Передача сигналов по оптоволокну: принципы. Как передается информация по оптоволокну

В основе построения волоконно-оптических линий связи (ВОЛС) положен принцип трансляции световых волн на большие расстояния. При этом электрические сигналы (видео сигналы от видеокамер, сигналы управления видеокамерами и данные), поступают на передатчик, и далее преобразуются в световые импульсы, передавая данные с минимальными искажениями.

Большое распространение волоконно-оптические линии получили благодаря целому ряду достоинств, которые отсутствуют при трансляции сигналов по медным кабелям (коаксиальные и витая пара) или по радио.

Основные достоинства оптоволокна (ВОЛС):

  • широкая полоса пропускания
  • малое затухание сигналов
  • отсутствие электромагнитных помех
  • дальность на десятки километров
  • срок службы более 25 лет

Виды оптоволокна

При построении волоконно-оптических линий связи (ВОЛС) используют многомодовое и одномодовое оптоволокно.

Оно состоит из ядра и оболочки. Материалом ядра служит сверхчистое кварцевое стекло. Удержание светового импульса происходит вследствие того, что коэффициент преломления материала ядра (N1) больше чем у оболочки (N2). Так происходит полное отражение светового луча внутри ядра оптоволокна.

Многомодовое оптоволокно 50/125 nm и 62,5/125 nm позволяет передавать одновременно несколько сотен разрешенных световых мод, вводимых под разными углами. Все разрешенные моды имеют разные траектории распространения и, соответственно, различное время распространения. Поэтому главный недостаток - большая величина модовой дисперсии, ограничивающая полосу пропускания, - из-за которого передатчик по оптоволокну имеет малую дальность. В волоконно-оптических линиях связи (ВОЛС) осуществляется трансляция данных на расстояние не более 4-5 км.

Для уменьшения модовой дисперсии и сохранения высокой полосы пропускания, на практике применяют волоконно-оптические линии с градиентным профилем показателя преломления сердцевины кабеля. В отличие от стандартных многомодовых волокон, имеющих постоянный профиль преломления материала ядра, такое оптоволокно имеет показатель преломления N, который плавно уменьшается от центра к оболочке.

Одномодовое оптоволокно 9/125 nm сконструировано таким образом, что в ядре может распространяться только одна, основная мода. Именно поэтому такие волокна имеют наилучшие характеристики, и наиболее активно используются при строительстве ВОЛС. Основные преимущества - малое затухание 0,25 db/км, минимальная величина модовой дисперсии и широкая полоса пропускания - благодаря которым обеспечивается бесперебойная трансляция электрических сигналов.

Введение

В настоящее время телекоммуникационная индустрия претерпевает беспрецедентные изменения, связанные с переходом от голосоориентированных систем к системам передачи данных, что является следствием бурного развития Internet технологий и разнообразных сетевых приложений. Поэтому одним из основных требований, предъявляемых к транспортным сетям для передачи данных, является возможность быстрого увеличения их пропускной способности в соответствии с ростом объемов трафика.

Цифровая связь по оптическим кабелям, приобретающая всё большую актуальность, является одним из главных направлений научно-технического прогресса.

Преимущества цифровых потоков в их относительно лёгкой обрабатываемости с помощью ЭВМ, возможности повышения отношения сигнал/шум и увеличения плотности потока информации.

Преимущества оптических систем передачи перед системами передачи работающими по металлическому кабелю заключается в:

Возможности получения световодов с малым затуханием и дисперсией, а значит увеличение дальности связи;

Широкой полосе пропускания, т.е. большой информационной ёмкости;

Оптический кабель не обладает электропроводностью и индуктивностью, то есть кабели не подвергаются электромагнитным воздействием;

Пренебрежимо малых перекрестных помех;

Низкой стоимостью материла оптического кабеля, его малый диаметр и масса;

Высокой скрытности связи;

Возможности усовершенствования системы при полном сохранении совместимости с другими системами передачи.

Линейные тракты волоконно-оптических систем передачи строятся как двухволоконные однополосные одно кабельные, одноволоконные одно полосные однокабельные, одноволоконные многополосные одно кабельные (со спектральным уплотнением).

Учитывая, что доля затрат на кабельное оборудование составляет значительную часть стоимости связи, а цены на оптический кабель в настоящее время остаются достаточно высокими, возникает задача повышения эффективности использования пропускной способности оптического волокна за счёт одновременной передачи по нему большего объёма информации.

Цель работы - рассмотрение различных способов увеличения пропускной способности оптического волокна.

Принципы передачи сигналов по оптическому волокну и основные параметры оптических волокон

Принципы передачи сигналов по оптическому волокну

В основе применения оптических волоконных сетей лежит принцип распространения световых волн по оптическим световодам на большие расстояния. При этом электрические сигналы, несущие информацию, преобразуются в световые импульсы, которые с минимальными искажениями передаются по волоконно-оптическим линиям связи (ВОЛС). Большое распространение подобные системы получили благодаря целому ряду достоинств, которые есть у ВОЛС по сравнению с системами передачи, использующие медные кабели или радиолинии в качестве среды передачи. К числу преимуществ ВОЛС следует отнести широкую полосу пропускания, обусловленную высокой несущей частотой - до 10 14 Гц. Такая полоса дает возможность передавать потоки информации со скоростью несколько терабит в секунду. Важным преимуществом ВОЛС являются также такие факторы, как малое затухание сигналов, позволяющее, при использовании современных технологий, строить участки оптических систем в сто и более километров без ретрансляторов, высокая помехозащищенность, связанная с малой восприимчивостью оптического волокна к электромагнитным помехам, и многое другое.

Оптические волокна - один из основных компонентов ВОЛС. Они представляют собой комбинацию материалов, имеющих различные оптические и механические свойства.

Внешняя часть волокна изготавливается обычно из пластмасс или эпоксидных композиций, сочетающих высокую механическую прочность и большой коэффициент преломления света. Этот слой обеспечивает механическую защиту световода и его устойчивость к воздействию внешних источников оптического излучения.

Основная часть волокна состоит из сердцевины и оболочки. Материалом сердцевине служит сверхчистое кварцевое стекло, которое и является основной средой передачи оптических сигналов. Удержание светового импульса происходит вследствие того, что коэффициент преломления материала сердцевины больше, чем у оболочки. Таким образом, при оптимально подобранном соотношении коэффициентов преломления материалов происходит полное отражение светового луча внутрь сердцевины.

Для передачи свет вводится под небольшим углом в торец оптического волокна. Максимальный угол проникновения светового импульса в сердечник волокна б 0 называется угловой апертурой оптического волокна. Синус угловой апертуры называется числовой апертурой NA и рассчитывается по формуле:

Из приведенной формулы следует, что числовая апертура световода NA зависит только от показателей преломления сердцевины и оболочки - n 1 и n 2 . При этом всегда выполняется условие: n 1 >n 2 (рисунок 1).


Рисунок 1 - Распространение света в оптическом волокне. Числовая апертура световода.

Если угол падения света б больше, чем б 0 , то луч света полностью преломляется и не попадает в сердечник оптического волокна (рис.2а). Если угол б меньше, чем б 0 , то происходит отражение от границы материалов сердечника о оболочки, и световой луч распространяется внутри сердечника (рис.2б).

Рисунок 2 - Условия распространения света в оптическом волокне

Скорость распространения света в оптическом волокне зависит от коэффициента преломления сердечника волокна и определяется как:

где С - скорость света в вакууме, n - коэффициент преломления сердечника.

Типичные коэффициенты преломления материала сердечника лежат в пределах 1,45 - 1,55.

Для того, чтобы передавать свет по оптическим волноводам, необходим источник строго когерентного света. Для увеличения дальности передачи ширина спектра передатчика должна быть как можно меньше. Для этой цели особенно подходят лазеры, которые, благодаря индуцированному излучению света, позволяют поддерживать постоянную разность фаз при одинаковой длине волн. В связи с тем, что диаметр сердцевины волокна сравним с длиной волны оптического излучения, в световоде возникает явление интерференции. Это может быть док5азано тем, что свет распространяется в стекле сердцевины только под определенными углами, а именно в направлениях, в которых введенные световые волны при их наложении усиливаются. Возникает так называемая конструктивная интерференция. Разрешенные световые волны, которые могут распространяться в оптическом волокне, называются модами (или собственными волнами). В соответствии с типами распространения световых лучей, оптические волокна делятся на многомодовые, то есть использующие ряд световых волн, и одномодовые, в которых происходит распространение только одного светового луча. Для описания процессов распространения света в оптических волокнах используются несколько основных параметров.

Российский государственный педагогический

Университет им.

Реферат

по архитектуре ЭВМ

на тему:

“Волоконно – оптические сети”

Выполнила: ЮнченкоТ.

студент II курса

ф-та ИОТ, группа 2.2

Проверил:

Санкт-Петербург 2004

1. Устройство оптического кабеля

2. Классификация оптических волокон

3. Передача информации по оптоволокну

4. DWDM и трафик

5. DWDM завтра

6. Литература

Волоконно-оптические сети и технология DWDM

Устройство оптического кабеля

Основным элементом оптического кабеля (ОК) является оптический волновод - круглый стержень из оптически прозрачного диэлектрика. Оптические волноводы из-за малых размеров поперечного сечения обычно называют волоконными световодами (ВС) или оптическими волокнами (ОВ).

Известна двойственная природа света: волновая и корпускулярная. На базе изучения этих свойств разработаны квантовая (корпускулярная) и волновая (электромагнитная) теории света. Эти теории нельзя противопоставлять. Лишь в своей совокупности они позволяют объяснить известные оптические явления.

Оптическое волокно состоит из сердцевины, по которой распространяются световые волны, и оболочки. Сердцевина служит для передачи световых волн. Назначение оболочки - создание лучших условий отражения на границе “ сердцевина - оболочка “ и защита от излучения энергии в окружающее пространство.

В общем случае в ОВ могут распространяться три типа волн: направляемые, вытекающие и излучаемые. Действие и преобладание какого-либо типа волн связаны в первую очередь с углом падения волны на границу “ сердцевина - оболочка “ ОВ. При определенных углах падения лучей на торец ОВ имеет место явление полного внутреннего отражения на границе “сердцевина - оболочка “ ОВ. Оптическое излучение как бы запирается в сердцевине и распространяется только в ней.

Классификация оптических волокон

Различают одномодовый и многомодовый режимы передачи излучения по ОВ. При многомодовом режиме распространения излучения по ОВ условие полного внутреннего отражения выполняются для бесконечного множества лучей. Это возможно только для ОВ, у которых сердцевины много больше, чем длины распространяемых волн. Такие ОВ называются многомодовые.

В одномодовых ОВ в отличие от многомодовых распространяется только один луч, и, следовательно, искажение сигнала, вызванные разным временем распространения различных лучей, отсутствуют.

Все ОВ разделяются на группы по типу распространяющегося излучения, на подгруппы по типу - по типу профиля показателя преломления и на виды - по материалу сердечника и оболочки.

Различают следующие группы ОВ:

Многомодовое (М)

Одномодовое без сохранения поляризации излучения (Е)

Одномодовое с сохранением поляризации излучения (П)

Группа многомодовых ОВ подразделяются на две под группы:

С ступенчатым показателем преломления (С)

С градиентным показателем преломления (Г)

Кроме того, ОВ подразделяются на следующие виды:

Сердцевина и оболочка кварцевые

Сердцевина кварцевая, а оболочка полимерная

Сердцевина и оболочка из многокомпонентного стекла

Сердцевина и оболочка из полимерного материала

По назначению оптические кабели связи разделяются на:

Городские

Зоновые

Магистральные

В зависимости от условий прокладки различают стационарные и линейные оптические кабели. Последние, в свою очередь, разделяют на кабели, предназначенные для прокладки в канализации и коллекторах , грунте, для подвески на опорах и стойках, для подводной прокладки.

Передача информации по оптоволокну

Если сравнивать с другими способами передачи информации, то порядок величин Тбайт/с просто недостижим. Еще один плюс таких технологий - это надежность передачи. Передача по оптоволокну не имеет недостатков электрической или радиопередачи сигнала. Отсутствуют помехи, которые могут повредить сигнал, и нет необходимости лицензировать использование радиочастоты. Однако не так много людей представляют себе, как вообще происходит передача информации по оптоволокну, и тем более не знакомы с конкретными реализациями технологий. Мы рассмотрим одну из них - технологию DWDM (dense wavelength-division multiplexing).

Вначале рассмотрим, как вообще передается информация по оптоволокну. Оптоволокно - это волновод, по которому распространяются электромагнитные волны с длиной волны порядка тысячи нанометров (10-9 м). Это область инфракрасного излучения, не видимого человеческим глазом. И основная идея состоит в том, что при определенном подборе материала волокна и его диаметра возникает ситуация, когда для некоторых длин волн эта среда становится почти прозрачной и даже при попадании на границу между волокном и внешней средой большая часть энергии отражается обратно внутрь волокна. Тем самым обеспечивается прохождение излучения по волокну без особых потерь, и основная задача - принять это излучение на другом конце волокна. Конечно, за столь кратким описанием скрывается огромная и трудная работа многих людей. Не надо думать, что такой материал просто создать или что этот эффект очевиден. Наоборот, к этому нужно относиться как к большому открытию, так как сейчас это обеспечивает лучший способ передачи информации. Нужно понимать, что материал волновода - это уникальная разработка и от его свойств зависит качество передачи данных и уровень помех; изоляция волновода разработана с учетом того, чтобы выход энергии наружу был минимален.

Что же касается конкретно технологии, называемой «мультиплексинг», то это означает, что вы одновременно передаете несколько длин волн. Между собой они не взаимодействуют, а при приеме или передаче информации интерференционные эффекты (наложение одной волны на другую) несущественны, так как наиболее сильно они проявляются при кратных длинах волн. Здесь же речь идет об использовании близких частот (частота обратно пропорциональна длине волны, поэтому все равно, о чем говорить). Устройство под названием «мультиплексор» - это аппарат для кодирования или декодирования информации в формат волн и обратно. После этого короткого введения перейдем уже к конкретному описанию технологии DWDM.

Основные характеристики мультиплексоров DWDM, которые отличают их от просто WDM-мультиплексоров:
использование только одного окна прозрачности 1550 нм, в пределах области усиления EDFA нм (EDFA - система оптического усиления; EDFA - оптический повторитель, он позволяет восстанавливать оптическую мощность сигнала, теряемую при прохождении по длинной линии, без преобразований в электрический сигнал и обратно. Оптическое волокно, легированное редко-земельным элементом эрбием, обладает способностью поглощать свет одной длины волны и испускать на другой длине волны. Внешний полупроводниковый лазер посылает в волокно инфракрасный свет с длиной волны 980 или 1480 миллимикрон, возбуждая атомы эрбия. Когда в волокно поступает оптический сигнал с длиной волны от 1530 до 1620 миллимикрон, возбужденные атомы эрбия излучают свет с той же длиной волны, что и входной сигнал. Исключение преобразований световых сигналов в электрические и обратно упрощает и удешевляет усилительную аппаратуру и позволяет не вносить дополнительных искажений при преобразованиях. Усилители EDFA применяют на «дальнобойных» линиях, где трудно установить сложную промежуточную усилительную аппаратуру (например, подводный кабель). Для справки скажем, что длина волны видимого света 400-800 нм.

Кроме того, поскольку само название говорит о плотной (dense) передаче каналов, то количество каналов больше, чем в обычных WDM-схемах, и достигает нескольких десятков. Из-за этого возникает потребность создать устройства, которые способны добавлять канал или извлекать его, в отличие от обычных схем, когда происходит кодирование или декодирование всех каналов сразу. С такими устройствами, работающими с одним каналом из многих, связывается понятие пассивной маршрутизации по длинам волн. Также понятно, что работа с большим числом каналов требует большей точности устройств кодирования и декодирования сигнала и предъявляет более высокие требования к качеству линии. Отсюда очевидное повышение стоимости устройств - при одновременном снижении цены за передачу единицы информации из-за того, что теперь ее можно передавать в большем объеме.
Вот как происходит работа демультиплексора с зеркалом (схема на рис. 1а). Приходящий мультиплексный сигнал попадает на входной порт. Затем этот сигнал проходит через волновод-пластину и распределяется по множеству волноводов, представляющих собой дифракционную структуру AWG (arrayed waveguide grating). По-прежнему сигнал в каждом из волноводов остается мультиплексным, а каждый канал - представленным во всех волноводах, то есть пока что произошло лишь распараллеливание. Далее происходит отражение сигналов от зеркальной поверхности, и в итоге световые потоки вновь собираются в волноводе-пластине, где происходит их фокусировка и интерференция. Это приводит к образованию интерференционной картины с пространственно разнесенными максимумами, причем обычно расчет геометрии пластины и зеркала делают так, чтобы эти максимумы совпадали с выходными полюсами. Мультиплексирование происходит обратным путем.

Рис. 1. Схемы DWDM-мультиплексоров: а) с отражающим элементом; б) с двумя волноводами-пластинами

Другой способ построения мультиплексора базируется не на одной, а на паре волноводов-пластин (рис. 1б). Принцип действия такого устройства аналогичен предыдущему случаю, за исключением того, что здесь для фокусировки и интерференции используется дополнительная пластина.
DWDM-мультиплексоры, являясь чисто пассивными устройствами, вносят большое затухание в сигнал. Например, потери для устройства (см. рис. 1а), работающего в режиме демультиплексирования, составляют 10-12 дБ, при дальних переходных помехах менее –20 дБ и полуширине спектра сигнала 1 нм (по материалам Oki Electric Industry). Из-за больших потерь часто возникает необходимость установления оптического усилителя перед DWDM-мультиплексором и/или после него.
Самым важным параметром в технологии плотного волнового мультиплексирования, бесспорно, является расстояние между соседними каналами. Стандартизация пространственного расположения каналов нужна уже хотя бы потому, что на ее основе можно будет начинать проведение тестов на взаимную совместимость оборудования разных производителей. Сектор по стандартизации телекоммуникаций Международного союза по электросвязи ITU-T утвердил частотный план DWDM с расстоянием между соседними каналами 100 ГГц, что соответствует разнице длин волн в 0,8 нм. Еще обсуждается вопрос о передаче информации с разницей в длинах волн 0,4 нм. Казалось бы, разницу можно сделать и еще меньшей, добившись тем самым большей пропускной способности, но при этом возникают чисто технологические трудности, связанные с изготовлением лазеров, генерирующих строго монохроматический сигнал (постоянной частоты без помех), и дифракционных решеток, которые разделяют в пространстве максимумы, соответствующие различным длинам волн. При использовании разделения 100 ГГц все каналы равномерно заполняют используемый диапазон, что удобно при настройке оборудования и его переконфигурации. Выбор интервала разделения определяется необходимой пропускной способностью, типом лазера и степенью помех на линии. Однако нужно учитывать, что при работе даже в столь узком диапазоне (нм) влияние нелинейных помех на границах этой области весьма существенно. Этим объясняется тот факт, что с увеличением числа каналов необходимо увеличивать мощность лазера, но это, в свою очередь, приводит к снижению отношения «сигнал/шум». В результате использование более жесткого уплотнения пока не стандартизовано и находится в стадии разработки. Еще один очевидный минус увеличения плотности - уменьшение расстояния, на которое сигнал может быть передан без усиления или регенерации (чуть подробнее об этом будет сказано ниже).
Отметим, что упомянутая выше проблема нелинейности присуща системам усиления, основанным на кремнии. Сейчас разрабатываются более надежные фтор-цирконатные системы, обеспечивающие большую линейность (во всей области нм) коэффициента усиления. С увеличением рабочей области EDFA становится возможным мультиплексирование 40 каналов STM-64 с интервалом 100 ГГц общей емкостью 400 ГГц в расчете на волокно (рис. 2).


Рис. 2. Спектральное размещение каналов в волокне

В таблице приведены технические характеристики одной из мощных мультиплексных систем, использующих частотный план 100/50 ГГц, производства фирмы Ciena Corp.


Системный уровень

Емкость, Гбит/c

каналов по 2,5 Гбит/с)

OC-48/(STM-16)/OC-48c/STM-16c

Частотный план

Возможные конфигурации

5 пролетов по 25 дБ -(500 км) 2 пролета по 33 дБ -(240 км)

Системная частота появления ошибок (BER)

Канальные интерфейсы

Короткие/промежуточные дистанции, STM-16/G.957 I-16 & S.16.1, внутриофисные приложения

Уровень входного сигнала, дБм

от -18 до -3

Уровень выходного сигнала, дБм

Длина волны вводимого излучения, нм

Сетевое управление

Система управления

WaveWatch производства CIENA по SNMP или TMN

Стандартный интерфейс

VT100(TM), асинхронный RS-232, удаленный доступ через Telnet, ITU TMN, TL-1, SNMP

Мониторинг работоспособности каналов

Канальные битовые ошибки через B1 заголовка SDH, контроль оптической мощности в каждом канале

Удаленные интерфейсы

RS-422/X.25 (TL-1 интерфейс), IP/802.3 через 10Base-T

Оптический служебный канал

2,048 Мбит/с на длине волны 1625 нм

Характеристики по питанию

Напряжение питания, В, постоянный ток

от -48 до -58

Потребляемая мощность при 40 каналах, Вт

800 типичное, 925 (максимум) - стойка 1, 1000 типичное,1250 (максимум) - стойка 2

Остановимся подробнее на системе оптического усиления. В чем состоит проблема? Изначально сигнал генерируется лазером и отправляется в волокно. Он распространяется по волокну, претерпевая изменения. Основным изменением, с которым нужно бороться, является рассеяние сигнала (дисперсия). Оно связано с нелинейными эффектами, возникающими при прохождении волнового пакета в среде и очевидным образом объясняется сопротивлением среды. Тем самым возникает проблема передачи на большие расстояния. Большие - в смысле сотен или даже тысяч километров. Это на 12 порядков больше длины волны, поэтому не удивительно, что даже если нелинейные эффекты малы, то в сумме на таком расстоянии с ними нужно считаться. Плюс к тому нелинейность может быть в самом лазере. Есть два способа добиться уверенной передачи сигнала. Первый - это установка регенераторов, которые будут принимать сигнал, декодировать его, генерировать новый сигнал, полностью идентичный пришедшему, и отправлять его дальше. Этот метод эффективен, но такие устройства являются весьма дорогими, и увеличение их пропускной способности или добавление новых каналов, которые они должны обрабатывать, связано с трудностями по переконфигурации системы. Второй способ - это просто оптическое усиление сигнала, полностью аналогичное усилению звука в музыкальном центре. В основе такого усиления лежит технология EDFA. Сигнал не декодируется, а лишь наращивается его амплитуда. Это позволяет избавиться от потерь скорости в узлах усиления, а также снимает проблему добавления новых каналов, так как усилитель усиливает все в заданном диапазоне

На основе EDFA потери мощности в линии преодолеваются путем оптического усиления (рис. 3). В отличие от регенераторов такое «прозрачное» усиление не привязано к битовой скорости сигнала, что позволяет передавать информацию на более высоких скоростях и наращивать пропускную способность до тех пор, пока не вступают в силу другие ограничивающие факторы, такие как хроматическая дисперсия и поляризационная модовая дисперсия. Также усилители EDFA способны усиливать многоканальный WDM-сигнал, добавляя еще одно измерение в пропускную емкость.

Рис. 3. Оптические системы связи на основе: а) каскада регенерационных повторителей; б) каскада оптических усилителей EDFA

Хотя оптический сигнал, генерируемый исходным лазерным передатчиком, имеет вполне определенную поляризацию, все остальные узлы на пути следования оптического сигнала, включая оптический приемник, должны проявлять слабую зависимость своих параметров от направления поляризации. В этом смысле оптические усилители EDFA, характеризуясь слабой поляризационной зависимостью коэффициента усиления, имеют ощутимое преимущество перед полупроводниковыми усилителями. На рис. 3 приведены схемы работы обоих методов.
В отличие от регенераторов оптические усилители вносят дополнительный шум, который необходимо учитывать. Поэтому, наряду с коэффициентом усиления, одним из важных параметров EDFA является коэффициент шума. Технология EDFA более дешевая, по этой причине она чаще используется в реальной практике.

Поскольку EDFA, по крайней мере по цене, выглядит привлекательнее, давайте разберем основные характеристики этой системы. Это мощность насыщения, характеризующая выходную мощность усилителя (она может достигать и даже превосходить 4 Вт); коэффициент усиления, определяемый как отношение мощностей входного и выходного сигналов; мощность усиленного спонтанного излучения определяет уровень шума, который создает сам усилитель. Здесь уместно привести пример музыкального центра, где можно проследить аналогии по всем этим параметрам. Особенно важен третий (уровень шума), и желательно, чтобы он был как можно меньшим. Используя аналогию, вы можете попробовать включить музыкальный центр, не запуская никакого диска, но при этом повернуть ручку громкости до максимума. В большинстве случаев вы услышите некоторый шум. Этот шум создается системами усиления просто потому, что на них подается питание. Аналогично в нашем случае возникает спонтанное излучение, но поскольку усилитель рассчитан на испускание волн в определенном диапазоне, то фотоны именно этого диапазона будут с большей вероятностью испускаться в линию. Тем самым будет создаваться (в нашем случае) световой шум. Это накладывает ограничение на максимальную длину линии и количество оптических усилителей в ней. Коэффициент же усиления обычно подбирается такой, чтобы восстановить изначальный уровень сигнала. На рис. 4 приведены сравнительные спектры выходного сигнала при наличии и отсутствии сигнала на входе.

Рис. 4. Выходной спектр EDFA, снятый спектральным анализатором (ASE - спектральная плотность шума)

Еще одним параметром, который удобно использовать при характеристике усилителя, является шум-фактор - это соотношение параметров «сигнал/шум» на входе и выходе усилителя. В идеальном усилителе такой параметр должен быть равен единице.
Для усилителей EDFA существует три способа применения: предусилители, линейные усилители и усилители мощности. Первые устанавливаются непосредственно перед приемником. Это делается для увеличения отношения «сигнал/шум», что обеспечивает возможность использования более простых приемников и может снизить цену оборудования. Линейные усилители имеют своей целью простое усиление сигнала в протяженных линиях или в случае разветвления таких линий. Усилители мощности используются для усиления выходного сигнала непосредственно после лазера. Это связано с тем, что мощность лазера тоже ограничена и иногда легче просто поставить оптический усилитель, чем устанавливать более мощный лазер. На рис. 5 схематически показаны все три способа применения EDFA.

Рис. 5. Применение разных типов оптических усилителей

Помимо описанного выше прямого оптического усиления, в настоящее время готовится к выходу на рынок усиливающее устройство, использующее для этих целей эффект рамановского усиления и разработанное в лабораториях Белла (Bell Labs). Суть эффекта заключается в том, что из точки приема навстречу сигналу посылается лазерный луч определенной длины волны, который раскачивает кристаллическую решетку волновода таким образом, что она начинает излучать фотоны в широком спектре частот. Тем самым общий уровень полезного сигнала поднимается, что позволяет несколько увеличить максимальное расстояние. Сегодня это расстояние составляет 160-180 км, по сравнению с 70-80 км без рамановского усиления. Эти устройства производства Lucent Technologies появятся на рынке в начале 2001 года.

То, о чем было рассказано выше, является технологией. Теперь несколько слов о реализациях, которые уже существуют и активно используются на практике. Во-первых, отметим, что применение оптоволоконных сетей - это не только Интернет и, может быть, не столько Интернет. По оптоволоконным сетям можно передавать голос и телеканалы. Во-вторых, скажем, что существует несколько разных типов сетей. Нас интересуют магистральные сети дальней связи, а также локализованные сети, например внутри одного города (так называемые метрополитен-решения). При этом для магистральных каналов связи, где отлично работает правило «чем толще труба, тем лучше», технология DWDM является оптимальным и обоснованным решением. Другая ситуация складывается в городских сетях, в которых запросы по передаче трафика не столь велики, как у магистральных каналов. Здесь операторы используют старый добрый транспорт на основе SDH/SONET, работающий в диапазоне длин волн 1310 нм. В этом случае для решения проблемы недостаточной пропускной способности, которая, кстати, для городских сетей пока стоит не очень остро, можно использовать новую технологию SWDM, которая является своеобразным компромиссом между SDH/SONET и DWDM (подробнее о технологии SWDM читайте на нашем CD-ROM). В соответствии с этой технологией одни и те же узлы волоконно-оптического кольца поддерживают и одноканальную передачу данных на длине волны 1310 нм, и спектральное уплотнение в диапазоне 1550 нм. Экономия достигается за счет «включения» дополнительной длины волны, для чего требуется добавить модуль в соответствующее устройство.

DWDM и трафик

Одним из важных моментов при использовании технологии DWDM является передающийся трафик. Дело в том, что большинство оборудования, существующего в настоящее время, поддерживает передачу только одного типа трафика на одной длине волны. В результате нередко возникает ситуация, когда трафик не до конца заполняет оптоволокно. Таким образом по каналу с формальной пропускной способностью, эквивалентной, например, STM-16, передается менее «плотный» трафик.
В настоящее время появляется оборудование, реализующее полную загрузку длин волн. При этом одна длина волны может быть «наполнена» разнородным трафиком, скажем, TDM, ATM, IP. В качестве примера можно привести оборудование семейства Chromatis производства Lucent Technologies, которое может передавать на одной длине волны все типы трафика, поддерживаемые интерфейсами ввода/вывода. Это достигается за счет встроенных кросс-коммутатора TDM и коммутатора АТМ. Причем дополнительный коммутатор АТМ не является ценообразующим. Другими словами, дополнительная функциональность оборудования достигается практически при той же стоимости. Это позволяет прогнозировать, что будущее - за универсальными устройствами, способными передавать любой трафик с

оптимальным использованием полосы пропускания.

DWDM завтра

Плавно перейдя к тенденциям развития этой технологии, мы наверняка не откроем Америки, если скажем, что DWDM является наиболее перспективной оптической технологией передачи данных. Это можно связывать в большей мере с бурным ростом Интернет-трафика, показатели роста которого приближаются к тысячам процентов. Основными же отправными точками в развитии станут увеличение максимальной длины передачи без оптического усиления сигнала и реализация большего числа каналов (длин волн) в одном волокне. Сегодняшние системы обеспечивают передачу 40 длин волн, что соответствует 100-гигагерцевой сетке частот. На очереди к выходу на рынок устройства с 50-гигагерцевой сеткой, поддерживающие до 80 каналов, что соответствует передаче терабитных потоков по одному волокну. И уже сегодня можно услышать заявления лабораторий фирм-разработчиков, таких как Lucent Technologies или Nortel Networks, о скором создании 25-гигагерцевых систем.
Однако, несмотря на столь бурное развитие инженерной и исследовательской мысли, рыночные показатели вносят свои коррективы. Прошедший год ознаменовался серьезным падением оптического рынка, что подтверждается существенным падением курса акций Nortel Networks (29% за один день торгов) после объявления ею о трудностях со сбытом своей продукции. В аналогичной ситуации оказались и другие производители.
В то же время, если на западных рынках наблюдается некоторое насыщение, то восточные только начинают разворачиваться. Наиболее ярким примером служит рынок Китая, где десяток операторов национального масштаба наперегонки строят магистральные сети. И если «у них» вопросы построения магистральных сетей уже практически решены, то в нашей стране, как это ни печально, пока просто нет необходимости в толстых каналах для передачи собственного трафика. Тем не менее прошедшая в начале декабря выставка «Ведомственные и корпоративные сети связи» выявила огромный интерес отечественных связистов к новым технологиями , и к DWDM в том числе. И если такие монстры, как «Транстелеком» или «Ростелеком», уже имеют транспортные сети масштаба государства, то нынешние энергетики только начинают их строить. Так что, несмотря на все неурядицы, за оптикой - будущее. И немалую роль здесь сыграет DWDM.

Литература

1. http://www. *****/production. php4?&rubric97

2. Журнал КомпьютерПресс №1 2001

Способы передачи сигналов различного типа, данных и команд управления по оптоволоконным линиям связи начали активно внедряться в последнее десятилетие прошедшего века. Однако достаточно долго они не могли составить серьезной конкуренции (по крайней мере, в сегменте ТСБ) коаксиальному кабелю и витой паре. Несмотря на такие недостатки, как высокие сопротивление и емкость, что существенно ограничивает дальность передачи сигнала, коаксиальный кабель и витая пара превалировали в системах безопасности. Сегодня ситуация начинает меняться, причем рискну утверждать, что перемены эти кардинальные. Нет, в небольших системах, где видео и сигналы управления требуется передавать на небольшие расстояния, коаксиальный кабель и витая пара по-прежнему незаменимы. В крупных и особенно распределенных системах у оптоволокна альтернативы практически нет.
Дело в том, что оптоволоконное оборудование сегодня стало гораздо доступнее по цене и тенденция к его дальнейшему удешевлению достаточно устойчива.
Так что волоконная оптика в настоящее время дает возможность предложить заказчику систем безопасности не только надежное, но и экономически выгодное решение. Использование светового луча для передачи сигнала, широкая полоса пропускания позволяют передавать сигнал высокого качества на значительные расстояния без использования усилителей и повторителей.
Основными преимуществами использования волоконной оптики, как известно, являются:
– более широкая полоса пропускания (до нескольких гигагерц), чем у медного кабеля (до 20 МГц);
– невосприимчивость к электрическим помехам, отсутствие «земляных петель»;
– низкие потери при передаче сигнала, ослабление сигнала составляет около 0,2–2,5 дБ/км (для коаксиального кабеля RG59 – 30 дБ/км для сигнала 10 МГц);
– не вызывает помех в соседних «медных» или других оптоволоконных кабелях;
– большая дальность передачи;
– повышенная безопасность передачи данных;
– хорошее качество передаваемого сигнала;
– оптоволоконный кабель миниатюрен и легок.

Принцип работы оптоволоконной линии
Волоконная оптика -–технология, в которой в качестве носителя информации используется свет, и не важно, о каком типе информации идет речь: аналоговом или цифровом. Обычно используется инфракрасный свет, а средой передачи служит стекловолокно.
Оптоволоконное оборудование может использоваться для передачи аналогового или цифрового сигнала различных типов.
В простейшем варианте исполнения оптоволоконная линия связи состоит из трех компонентов:
– волоконно-оптического передатчика для преобразования входного электрического сигнала от источника (например, видеокамеры) в модулированный световой сигнал;
– оптоволоконной линии, по которой световой сигнал передается на приемник;
– волоконно-оптического приемника, преобразующего сигнал в электрический, практически идентичный сигналу источника.
Источником распространяемого по оптическим кабелям света является светодиод (LED) (или полупроводниковый лазер – LD). На другом конце кабеля принимающий детектор преобразует световые сигналы в электрические. Волоконная оптика опирается на особый эффект – преломление при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Внутренняя жила (нить) оптоволоконного кабеля имеет более высокий показатель преломления, чем оболочка. Поэтому луч света, проходя по внутренней жиле, не может выйти за ее пределы из-за эффекта полного отражения (рис. 1).Таким образом, транспортируемый сигнал идет внутри замкнутой среды, проделывая путь от источника сигнала до его приемника.
Остальные элементы кабеля лишь предохраняют хрупкое волокно от повреждений внешней средой различной агрессивности.

Давно известно, что медные линии ограничены по своим возможностям. Килогерцовый спектр телефонных каналов можно передать на десятки километров. Мегагерцовый спектр видеосигнала - на сотни метров. И это в оптимальных условиях, при отсутствии помех. А если рядом, скажем, электростанция или трамвайный парк, все становится намного, намного хуже. Конечно, есть способы, позволяющие немного побороться с законами природы, но кардинальное улучшение при современном уровне технологии возможно лишь при переходе на оптические линии связи, нечувствительные к помехам и шумам. Конечно, волоконные линии также имеют свои ограничения, но они существенно выше, чем у медных линий. И уж заведомо оптический кабель в любом случае совершенно нечувствителен к электромагнитным помехам. Более того, существуют полностью диэлектрические кабели, которые можно подвесить совместно с высоковольтной линией электропередачи.

Какие же ныне существуют устройства для передачи по волокну видеосигнала?


Во-первых, видео можно оцифровать и передавать по сетям Ethernet, которые тоже на расстояния более 100 м ныне существуют только в оптоволоконном виде. Недостатком этого способа являются существенные искажения сигнала, значительно затрудняющие последующий анализ изображения. Достоинством - совместимость и широкий выбор разнообразных устройств, предназначенных для построения компьютерных сетей.


Второй вариант - применить специализированные устройства для передачи видео по волокну. Сегодня они обеспечивают заметно более высокое качество передачи. Какими же бывают устройства для передачи видео по волокну?

Самые дешевые и давно известные используют прямую передачу НЧ-видеосигнала по оптическому волокну. В таком случае сигнал на приемном конце также подвержен затуханию, причем неравномерному по частотному спектру. Конечно, такое затухание начинает сказываться значительно позже - самый плохой волоконный кабель в сочетании с некогерентным светодиодным излучателем обеспечивает полосу пропускания в районе 200 МГц на километр. Это означает, что один НЧ видеосигнал можно передать на 10-20 км без существенных искажений в частотной области. Правда, есть еще один параметр, который необходимо знать, - просто затухание, которое для дешевых устройств на длине волны в районе 900 нм составляет около 3 дБ на километр. К сожалению, сам по себе запас (так называемый оптический бюджет) пары передатчик/приемник составляет всего лишь около 50 дБ. Поэтому уже на 10 км линии остаточное отношение сигнал/шум составит не более 20 дБ, что принято считать границей для хоть сколько-нибудь приемлемого сигнала. Наконец, уровень сигнала (затухание) при прямой передаче неизбежно будет колебаться в зависимости от погоды, натяжения соединителей, усталости (старения) волокна. У самых дешевых устройств, не имеющих даже АРУ в приемнике, это приводит к существенным колебаниям сигнала на выходе. Конечно, большинство мониторов имеет встроенные цепи АРУ, которые сами отработают по крайней мере +-6дБ, но многие устройства вроде цифровых рекордеров могут оказаться весьма капризными.

Понятно, что такие устройства, с передачей НЧ видеосигнала по определению одноканальные (передают по одному волокну только один канал видео). Стоит отметить, что даже в таком случае общая стоимость системы может оказаться ниже, чем с применением медного кабеля, - ведь волокна, особенно если один кабель содержит много волокон, существенно дешевле (и несоизмеримо компактнее) медного коаксиального кабеля.

Следующий тип устройств для передачи видео по волокну - с частотной модуляцией. Поскольку передача идет на несущей, бывают изделия многоканальные. Так как полоса передаваемого сигнала значительно шире, чем у видеосигнала (если в одно волокно уместить 4 канала, полоса обычно занимает 150 МГц), то на дешевом кабеле с дешевым излучателем допустимая дальность получается примерно 1 км (помните, выше я уже упоминал, что такой параметр, как широкополосность волокна, может составлять всего 200 МГц*км). Потому такие изделия даже для передачи одного канала нередко выполняют с узкополосными или лазерными передатчиками, предназначенными для одномодового волокна.

В чем достоинства ЧМ-передатчиков? Передача с частотной модуляцией значительно менее чувствительна к нестабильности линии передачи, так же как радио в УКВ-ЧМ диапазоне значительно чище от помех, нежели в АМ диапазонах. Тем не менее, сегодня эти изделия почти не выпускаются, они вытеснены цифровыми передатчиками.

Итак, третий тип передатчиков, наиболее распространенный в наше время, - цифровые. Обращаю внимание, это вовсе не то же самое, что всевозможные IP-камеры. В этих устройствах не осуществляется цифровое сжатие сигнала, оцифрованный сигнал передается непосредственно, невзирая на то, что он составляет около 150 Мбит/сек. на один канал.

Достоинством цифровых передатчиков является полное отсутствие помех до тех пор, пока сигнал доходит успешно. Правда, как только сигнал начинает сравниваться с шумами, на экране это выглядит как ужасный сумбур, полностью скрывающий изображение. Такова уж особенность цифровой передачи: пока сигнал больше, чем шум, передача практически идеальна. Но как только приемник начинает ошибаться в отдельных битах, оказывается, что ошибки практически равновероятно могут случиться и в младшем бите (его почти не видно), и в старшем (а это значит, что картинка будет белой вместо черной, или наоборот), или, что еще хуже, ошибки в служебных битах синхронизации приведут к тому, что биты случайно перемешаются и получится примерно то же самое, как если пытаться по телевизору принять радиостанцию «Маяк».

Своей популярностью цифровые системы обязаны быстрому удешевлению компонентов для компьютерных сетей. 100-мегабитные и гигабитные оптические сети распространены настолько широко, что компоненты для их производства стали значительно дешевле, чем теоретически более простые, но менее распространенные низкочастотные излучатели.

Кроме того, для цифровой передачи совершенно необязательно обеспечивать линейность передаточной характеристики излучателя, он работает в двоичном режиме: либо включен на полную мощность, либо полностью выключен, что также снижает требования к нему. Потому-то цифровые передатчики ныне составляют основную массу предлагаемых на рынке.

Каковы особенности их применения? Во-первых, как вы уже, наверное, заметили, цифровой сигнал сам по себе очень широкополосен. Один канал видео занимает 150 мегабит в секунду, т. е. примерно 70 МГц. Упоминавшиеся выше некогерентные излучатели на длине волны 800-900 нм даже один канал могут передать максимум на 1-2 км. Для цифровой передачи обычно используются лазеры, подобные тем, что стоят в CD-проигрывателях. Тем не менее даже лазеры с трудом могут обеспечить эффективную передачу по многомодовому волокну. Тем более если они работают на длине волны 850 нм. Многомодовое волокно не предназначено для передачи широкополосных сигналов. Многомодовое волокно не предназначено для работы с лазерными излучателями. И хотя на практике это возможно (сейчас даже выпускается многомодовое волокно, сертифицированное на работу с гигабитным Ethernet), дальность передачи обычно не превышает 1 км. Производители нередко указывают, что их устройства могут работать на 2, 5 или даже 10 км по многомодовому волокну. Как правило, это означает, что излучатели применены качественные - лазеры на 1300 нм. Однако качество работы системы в целом в таком случае будет ограничено не излучателем, а кабелем. Хуже того, поскольку производители волокна не предназначают его для такого применения - практически невозможно получить от них необходимые параметры волокна для расчета проектной дальности (тот самый параметр - мегагерцы на километр, который существенно зависит от состава излучения и определяется производителем для основных излучателей, для которых волокно предназначено). Вам может повезти, и все будет работать. А может оказаться, что даже мощный лазерный излучатель будет работать всего на 2-3 км, и то сигнал будет нарушаться при изменении погодных условий (от температуры иногда незначительно, на десятые доли децибела, повышаются потери в соединителях. Это обычно несущественно, но если вы работаете на пределе возможностей волокна - и это может оказаться последней соломинкой).

Итак, если для вас существенны дальность передачи, следует использовать одномодовые передатчики. Тем более что по цене они несущественно отличаются от многомодовых (порой они вообще не отличаются по конструкции, хотя у некоторых производителей в многомодовых применяются чуть более дешевые излучатели, забракованные при прохождении контроля на нормативы для одномодового применения). Кстати, одномодовый волоконный кабель дешевле, чем многомодовый. Это и понятно, ведь волокно диаметром 9 микрон просто-напросто содержит в себе намного меньше чистого стекла, чем волокно диаметром 50 микрон.

Почему же вообще до сих пор еще применяется многомодовое волокно? Дело в том, что его чуть легче соединять, особенно в случае ремонта. Существуют быстромонтируемые механические соединители, позволяющие обходиться без сварки, без клея, без полировки. Эти соединители относительно дороги (долларов 10), потому их не применяют при массовом монтаже, но в случае ремонта такой соединитель более чем уместен. Напомню, что все проблемы с дальностью у цифровых устройств обусловлены именно полосой передаваемых частот, а вовсе не затуханием сигнала по амплитуде, а потому несколько большие потери на механическом соединении по сравнению со сваркой несущественны.

Для одномодового волокна такие соединители также существуют, но они еще дороже, требуют значительно более аккуратного обращения и вносят еще большее затухание. Как же выбрать? Если требуется передать на километр-два, можно использовать многомодовые устройства. Если вы ожидаете частые повреждения и необходимо осуществлять ремонт не очень квалифицированным персоналом, лучше использовать многомодовое волокно, соответственно, спроектировав систему или проверив образцы волокна перед закупкой на заводе. Во всех остальных случаях одномодовые устройства обеспечат несоизмеримо более качественную работу. Для сравнения скажу, что если для многомодового волокна широкополосность составляет 200-500 МГц*км в диапазоне 850 нм и в лучшем случае 2000 МГц*км в диапазоне 1300 нм, то для одномодового волокна широкополосность, как правило, принимает значения в районе 20 000 МГц*км, т. е. типичный 4-канальный передатчик уверенно работает примерно на 50 км.

На что еще следует обратить внимание при выборе цифрового передатчика видео по волокну. Разрядность. Ее часто указывают в рекламе. Если не указана, значит, 8 бит. Если 10 или 12 бит, производитель не преминет это подчеркнуть. Насколько важна разрядность? Для цветного сигнала иногда может оказаться важна. Однако не менее (а может быть, даже более) важна и частота дискретизации, которую вы вряд ли найдете в описаниях устройств. И нередко повышение разрядности происходит именно за счет понижения частоты дискретизации. Впрочем, повторюсь, это важно лишь для цветного сигнала. Да и проверить качество передачи очень легко. Поскольку цифровой сигнал либо передается, либо нет, качество можно проверить даже на метровом куске волокна, прямо на столе. Воспользуйтесь стандартной телевизионной цветной таблицей или просто полосатой таблицей разных цветов, хорошей видеокамерой и монитором и посмотрите, насколько хуже изображение с предлагаемым передатчиком по сравнению с прямым соединением камеры с монитором. На реальном объекте качество будет такое же, как и на коротком куске волокна.

Обратите внимание на температурный диапазон работы передатчиков. Именно передатчиков, поскольку они обычно устанавливаются недалеко от видеокамер, на улице, где-то равномерно вдоль многокилометрового периметра объекта. Смотрите, чтобы вам не пришлось строить для передатчиков теплую избушку. Кстати, передатчики Ethernet по волокну, как правило, предназначены именно для теплых избушек, а редкие версии с индустриальным диапазоном температур значительно дороже обычных. Какие еще бывают особенности?

Не столь существенные для работы, но порой значительно облегчающие жизнь. Например, устройства могут монтироваться в 19” стойку, что бывает удобно в переполненном центральном пункте.

Устройства могут питаться от выносного блока питания (это популярно у импортных устройств) или непосредственно от 220 В. Смотрите, что вам удобнее. Выносные блоки питания нередко таковы, что их можно воткнуть только непосредственно в розетки, а это лишние разъемные соединения, что не повышает надежность системы.

Бывают универсальные устройства, которые легко монтируются как на стенку, так и в стойку, которые работают как по одномодовому, так и по многомодовому волокну, могут работать как от 220 вольт, так и от внешнего низковольтного питания. Но такая универсальность важна разве что дистрибуторам, чтобы не хранить на складе большой ассортимент устройств. В каждом конкретном проекте более или менее известно, что конкретно нужно, и уж менять кабель в процессе эксплуатации точно никто не будет.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: