Обучение нейронной сети. Изучаем нейронные сети: с чего начать

В данной статье собраны материалы - в основном русскоязычные - для базового изучения искусственных нейронных сетей.

Искусственная нейронная сеть, или ИНС - математическая модель, а также ее программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей - сетей нервных клеток живого организма. Наука нейронных сетей существует достаточно давно, однако именно в связи с последними достижениями научно-технического прогресса данная область начинает обретать популярность.

Книги

Начнем подборку с классического способа изучения - с помощью книг. Мы подобрали русскоязычные книги с большим количеством примеров:

  • Ф. Уоссермен, Нейрокомпьютерная техника: Теория и практика. 1992 г.
    В книге в общедоступной форме излагаются основы построения нейрокомпьютеров. Описана структура нейронных сетей и различные алгоритмы их настройки. Отдельные главы посвящены вопросам реализации нейронных сетей.
  • С. Хайкин, Нейронные сети: Полный курс. 2006 г.
    Здесь рассматриваются основные парадигмы искусственных нейронных сетей. Представленный материал содержит строгое математическое обоснование всех нейросетевых парадигм, иллюстрируется примерами, описанием компьютерных экспериментов, содержит множество практических задач, а также обширную библиографию.
  • Д. Форсайт, Компьютерное зрение. Современный подход. 2004 г.
    Компьютерное зрение – это одна из самых востребованных областей на данном этапе развития глобальных цифровых компьютерных технологий. Оно требуется на производстве, при управлении роботами, при автоматизации процессов, в медицинских и военных приложениях, при наблюдении со спутников и при работе с персональными компьютерами, в частности, поиске цифровых изображений.

Видео

Нет ничего доступнее и понятнее, чем визуальное обучение при помощи видео:

  • Чтобы понять,что такое вообще машинное обучение, посмотрите вот эти две лекции от ШАДа Яндекса.
  • Введение в основные принципы проектирования нейронных сетей - отлично подходит для продолжения знакомства с нейронными сетями.
  • Курс лекций по теме «Компьютерное зрение» от ВМК МГУ. Компьютерное зрение - теория и технология создания искусственных систем, которые производят обнаружение и классификацию объектов в изображениях и видеозаписях. Эти лекции можно отнести к введению в эту интересную и сложную науку.

Образовательные ресурсы и полезные ссылки

  • Портал искусственного интеллекта.
  • Лаборатория «Я - интеллект».
  • Нейронные сети в Matlab .
  • Нейронные сети в Python (англ.):
    • Классификация текста с помощью ;
    • Простой .
  • Нейронная сеть на .

Серия наших публикаций по теме

Ранее у нас публиковался уже курс #neuralnetwork@tproger по нейронным сетям. В этом списке публикации для вашего удобства расположены в порядке изучения.

Нейронная сеть без обратных связей - персептрон

Задачи для нейронных сетей

Большинство задач, для решения которых используются нейронные сети, могут рассматриваться как частные случаи следующих основных проблем.

· Аппроксимация - построение функции по конечному набору значений (например, прогнозирование временных рядов)

· Построение отношений на множестве объектов (например, задачи распознавания образов и звуковых сигналов).

· Распределенный поиск информации и ассоциативная память (например, задачи нахождения неявных зависимостей в больших массивах данных).

· Фильтрация (например, выявление «видимых невооруженным глазом», но сложно описываемых аналитически изменений сигналов).

· Сжатие информации (например, нейросетевые реализации алгоритмов сжатия звуков, статических и динамических изображений).

· Идентификация динамических систем и управление ими.


Многослойная нейронная сеть с несколькими выходами, изображенная на рисунке ниже представляет собой персептрон.

Схема может быть дополнена сумматором, объединяющим при необходимости выходные сигналы нейронов в один общий выход.

Количество слоев в персептроне может быть разным, в зависимости от сложности задачи. Математически доказано (теорема Колмогорова), что трех полноценных нейронных слоев достаточно, чтобы аппроксимировать любую математическую функцию (при условии возможности неограниченно наращивать количество нейронов в скрытом слое).

Персептрон функционирует в дискретном временном режиме – подали на вход статическую совокупность сигналов (входной вектор), оценили совокупное состояние выходов (выходной вектор), затем подали на вход следующий вектор и т. д. Предполагается, что сигнал в персептроне распространяется от входа к выходу мгновенно, т. е. временные задержки при передаче сигнала от нейрона к нейрону, от слоя к слою и связанные с этим динамические переходные процессы отсутствуют. Поскольку персептрон не имеет обратных связей (ни положительных, ни отрицательных), то в каждый момент времени любому входному вектору значений однозначно соответствует некий выходной вектор, который не изменится, пока неизменным остаются входы НС.

Теория персептронов является основой для многих других типов искусственных нейронных сетей, а сами персептроны являются логической исходной точкой для изучения искусственных нейронных сетей.

Обучить нейронную сеть - значит, сообщить ей, чего мы от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы "А", мы спрашиваем его: "Какая это буква?" Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: "Это буква А". Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют "обучение с учителем " .

При обучении нейронной сети мы действуем совершенно аналогично. Предположим, у нас имеется таблица – база данных, содержащая примеры (кодированный набор изображений букв). Предъявляя изображение буквы "А" на вход нейронной сети, мы рассчитываем (в идеале), что уровень сигнала будет максимальным (=1) на выходе OUT1 (А – буква №1 в алфавите из 33-х букв) и минимальным (=0).

Таким образом, таблица, называемая обучающим множеством , будет иметь вид (в качестве примера заполнена только первая строка):

Буква Вектор входа Желаемый вектор выхода
X1 X2 X12 TARGET1 TARGET2 TARGET33
А
Б
Ю
Я

Совокупность векторов для каждого примера обучающего множества (строки таблицы) называется обучающей парой .

На практике необученная нейронная сеть будет работать не так, как мы ожидаем в идеале, то есть для всех или большинства примеров векторы ошибки будут содержать существенно отличающиеся от нуля элементы.

Алгоритм обучения нейронной сети - это набор математических действий, который позволяет по вектору ошибки вычислить такие поправки для весов нейронной сети, чтобы суммарная ошибка (для контроля процесса обучения обычно используют сумму квадратов ошибок по всем выходам) уменьшилась. Применяя эти действия снова и снова, добиваются постепенного уменьшения ошибки для каждого примера (А, Б, В и т. д.) обучающего множества.

После такой циклической многократной подстройки весов нейронная сеть даст правильные (или почти правильные) ответы на все (или почти все) примеры из базы данных, т. е. величины суммарной ошибки достигнут нуля или приемлемого малого уровня для каждой обучающей пары. В таком случае говорят, что "нейронная сеть обучена", т. е. готова к применению на новых, заранее не известных , данных.

В общем виде алгоритм обучения с учителем будет выглядеть следующим образом:

1. Инициализировать синаптические веса маленькими случайными значениями.

2. Выбрать очередную обучающую пару из обучающего множества; подать входной вектор на вход сети.

3. Вычислить выход сети.

4. Вычислить разность между выходом сети и требуемым выходом (целевым вектором обучающей пары).

5. Подкорректировать веса сети для минимизации ошибки.

6. Повторять шаги с 2 по 5 для каждой пары обучающего множества до тех пор, пока ошибка на всем множестве не достигнет приемлемого уровня.

Конкретный вид математических операций, выполняемых на этапе 5, определяет разновидность алгоритма обучения. Например, для однослойных персептронов применяют простейший алгоритм, основанный на т. н. дельта-правиле , для персептронов с любым количеством слоев широко используется процедура обратного распространения ошибки , известна группа алгоритмов с интересными свойствами, названными стохастическими алгоритмами обучения и т. д. Все известные алгоритмы обучения нейронных сетей являются по сути разновидностями градиентных методов оптимизации нелинейной функции многих переменных. Основная проблема, возникающая при их практической реализации заключается в том, что никогда нельзя знать наверняка, что найденная в результате комбинация синаптических весов является действительно самой эффективной с точки зрения минимизации суммарной ошибки на всем обучающем множестве. Эта неопределенность получила название «проблемы локальных минимумов функции цели».

Под функцией цели в данном случае понимается выбранный интегральный скалярный показатель , характеризующий качество отработки нейронной сетью всех примеров обучающего множества – например, сумма среднеквадратичных отклонений OUT от TARGET для каждой обучающей пары. Чем меньше достигнутое значение функции цели, тем выше качество работы нейронной сети на заданном обучающем множестве. В идеале (на практике достижимом лишь для самых простейших задач) удается найти такой набор синаптических весов, что .

Поверхность функцией цели сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Обучаемая градиентным методом сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и алгоритм неспособен из него выбраться.

Таким образом, если в результате попытки обучить нейронная сеть требуемая точность так и не была достигнута, то перед исследователем возникают две альтернативы:

1. Предположить, что процесс попал в ловушку локального минимума и попытаться для той же самой конфигурации сети применить какую-либо другую разновидность алгоритма обучения.

2. Предположить, что найден глобальный минимум функции цели для данной конкретной конфигурации сети и попытаться усложнить сеть – увеличить количество нейронов, добавить один или несколько слоев, перейти от полносвязной к неполносвязной сети, учитывающей априорно известные зависимости в структуре обучающего множества и т. п.

В задачах распознавания образов и классификации широко применяются алгоритмы, названные обучением без учителя . В этом случае перед сетью ставится задача самостоятельно найти в предъявляемом наборе примеров группы входных векторов «похожие друг на друга», вырабатывая высокий уровень на одном из выходов (не определяя заранее на каком именно). Но и при такой постановке задачи проблема локальных минимумов также имеет место, хотя и в неявном виде, без строгого математического определения функции цели (т. к. само понятие функции цели подразумевает наличие заданного эталонного отклика сети, т. е. «учителя») – «а действительно ли нейронная сеть научилась выделять кластеры входных векторов наилучшим образом из всех возможных при данной конкретной ее конфигурации?».

Алгоритмы обучения нейронных сетей

На этапе обучения происходит вычисление синаптических коэффициентов в процессе решения нейронной сетью конкретных задач. Контролируемое обучение нейронной сети можно рассматривать как решение оптимизационной задачи. Ее целью является минимизация функций ошибок (невязок) на данном множестве примеров путем выбора значений весов W.

Известно два вида обучения: с учителем и без учителя. Обучение с учителем предполагает предъявление сети последовательности обучающих пар (X i , D i), где X i – обучающий пример, D i – эталон, который должен быть получен на выходе сети. Для каждого X i вычисляется y i , который сравнивается с D i . Разница используется для корректировки синаптической матрицы. Обучение без учителя предполагает наличие только обучающих примеров X i . Синаптическая матрица настраивается так, чтобы близким входным векторам соответствовали одинаковые результирующие векторы.

Процесс обучения можно рассматривать как дискретный процесс, описываемый конечно-разностными уравнениями. Большинство методов обучения используют идею Хэбба, смысл которой заключается в повторении заучиваемого примера. Синаптический вес увеличивается если два нейрона – источник и приемник – активизированы. Наращивание веса определяется произведением уровней возбуждения двух нейронов, что можно записать так:

где – значения веса связи от i-го нейрона к j-му на предыдущей итерации обучения и текущей;

– скорость обучения ();

– выход нейрона i, являющийся входом для j-го нейрона на 0-й итерации;

– выход нейрона jна 0-й итерации.

Процесс обучения нейронной сети рассматривается как задача минимизации некоторой функции F(W) min, где W– синаптическая матрица сети.

Для решения такой задачи могут использоваться различные методы нелинейного программирования: градиентный, квазиньютоновский случайный поиск и др.

Общим для методов обучения сети является следующее: для некоторого начального состояния синаптической матрицы определяется направление уменьшения целевой функции F(W) и находится ее минимум в этом направлении. Для полученной точки опять вычисляется направление убывания функции и осуществляется одномерная оптимизация. В общем алгоритм можно представить как

где - величина шага на этапе 0;

Направление поиска на этапе 0.

Наиболее развитым методом обучения является алгоритм обратного распространения. Каких-либо ограничений на количество слоев и топологию сети не накладывается. Единственное требование состоит в том, чтобы функция возбуждения была всюду дифференцируема. Как правило, используется сигмоидная (логистическая) функция. Алгоритм обратного распространения является методом обучения с учителем (рис. 6.5).

Рис. 6.5. Схема обучения нейронной сети с учителем

Алгоритм обратного распространения представляет собой развитие обобщенного дельта-правила и является алгоритмом градиентного спуска, минимизирующим суммарную квадратичную ошибку. Главная цель состоит в том, чтобы вычислить чувствительность ошибки сети к изменению весов.

Пусть нейронная сеть соответствует схеме на рис. 6.2. Тогда алгоритм обучения можно описать :

1. Задать синаптические матрицы W, W * .

2. Для каждой обучающей пары (X i , D i) выполнить действия:

подать на вход скрытого слоя очередной набор обучающих данных ;

вычислить выход скрытого слоя :

;

вычислить выход выходного слоя:

.

между полученными выходными величинами сети и эталонными величинами;

для нейронов скрытого слоя.

Повторять шаги 2 и 3 до тех пор, пока ошибки не станут приемлемыми.

Пример 6.3. Пусть нейронная сеть соответствует схеме на рис. 6.2. При этом n=2, m=2,k=1 (рис. 6.6). Обучающее множество =(1;2), D=3. Необходимо обучить нейронную сеть складывать цифры 1 и 2. Все нейроны возбуждаются сигмоидной функцией. Заданы синаптические матрицы для скрытого слоя на первой итерации:

и вектор для выходного слоя

Рис. 6.6. Нейросеть с одним скрытым слоем

Вычислим взвешенную сумму

Взвешенный вход для выходного слоя

В то же время желаемое значение y (1) , преобразованное функцией возбуждения

D = F(3) = 0,952.

Поэтому среднеквадратическая ошибка (СКО):

Значения фактического выхода и желаемого не совпадают, поэтому синаптические веса следует изменить. Для этого следует выяснить, каким образом повлияют эти изменения на величину ошибки. Анализ, согласно алгоритму обратного распространения, выполняют начиная с выходного слоя сети и продвигаясь к входу:

1) прежде всего выясняют, как влияют на ошибку сети изменения на выходе. Для этого достаточно определить скорость изменения ошибки при данном значении выхода. Скорость определяется с помощью производной. Дифференцирование выполняется по аргументу y (1) .

Полученная реакция скорости изменения ошибки при данном значении выхода отрицательная, что указывает на необходимость увеличения значения на выходе;

2) определить, каким образом влияет на ошибку сети каждый из
входов выходного слоя. Для этого определим скорость изменения ошибки сети при изменении средневзвешенного входа выходного слоя V * (1) :

Значение EQпоказывает, что скорость изменения ошибки в
процессе изменения средневзвешенного входа выходного нейрона существенно ниже по сравнению со скоростью реакции сети на изменение ее выхода.

Теперь, когда стало ясно, что именно мы хотим построить, мы можем переходить к вопросу "как строить такую нейронную сеть". Этот вопрос решается в два этапа: 1. Выбор типа (архитектуры) нейронной сети. 2. Подбор весов (обучение) нейронной сети. На первом этапе следует выбрать следующее: * какие нейроны мы хотим использовать (число входов, передаточные функции); * каким образом следует соединить их между собой; * что взять в качестве входов и выходов нейронной сети. Эта задача на первый взгляд кажется необозримой, но, к счастью, нам необязательно придумывать нейронную сеть "с нуля" - существует несколько десятков различных нейросетевых архитектур, причем эффективность многих из них доказана математически. Наиболее популярные и изученные архитектуры - это многослойный перцептрон, нейронная сеть с общей регрессией, нейронные сети Кохонена и другие. Про все эти архитектуры скоро можно будет прочитать в специальном разделе этого учебника.

На втором этапе нам следует "обучить" выбранную нейронную сеть, то есть подобрать такие значения ее весов, чтобы она работала нужным образом. Необученная нейронная сеть подобна ребенку - ее можно научить чему угодно. В используемых на практике нейронных сетях количество весов может составлять несколько десятков тысяч, поэтому обучение - действительно сложный процесс. Для многих архитектур разработаны специальные алгоритмы обучения, которые позволяют настроить веса нейронной сети определенным образом. Наиболее популярный из этих алгоритмов - метод обратного распространения ошибки (Error Back Propagation), используемый, например, для обучения перцептрона.

Обучение нейронных сетей

Обучить нейронную сеть - значит, сообщить ей, чего мы от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы "А", мы спрашиваем его: "Какая это буква?" Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: "Это буква А". Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют "обучение с учителем".

При обучении нейронной сети мы действуем совершенно аналогично. У нас имеется некоторая база данных, содержащая примеры (набор рукописных изображений букв). Предъявляя изображение буквы "А" на вход нейронной сети, мы получаем от нее некоторый ответ, не обязательно верный. Нам известен и верный (желаемый) ответ - в данном случае нам хотелось бы, чтобы на выходе нейронной сети с меткой "А" уровень сигнала был максимален. Обычно в качестве желаемого выхода в задаче классификации берут набор (1, 0, 0, ...), где 1 стоит на выходе с меткой "А", а 0 - на всех остальных выходах. Вычисляя разность между желаемым ответом и реальным ответом сети, мы получаем 33 числа - вектор ошибки. Алгоритм обратного распространения ошибки - это набор формул, который позволяет по вектору ошибки вычислить требуемые поправки для весов нейронной сети. Одну и ту же букву (а также различные изображения одной и той же буквы) мы можем предъявлять нейронной сети много раз. В этом смысле обучение скорее напоминает повторение упражнений в спорте - тренировку.

Оказывается, что после многократного предъявления примеров веса нейронной сети стабилизируются, причем нейронная сеть дает правильные ответы на все (или почти все) примеры из базы данных. В таком случае говорят, что "нейронная сеть выучила все примеры", "нейронная сеть обучена", или "нейронная сеть натренирована". В программных реализациях можно видеть, что в процессе обучения величина ошибки (сумма квадратов ошибок по всем выходам) постепенно уменьшается. Когда величина ошибки достигает нуля или приемлемого малого уровня, тренировку останавливают, а полученную нейронную сеть считают натренированной и готовой к применению на новых данных. Важно отметить, что вся информация, которую нейронная сеть имеет о задаче, содержится в наборе примеров. Поэтому качество обучения нейронной сети напрямую зависит от количества примеров в обучающей выборке, а также от того, насколько полно эти примеры описывают данную задачу.

Так, например, бессмысленно использовать нейронную сеть для предсказания финансового кризиса, если в обучающей выборке кризисов не представлено. Считается, что для полноценной тренировки нейронной сети требуется хотя бы несколько десятков (а лучше сотен) примеров. Повторим еще раз, что обучение нейронных сетей - сложный и наукоемкий процесс. Алгоритмы обучения нейронных сетей имеют различные параметры и настройки, для управления которыми требуется понимание их влияния.


После того, как нейронная сеть обучена, мы можем применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейронная сеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Например, мы можем нарисовать букву "А" другим почерком, а затем предложить нашей нейронной сети классифицировать новое изображение. Веса обученной нейронной сети хранят достаточно много информации о сходстве и различиях букв, поэтому можно рассчитывать на правильный ответ и для нового варианта изображения. Примеры готовых нейронных сетей

Описанные выше процессы обучения и применения нейронных сетей можно увидеть в действии прямо сейчас. Фирмой Ward Systems Group подготовлено несколько простых программ, которые написаны на основе библиотеки NeuroWindows. Каждая из программ позволяет пользователю самостоятельно задать набор примеров и обучить на этом наборе определенную нейронную сеть. Затем можно предлагать этой нейронной сети новые примеры и наблюдать ее работу.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: