии в солнечные дни у меня нет никаких вопросов. Она полностью соответствует расчетным. И даже снижение выработки зимой, когда солнце не поднимается высоко над горизонтом не было бы настолько критично, если бы не... облачность. Именно облачность является главным врагом фотовольтаики. Вот вам почасовая выработка за два дня: 5 и 6 октября 2016 года. Пятого октября светило солнце, а 6 октября небо затянули свинцовые тучи. Солнце, ау! Ты где спряталось?

Зимой есть еще одна небольшая проблема - снег. Решить её можно только одним способом, установить панели практически вертикально. Либо каждый день вручную очищать их от снега. Но снег это ерунда, главное чтобы светило солнце. Пусть даже низко над горизонтом.

Итак, подсчитаем расходы:

Грид инвертор (300-500 ватт) - 5 000 рублей
Монокристаллическая солнечная панель (Grade A - высшего качества) 2 шт по 100 ватт - 14 800 рублей
Провода для подключения солнечных панелей (сечением 6 мм2) - 700 рублей
Итого: 20 500 рублей.
За прошедший отчетный период было выработано 117,5 квтч, по текущему дневному тарифу (5,53 руб/квтч) это составит 650 рублей.
Если предположить, что стоимость сетевых тарифов не изменится (на самом деле они изменяются в большую сторону 2 раза в год), то свои вложения в альтернативную энергетику я смогу вернуть только через 32 года!

А уж если добавить аккумуляторы, то вся эта система никогда себя не окупит. Поэтому солнечная энергетика при наличии сетевого электричества может быть выгодна только в одном случае - когда у нас электроэнергия будет стоить как в Европе. Вот будет стоить 1 квтч сетевого электричества более 25 рублей, вот тогда солнечные панели будут очень выгодны.
Пока же использовать солнечные панели выгодно только там, где нет сетевого электричества, а его проведение стоит слишком дорого. Предположим, что у вас его загородный дом, расположенный в 3-5 км от ближайшей электрической линии. Причем она высоковольтная (то есть потребуется установка трансформатора), а у вас нет соседей (не с кем разделить расходы). То есть за подключение к сети вам придется заплатить условно 500 000 рублей, а после этого еще и платить по сетевым тарифам. Вот в этом случае вам будет выгоднее купить на эту сумму солнечные панели, контроллер и аккумуляторы - ведь после ввода системы в эксплуатацию вам уже больше платить не нужно будет.
А пока стоит рассматривать фотовольтаику исключительно, как хобби.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: