Какие бывают разъемы жестких дисков.

Ассортимент жестких дисков настолько огромен, что разобраться, какой винчестер выбрать для той или иной задачи, бывает очень непросто. Поэтому я попробовал написать своего рода краткий путеводитель по миру жестких дисков, в котором расскажу о направлениях развития индустрии “винтов” и дам примеры использования тех или иных моделей.

Я не будут особенно глубоко вдаваться в историю и повествовать обо всем, что было изобретено и реализовано за более чем полувековую историю, а расскажу преимущественно о том, с чем может столкнуться современный пользователь, придя в магазин или заглянув в системный блок.

Со времени создания первого HDD (Hard Disk Drive) многое изменилось. Напомню, что за столь долгий срок неизменным остался лишь принцип работы – вращающиеся намагниченные пластины и считывающие с них информацию головки – именно это объединяет все модели.


Количество производителей винчестеров постоянно сокращается – постоянные поглощения и слияния привели к тому, что производителей осталось всего трое – Western Digital, Seagate и Toshiba, причем на первые два приходится более 90% доли рынка. С другой стороны, количество моделей, отличающихся размерами и техническими характеристиками, постоянно растет.


Seagate, Western Digital, Toshiba - все, кто сумел выжить в тяжелой конкурентной борьбе

А все потому, что область применения становится все шире, а требования все жестче. Появляются модификации особого назначения для эксплуатации в разных устройствах помимо компьютера.

Форм-фактор 3,5 и 2,5 дюйма.

Все многообразие винчестеров можно условно разбить на две большие категории, определяемые размерами (шириной) устройства в дюймах. Другими словами, существуют так называемые “большие” жесткие диски – 3,5 дюйма, и маленькие – 2,5 дюйма. Чем больше накопитель, тем больше размер каждой пластины в нем, и тем больше информации помещается на устройстве.

Максимальный объем «больших» хардов достиг 10 Тбайт, в то время как у большинства «мелких» емкость ограничилась одним терабайтом (в продаже можно найти модели и на 2 Тбайт – он они слишком дороги).


Сравнение двух- и трехдюймовых HDD.
Разница в размерах и весе видна невооруженным глазом.
Также отличаются тепловыделение, уровень шума и энергопотребление

Первая группа (3,5 дюйма) используется в обычных стационарных компьютерах. В любом десктопе стоит именно такое устройство, на котором и хранятся как операционная система, так и файлы пользователя – изображения, видео, музыка и документы.

«Малышей» же устанавливают преимущественно в ноутбуки. Благодаря своим размерам, они не занимают много места, не сильно утяжеляют портативный ПК, а, кроме того, потребляют мало энергии, продлевая время работы от аккумулятора.

Однако “мелким винчестерам” находится и дополнительное применение – они часто используются в домашних медиаплеерах, позволяя записать огромное количество видео- и аудиоматериалов, во внешних жестких дисках, подключаемых напрямую к компьютеру (DAS), а также в сетевых файловых хранилищах (NAS).


NAS - типичный пример использования винчестера.
Данное файловое хранилище подключется по сети и несет в себе 4 жестких диска

Здесь мы подходим ко второму немаловажному отличию между этими группами – энергоэффективности. Если крохотные двухдюймовые устройства при нагрузке потребляют в пределах 2-2,5 Ватт (а на холостом ходу вообще меньше Ватта), то старшие собраться более прожорливы и могут кушать около 7-10 Ватт.

Это качество позволяет мелким собратьям обходится без внешнего источника питания, они запитываются прямо от USB-порта компьютера или даже смарфона (а также планшета). Напомню, что порт USB 2.0 при напряжении 5 Вольт выдает ток в 0,5 Ампера, то есть мощность, выдаваемая портом, составляет 2,5 Ватта (или 4,5 Ватта для USB 3.0).


Пример внешнего жесткого диска.
Для подключения используется порт USB.
Внутри находится 2,5-дюймовый винчестер

Именно по этой причине «малыши» очень часто используются во внешних винчестерах – мощности USB порта достаточно, чтобы прокормить устройство. То есть, такой накопитель самодостаточное устройство – ему требуется только короткий шнур для связи в компьютером.

А вот при использовании трехюймовых накопителей внешнее питание обязательно. Поэтому они мало подходят для удобной транспортировки – мало того, что в карман не положишь, так еще надо будет внешний блок питания носить с собой, а ведь он, порой, занимает места больше чем само устройство. Этим и объясняется популярность применения ноутбучных винчестеров в качестве портативных накопителей.


Внешний HDD 3,5 дюйма.
Блок питания по размерам сопоставим с самим устройством.
Ни о какой компактности и речи быть не может

Мультимедиа плееры используют оба класса. Но при этом компактные модели содержат 2,5-дюймовые винчестеры – это не только значительно уменьшает габариты, но и снижает энергопотребление, шум и вибрацию, что немаловажно при просмотре кино или прослушивании музыки. Если нужен бесшумный медиаплеер или хранилище – то такие винчестеры самый подходящий выбор.


Медиалеер - позволяет смотреть видео и слушать музыку.
Подключается к телевизору и имеет пульт.
Но внутри тот же винчестер 3,5 дюйма

Третье важное качество – вес. “Взрослые” модели весят довольно много, поэтому их применение исключено в портативных устройствах, жестких дисках, камерах, ноутбуках и т. д., в то время как “малыши” не оттягивают карман и не слишком утяжеляют технику.

Лилипуты 1,8 дюймов.

Также существуют и крохотные модели форм-фактора 1,8 дюйма. Их емкость еще меньше, но цена достаточно высока. Поэтому применялись они только там, где требуется исключительная компактность. Например, в портативных mp4 плеерах. Правда в связи с бурным развитием flash-памяти они все менее и менее востребованы. А в настоящий момент почти вытеснены флэшем.


Крохотный винчестер 1,8 дюйма (второй сверху).
Не выдержал конкуренции и вытестнен флэшем.
Снизу HDD 3,5 дюйма, на нем - HDD 2,5 дюйма

Интерфейсы SATA и IDE

Простым языком, интерфейс – это разъемы с помощью которых происходит подключение к материнской плате компьютера или к другому устройству.

Интерфейс IDE

Довольно древнее средство подключения жестких дисков. В продаже уже не найти таких HDD – они давно сняты с производства, однако на некоторых не самых новых моделях компьютеров все еще можно встретить такие винчестеры.

Отличаются тем, что через один кабель (шлейф) подключается два устройства. Причем на самих HDD перемычками (джамперами) требовалось выставлять какое устройство будет первичным, а какое вспомогательным. Старожилы отлично помнят, сколько нервов потрачено на правильную установку джамперов.


Шлейф для подключения двух IDE винчестеров к материнской плате

Максимальная пропускная способность – 133 Мбайт/с – современные модели уже давно превысили эту отметку. Как подключить такое устройство к современным платам, не обладающим соответствующим разъемом, можно прочитать в статье Как подключить старый IDE жесткий диск к новому компьютеру

Интерфейс SATA

Современный интерфейс подключения. Каждый винчестер соединяется отдельным кабелем, что избавляет от возни с настройкой (как в IDE). Кроме того, пропускная способность интерфейса значительно выше. Существуют несколько версий SATA, отличающихся только скоростью .


Подробная информация о том, как выглядят разъемы есть в статье “Как подключить жесткий диск к компьютеру ”.

Причем, если у IDE винчестеров 2-х и 3-х дюймовые экземпляры имели разные, не совместимые друг с другом разъемы, то у SATA оба класса устройств используют идентичные штекеры.

Толщина жесткого диска

В то время как у 3,5-дюймовых жестких дисков толщина важной роли не играет, у младших собратьев она имеет важное значение. Номинально ее значение у ноутбучных винчестеров составляет 9,5 мм.

Толщина HDD определяется количеством магнитных пластин. Чем больше пластин, тем больше емкость винчестера, но тем толще получится конечное устройство.

Портативные диски обычно несут от одной до трех пластин (“Большие диски” – трех до пяти пластин). Поэтому их толщина может варьироваться от 7 мм (с одной пластиной) до 12,5 мм (с тремя пластинами).

Стандартный и самый распространенный вариант – 9,5 мм при двух пластинах. Именно они используются в большинстве ноутбуков. При покупке более толстой (и более емкой) модели можно столкнуться с невозможностью установки в лэптоп – винчестер просто не поместится в соответствующем отсеке.


Сравнение моделей с толщиной 12,5 и 9,5 мм.
У первого на одну пластину больше.
В остальном модели не отличаются

Поэтому при покупке устройства для замены в ноутбуке обязательно нужно смотреть на толщину. Более того, в ультрабуках, отличающихся компактностью, устанавливаются диски толщиной всего 7 мм.

Но индустрия не стоит на месте, и производители уже представили винчестеры толщиной всего 5 мм (с одной пластиной). Но они только появляются на рынке и достаточно дороги.


С другой стороны, в портативных внешних винчестерах нет смысла гоняться за толщиной, поэтому в них иногда ставят харды 12,5 мм. При этом емкость может доходить до полутора и даже до двух терабайт.

Скорость вращения винчестеров.

Еще один важный момент, на который нужно обратить внимание при покупке винчестера – скорость вращения шпинделя (и пластин). У «медленных» моделей она находится в диапазоне 5200-5900 об/мин (стандартно – 5400 об/мин).

Такие модели не сильно греются, не шумят, почти не обладают вибрацией, однако и производительность их относительно невысока. Основное назначение – компьютеры и устройства со слабым или отсутствующим охлаждением, а также системы, главным требованием к которым является тишина – например медиацентры и плееры.

Более скоростная группа с частотой 7200 об/мин обладает более высокой производительностью, однако греется и шумит значительно выше. Но главной проблемой при домашнем использовании таких моделей является вибрация, о которой чуть ниже. Ранее на такие винчестеры устанавливалась операционная система – высокая скорость вращения обеспечивала низкое время доступа к информации, что положительно сказывалось отзывчивости системы.

Следующая группа винчестеров – 10 000 об/мин и более – экстремальная линейка жестких дисков, обладающая крайне высокой производительностью. Тепловыделение настолько высокое, что такие диски требуют отдельного радиатора.


Но с появлением SSD необходимость в винчестерах с высокой частотой вращения в домашнем секторе практически отпала. Система ставится на твердотельник, а данные хранятся на традиционном диске. Использование быстрых дисков оправдано лишь в корпоративном сегменте, где требования к шуму и вибрации невысоки, там на них по прежнему большой спрос.

Надо заметить, что модели последней группы особенно быстро вытесняются SSD. Скорость трердотельников несоизмеримо выше, даже по сравнению с самыми быстрыми образцами винчестеров - про это можно прочитать в статье Сравнение скоростей SSD и HDD . При этом они полностью бесшумны, потребляют меньше электричества и почти не греются, а цена на них зачастую даже ниже «быстрых HDD».


Результаты теста для SSD Vertex 3 и HDD Seagate 3 Тбайт.
Производительность SSD значительно выше

Благодаря развитию технологий и росту плотности записи на пластинах скорость чтения «тихоходных моделей» перевалила за 150-160 Мбайт/с, что выше чем у самых резвых экземпляров 1- или 2-летней давности. Так что медленным их можно называть только условно.

Емкость HDD

Особенность существующего положения на рынке заключатся в том, что ввиду технологических сложностей скорость роста емкости накопителей постоянно замедляется, поэтому не стоит в скором времени ждать огромного прироста, как это было ранее.

На данный момент максимум у 3,5-дюймовых винчестеров – 10 Тбайт, но самыми оптимальными по цене за гигабайт являются пятитерабайтные модели.

У ноутбучных винчестеров все намного проще. Если отбросить экзотические модели, то оптимальный объем – 1 Тбайт, и он же является максимальным в стандартном корпусе 9,5 мм. Для большинства целей – такого диска хватит с лихвой.

Уровень шума и вибрация

Часто одним из главных требований к эксплуатации дома является комфорт. Как бы странно это ни звучало, но на первое место по важности выходит низкий уровень шума, издаваемого накопителями.

Модели с низкой частотой вращения шпинделя обычно работают намного тише своих быстрых собратьев, которые издают постоянный низкочастотный свист. Кроме того, вибрация передается на корпус компьютера (или другого устройства), поэтому при работе двух и более устройств с высокой частотой в одном корпусе вибрация многократно усиливается.

Вам наверняка приходилось слышать раздражающий низкочастотный гул, издаваемый корпусом. Виновником являются именно быстрые HDD, работающие в паре (и большем количестве). Наилучшим решением является использование экономичных низкооборотистых моделей.

Температура и стабильное питание

Современные накопители – очень сложные электронные устройства, их долговечность сильно зависит от условий эксплуатации. Во-первых, диски (прежде всего 3,5-дюймовые) необходимо правильно охлаждать. Забившийся пылью радиатор в ноутбуке или неправильная организация движения потоков воздуха в десктопе могут привести к работе при повышенных температурах, что значительно сокращает срок жизни HDD.


Дополнительное охлаждение от Zalman.
Позволяет снизить температуру на 5-7 градусов.
Очень эффективное cредство в корпусах с плохой вентиляцией

Комфортная температура для накопителя – ниже 40 градусов. Диапазон 40-45 еще терпим, хоть и нежелателен. Крайне не рекомендуется использовать диск при более высоких температурах.

Посмотреть температуру можно штатными утилитами или сторонними программами, например, HD Tune или CrystalDiskInfo (обе бесплатные).


Второй немаловажный момент – стабильное питание – более актуален для стационарных компьютеров. Старый блок питания с подсохшими элементами, не сглаживающий скачки напряжения, может являться причиной выхода из строя винчестера.

Мне много раз приходилось слышать от покупателей много нелестных отзывов о производителях HDD, например, когда “умирают” два купленных подряд диска, но причина в конечном итоге оказывалась в некачественном или старом блоке питания, после замены которого все приходило в норму.

Гибриды

Рассказ был бы неполным без упоминания о гибридах. Это такой тип HDD в котором традиционный диск дополняется накопителем на flash-памяти небольшой емкости (за счет чего цена хоть и выше, но ненамного). Флэш-диск содержит самые частоиспользуемые файлы (или блоки) жесткого диска, повышая производительность. Емкость гибрида такая же, как и у обычных HDD, и намного больше объема SSD.

Но, по моему мнению, гибриды не особенно прижились. Если нужна экономия денег – лучше вообще обойтись без SSD, а если нужна производительность, лучше купить полноценный твердотельник.

Единственно место, где использование гибридов оправдано – в ноутбуках, они имеют только один отсек для накопителя и установить два устройства сразу не выйдет.

При использовании 3,5-дюймовых винчестеров я рекомендую использовать накопители серии Green производства Western Digital, работающие почти бесшумно, а для NAS (и медиалееров), а также при совместном применении двух и более накопителей, я рекомендую остановиться на серии Red этого же производителя.


Western Digital серии Red.
Замечательный представитель бесшумных винчестеров.

Вибрация в линейке Red сведена к минимуму, благодаря чему даже при одновременной работе четырех экземпляров вибрация и раздражающий низкочастотный гул будут незаметны.

Среди ноутбучных винчестеров довольно неплохи Hitachi серии Travelstar и WD серии Scorpio Blue. Важно лишь не забывать про толщину устройств в случае замены HDD на аналогичный большей емкости.

Устройства Seagate также неплохи, но обычно они чуть дороже (для 3,5 дюймовых моделей), и уровень шума у них чуть выше.

И не забывайте про правильную эксплуатацию любых HDD, не давайте винчестеру перегреваться, иначе жизнь его будет слишком скоротечной.

В далекие пятидесятые годы прошлого века, а точнее в 1956 году, компания IBM создала пра-пра-пра-дедушку современных хранилищ информации. Весило это чудо чуть больше тонны (!) и вмещало всего 5 Мегабайт данных. Такую «коробку» можно было поднять только с помощью погрузчика.

Шло время, миниатюризация пришла на смену гигантомании. И теперь небольшие «коробки» весом в пару сотен грамм и даже меньше спокойно размещаются в ваших системных блоках, ноутбуках, планшетах и даже телефонах, а в последнее время и в часах. Считается, что если бы авиация развивалась также стремительно, как компьютеры, сегодня каждый мог бы иметь личный самолет по цене не дороже автомобиля. Но вернемся к «железу».

Когда размер имеет значение

Миниатюризация позволила создать устройства, помещающиеся в спичечном коробке и при этои обладающих фантастической вместительностью.

Среди всех размеров винчестеров можно условно выделить три группы

3,5 дюйма – самый распространенный вариант, житель практически каждого настольного ПК;
- 2,5 дюйма – собрат по информационной части, но уже для ноутбуков;
- 1–1,5 дюйма – обычно ставится на смартфоны, мп3-плееры и подобные устройства.

Но даже не смотря на размер, сегодня 1-дюймовый «малыш» способен хранить сотни треков любимой музыки и десятки фильмов.

Его величество - контроллер

Если, открыв системный блок, вы обнаружите совсем не те разъемы, которые ожидали, тому есть причина. Каждый контроллер имеет свои особенности.

Различаются винчестеры и по способу подключения, а также принципу работы на:

IDE – самый распространенный когда-то дисковый контроллер. Сейчас уже не так часто используется. Он позволял развивать скорость вращения диска до 7,5 тысяч оборотов минуту, что давало неплохую производительность.
- SATA (I, II, III) – следующее поколение после IDE. С лучшей скоростью вращения, до 10 тысяч оборотов в минуту.
- SCSI – всегда стоял несколько особняком, поскольку для обычных смертных был не доступен. Отличался скоростью чтения (до 15 тысяч оборотов), поэтому использовался и используется до сих пор там, где нужна особая производительность.
- SDD – контроллер жесткого диска, разработанный по принципу флеш-памяти. Не содержит движущихся частей, внутри все заменено на электронные компоненты. Благодаря чему предлагает высокие показатели по наработке на отказ (до 1 млн часов) и по чтению. Однако сегодня они пока еще дороги. Как альтернатива – гибридный вариант с флеш-памятью и механической частью.

Снаружи или внутри?

Можно указать еще на один признак винчестера – способ его размещения. Бывают внутренние и внешние модели.

Внутренние спокойно размещаются в системном блоке, смартфоне и их работа видна только по миганию лампочек снаружи.

Внешние винчестеры – это небольшие коробки со шнурами. Подключаются к порту USB и прекрасно работают. Если взять такую коробку и разобрать ее, то на свет появится все тот же обычный 2-5 или 3-5 дюймовый HDD или SDD.

А дальше что?

Прогресс отличается одним очень полезным свойством. Он не стоит на месте. Уже разрабатываются способы хранения информации при помощи лазеров, кристаллов, голографических изображений. Пробуются различные материалы, создаются инновационные устройства. Возможно, в скором времени привычные нам винчестеры уступят место чуду, спустившемуся к нам со страниц книг в жанре Sci-Fi.

Жесткий диск (HDD) - является одной из важнейших комплектущих деталей компьютера! И именно жесткий диск, чаще всего выходит из строя. В результате - потеря иногда, важнейшей информации. Поэтому, к выбору HDD нужно отнестись с максимальной серьезностью! В данной статье, мы разберем - какие бывают жесткие диски, как выбрать жесткий диск (HDD) для Вашего компьютера, как избежать проблем с потерей информации и с помощью каких программ можно ее восстановить.

Размер жесткого диска.

Размер жесткого диска (его ширина, подходящая под стандартные крепления в стационарных компьютерах и ноутбуках ) исчисляется в дюймах.

Обычно для домашних (стационарных) системных блоков используются жесткие диски 3,5 дюйма (3,5" ).

Для ноутбуков - 2,5 дюймовые, соответственно - 2,5" .

Тип Разъема.

Интерфейс разьема HDD бывает двух типов - IDE и SATA .

IDE - все еще попадается в старых компьютерах и различается количеством прожилок на шлейфе (40 и 80 жил, они взаимозаменяемы, отличаются скоростью пропускной способности ).

IDE - разьем


SATA - более новый, современный интерфейс. Разумеется, более высокая пропускная способность в сравнении с IDE .

SATA бывает трех видов. SATA(до 1,5 Гбит\сек ), SATA2 (до 3 Гбит\сек ) и SATA3 (до 6 Гбит\сек ) . Различаются скоростью передачи данных.

SATA , SATA 2 , SATA 3 - взаимозаменяемы. Но, прежде чем купить более дорогой жесткий диск с SATA 3 , убедитесь что Ваша материнская плата имеет поддержку SATA 3, иначе Вы получите нецелесообразный расход средств, т. к. SATA3 HDD подключенный к интерфейсу SATA на старой материнской плате, будет работать на ограниченной скорости до 1,5 Гбит\сек , не используя всех своих возможностей.

SATA - разьем

Обьем Жесткого диска.

Довольно часто пользователи компьютера путают понятия - память и обьем .:) Запомните, пожалуйста, у жесткого диска есть только кеш-память (о ней поговорим ниже...).

Обьем-же, это - вместимость! А именно - количество цифровой информации, которое способен вместить тот или иной HDD. Сейчас обьем жесткого диска исчисляется в Гигабайтах (GB) и Терабайтах (TB) .

Для справки: 1 TB = 1024 GB

1 GB = 1024 MB

Скорость вращения дисков.

Довольно частый показатель скорости работы HDD - скорость вращения дисков (об\в мин.). Разумеется, чем выше скорость вращения - тем сильнее будет шуметь жесткий диск и возрастет его энергопотребление (это влияет на срок службы). Если Вы собираетесь приобрести HDD, просто для хранения информации (дополнительный диск), в этом случае - не стоит гнаться за скоростью. Советую выбирать более скоростной жесткий диск - в случае установки на него Операционной Системы. На данный момент, 7200 об\в мин - самый оптимальный вариант.

Размер Кеш-памяти.

Кеш-память (буферная) - это промежуточная память. Она предназначена для увеличения скорости работы жесткого диска во время обращения к его данным. В "кэше" хранятся отклики на наиболее частые запросы системы и приложений. И разумеется, пропадает необходимость, считывать постоянно информацию с самого диска. это увеличивает коффициэнт полезного действия HDD и системы в целом. Размер "кэша" в современных жестких дисках обычно варьируется от 8 до 64 Мб.

Фирма-производитель.

На данный момент, основными производителями жестких дисков являются - Western Digital , Hitachi , Samsung , Seagate Technology , Toshiba. Можно до ус.ачки:) спорить, какая фирма лучше... Но обратимся к фактам . Наберем в интеллектуальном поисковике Nigma.ru "проблема с жестким диском....." (вместо точек - пишем фирму ):

проблема с жестким диском Hitachi - запросов 5 400 000.

проблема с жестким диском Seagate - запросов 5 500 000.

проблема с жестким диском Western Digital - запросов 7 400 000 .

проблема с жестким диском Samsung - запросов 17 000 000.

Как видите, первое место по надежности у Hitachi , второе у Seagate. Хотя я-бы, исходя из собственного опыта, поставил на второе место Western Digital (WD).

WD бывают с наклейками разных цветов - Black (черный), Blue (синий), Green (зеленый). Самым надежным считается Black , на втором месте Blue и на последнем Green .

Итак, при выборе жесткого диска:

1. Важно! Вам нужно выяснить -какой разьем у Вашего старого жесткого диска. Если IDE , то советую посмотреть разьемы на материнской плате. При наличии SATA -подключения , лучше купить SATA-жесткий диск. При отсутствии SATA, покупаете IDE .


2. Важно! Выяснить, потянет ли Ваш старый блок питания - новый (возможно, более обьемный и скоростной ) жесткий диск.

Как это сделать, Вы можете узнать, посмотрев видеоурок Как правильно выбрать Блок Питания!

3. Определиться с Обьемом (кол-во GB), Скоростью (об\в мин.) и "Кешем" (8-64MB) жесткого диска.

4. Выбрать фирму-производитель.

Как избежать проблем с потерей информации.

1. Храните резервную копию данных на сьемном носителе.

Здравствуйте! В мы с вами в подробностях рассмотрели устройство жесткого диска, но я специально ничего не сказал про интерфейсы - то есть способы взаимодействия жесткого диска и остальных устройств компьютера, или если еще конкретней, способы взаимодействия (соединения) жесткого диска и компьютера.

А почему не сказал? А потому что эта тема - достойна объема никак не меньшего целой статьи. Поэтому сегодня разберем во всех подробностях наиболее популярные на данный момент интерфейсы жесткого диска. Сразу оговорюсь, что статья или пост (кому как удобнее) в этот раз будет иметь внушительные размеры, но куда деваться, без этого к сожалению никак, потому как если написать кратко, получится совсем уж непонятно.

Понятие интерфейса жесткого диска компьютера

Для начала давайте дадим определение понятию "интерфейс". Говоря простым языком (а именно им я и буду по-возможности выражаться, ибо блог то на обычных людей рассчитан, таких как мы с Вами), интерфейс - способ взаимодействия устройств друг с другом и не только устройств. Например, многие из вас наверняка слышали про так называемый "дружественный" интерфейс какой-либо программы. Что это значит? Это значит, что взаимодействие человека и программы более легкое, не требующее со стороны пользователя большИх усилий, по сравнению с интерфейсом "не дружественным". В нашем же случае, интерфейс - это просто способ взаимодействия конкретно жесткого диска и материнской платы компьютера. Он представляет собой набор специальных линий и специального протокола (набора правил передачи данных). То есть чисто физически - это шлейф (кабель, провод), с двух сторон которого находятся входы, а на жестком диске и материнской плате есть специальные порты (места, куда присоединяется кабель). Таким образом, понятие интерфейс - включает в себя соединительный кабель и порты, находящиеся на соединяемых им устройствах.

Ну а теперь самый "сок" сегодняшней статьи, поехали!

Виды взаимодействия жестких дисков и материнской платы компьютера (виды интерфейсов)

Итак, первым на очереди у нас будет самый "древний" (80-е года) из всех, в современных HDD его уже не встретить, это интерфейс IDE (он же ATA, PATA).

IDE - в переводе с английского "Integrated Drive Electronics", что буквально означает - "встроенный контроллер". Это уже потом IDE стали называть интерфейсом для передачи данных, поскольку контроллер (находящийся в устройстве, обычно в жестких дисках и оптических приводах) и материнскую плату нужно было чем-то соединять. Его (IDE) еще называют ATA (Advanced Technology Attachment), получается что то вроде "Усовершенствованная технология подсоединения". Дело в том, что ATA - параллельный интерфейс передачи данных , за что вскоре (буквально сразу после выхода SATA, о котором речь пойдет чуть ниже) он был переименован в PATA (Parallel ATA).

Что тут сказать, IDE хоть и был очень медленный (пропускная способность канала передачи данных составляла от 100 до 133 мегабайта в секунду в разных версиях IDE - и то чисто теоретически, на практике гораздо меньше), однако позволял присоединять одновременно сразу два устройства к материнской плате, используя при этом один шлейф.

Причем в случае подключения сразу двух устройств, пропускная способность линии делилась пополам. Однако, это далеко не единственный недостаток IDE. Сам провод, как видно из рисунка, достаточно широкий и при подключении займет львиную долю свободного пространства в системном блоке, что негативно скажется на охлаждении всей системы в целом. В общем IDE уже устарел морально и физически, по этой причине разъем IDE уже не встретить на многих современных материнских платах, хотя до недавнего времени их еще ставили (в количестве 1 шт.) на бюджетные платы и на некоторые платы среднего ценового сегмента.

Следующим, не менее популярным, чем IDE в свое время, интерфейсом является SATA (Serial ATA) , характерной особенностью которого является последовательная передача данных. Стоит отметить, что на момент написания статьи - является самым массовым для применения в ПК.

Существуют 3 основных варианта (ревизии) SATA, отличающиеся друг от друга пропускной способностью: rev. 1 (SATA I) - 150 Мб/с, rev. 2 (SATA II) - 300 Мб/с, rev. 3 (SATA III) - 600 Мб/с. Но это только в теории. На практике же, скорость записи/чтения жестких дисков обычно не превышает 100-150 Мб/с, а оставшаяся скорость пока не востребована и влияет разве что на скорость взаимодействия контроллера и кэш-памяти HDD (повышает скорость доступа к диску).

Из нововведений можно отметить - обратную совместимость всех версий SATA (диск с разъемом SATA rev. 2 можно подключить к мат. плате с разъемом SATA rev. 3 и т.п.), улучшенный внешний вид и удобство подключения/отключения кабеля, увеличенная по сравнению с IDE длина кабеля (1 метр максимально, против 46 см на IDE интерфейсе), поддержка функции NCQ начиная уже с первой ревизии. Спешу обрадовать обладателей старых устройств, не поддерживающих SATA - существуют переходники с PATA на SATA , это реальный выход из ситуации, позволяющий избежать траты денег на покупку новой материнской платы или нового жесткого диска.

Так же, в отличии от PATA, интерфейсом SATA предусмотрена "горячая замена" жестких дисков, это значит, что при включенном питании системного блока компьютера, можно присоединять/отсоединять жесткие диски. Правда для ее реализации необходимо будет немного покопаться в настройках BIOS и включить режим AHCI.

Следующий на очереди - eSATA (External SATA) - был создан в 2004 году, слово "external" говорит о том, что он используется для подключения внешних жестких дисков. Поддерживает "горячую замену " дисков. Длина интерфейсного кабеля увеличена по сравнению с SATA - максимальная длина составляет теперь аж два метра. eSATA физически не совместим с SATA, но обладает той же пропускной способностью.

Но eSATA - далеко не единственный способ подключить внешние устройства к компьютеру. Например FireWire - последовательный высокоскоростной интерфейс для подключения внешних устройств, в том числе HDD.

Поддерживает "горячу замену" винчестеров. По пропускной способности сравним с USB 2.0, а с появлением USB 3.0 - даже проигрывает в скорости. Однако у него все же есть преимущество - FireWire способен обеспечить изохронную передачу данных, что способствует его применению в цифровом видео, так как он позволяет передавать данные в режиме реального времени. Несомненно, FireWire популярен, но не настолько, как например USB или eSATA. Для подключения жестких дисков он используется довольно редко, в большинстве случаев с помощью FireWire подключают различные мультимедийные устройства.

USB (Universal Serial Bus) , пожалуй самый распространенный интерфейс, используемый для подключения внешних жестких дисков, флешек и твердотельных накопителей (SSD). Как и в предыдущем случае - есть поддержка "горячей замены", довольно большая максимальная длина соединительного кабеля - до 5 метров в случае использования USB 2.0, и до 3 метров - если используется USB 3.0. Наверное можно сделать и бОльшую длину кабеля, но в этом случае стабильная работа устройств будет под вопросом.

Скорость передачи данных USB 2.0 составляет порядка 40 Мб/с, что в общем-то является низким показателем. Да, конечно, для обыкновенной повседневной работы с файлами пропускной способности канала в 40 Мб/с хватит за глаза, но как только речь пойдет о работе с большими файлами, поневоле начнешь смотреть в сторону чего-то более скоростного. Но оказывается выход есть, и имя ему - USB 3.0, пропускная способность которого, по сравнению с предшественником, возросла в 10 раз и составляет порядка 380 Мб/с, то есть практически как у SATA II, даже чуть больше.

Есть две разновидности контактов кабеля USB, это тип "A" и тип "B", расположенные на противоположных концах кабеля. Тип "A" - контроллер (материнская плата), тип "B" - подключаемое устройство.

USB 3.0 (тип "A") совместим с USB 2.0 (тип "A"). Типы "B" не совместимы между собой, как видно из рисунка.

Thunderbolt (Light Peak). В 2010 году компанией Intel был продемонстрирован первый компьютер с данным интерфейсом, а чуть позже в поддержку Thunderbolt к Intel присоединилась не менее известная компания Apple. Thunderbolt достаточно крут (ну а как иначе то, Apple знает во что стоит вкладывать деньги), стоит ли говорить о поддержке им таких фич, как: пресловутая "горячая замена", одновременное соединение сразу с несколькими устройствами, действительно "огромная" скорость передачи данных (в 20 раз быстрее USB 2.0).

Максимальная длина кабеля составляет только 3 метра (видимо больше и не надо). Тем не менее, несмотря на все перечисленные преимущества, Thunderbolt пока что не является "массовым" и применяется преимущественно в дорогих устройствах.

Идем дальше. На очереди у нас пара из очень похожих друг на друга интерфейсов - это SAS и SCSI. Похожесть их заключается в том, что они оба применяются преимущественно в серверах, где требуется высокая производительность и как можно меньшее время доступа к жесткому диску. Однако, существует и обратная сторона медали - все преимущества данных интерфейсов компенсируются ценой устройств, поддерживающих их. Жесткие диски, поддерживающие SCSI или SAS стоят на порядок дороже.

SCSI (Small Computer System Interface) - параллельный интерфейс для подключения различных внешних устройств (не только жестких дисков).

Был разработан и стандартизирован даже несколько раньше, чем первая версия SATA. В свежих версия SCSI есть поддержка "горячей замены".

SAS (Serial Attached SCSI) пришедший на смену SCSI, должен был решить ряд недостатков последнего. И надо сказать - ему это удалось. Дело в том, что из-за своей "параллельности" SCSI использовал общую шину, поэтому с контроллером одновременно могло работать только лишь одно из устройств, SAS - лишен этого недостатка.

Кроме того, он обратно совместим с SATA, что несомненно является большим плюсом. К сожалению стоимость винчестеров с интерфейсом SAS близка к стоимости SCSI-винчестеров, но от этого никак не избавиться, за скорость приходится платить.

Если вы еще не устали, предлагаю рассмотреть еще один интересный способ подключения HDD - NAS (Network Attached Storage). В настоящее время сетевые системы хранения данных (NAS) имеют большую популярность. По сути, это отдельный компьютер, этакий мини-сервер, отвечающий за хранение данных. Он подключается к другому компьютеру через сетевой кабель и управляется с другого компьютера через обычный браузер. Это все нужно в тех случаях, когда требуется большое дисковое пространство, которым пользуются сразу несколько людей (в семье, на работе). Данные от сетевого хранилища передаются к компьютерам пользователей либо по обычному кабелю (Ethernet), либо при помощи Wi-Fi. На мой взгляд, очень удобная штука.

Думаю, это все на сегодня. Надеюсь вам понравился материал, предлагаю подписаться на обновления блога, чтобы ничего не пропустить (форма в верхнем правом углу) и встретимся с вами уже в следующих статьях блога.

Жёсткий диск компьютера нуждается в периодическом уходе. Мы расскажем Вам, как продлить срок службы Вашего винчестера.

Давайте подумаем, без чего не сможет работать Ваш компьютер. Естественно, без материнской платы с процессором, поскольку она является главным компонентом, к которому подключаются все остальные комплектующие. Не заработает он также без оперативной памяти и блока питания. Однако, имея все вышеперечисленные компоненты, Вы уже сможете запустить их и даже загрузить операционную систему, например, с флешки.

Однако, полноценным Ваш компьютер (даже без корпуса!) станет лишь тогда, когда он сможет сохранять какие-либо данные. А для этого к нему требуется подключить какой-либо накопитель этих данных. Для простоты и обобщения такие накопители называются жёсткими дисками (в противопоставление гибким дискам, которыми были в своё время дискеты).

И сегодня мы поговорим о различных дисковых накопителях, а также правилах ухода за ними. Следуя им, Вы сможете значительно продлить "жизнь" жёсткого диска Вашего компьютера или ноутбука.

Типы жёстких дисков

Жёсткие диски можно классифицировать по нескольким параметрам. Наиболее очевидный из них - физический размер или по-научному форм-фактор . Определяется он по диагонали носителя в дюймах. На сегодняшний день стандартом для настольных компьютеров является форм-фактор 3.5", а для ноутбуков - 2.5". Хотя, в небольших нетбуках можно встретить и модели поменьше:

Вторым важным параметром является тип подключения диска к материнской плате. На сегодняшний день наибольшее распространение получили носители с разъёмом SATA (версии 2.0 или 3.0). Однако, в настольных ПК всё ещё встречаются более старые диски с IDE -подключением. В ноутбуках же можно встретить и вовсе экзотические ZIF -диски или новомодные твердотельные накопители с интерфейсом M.2 или mSATA :

Ну и, наконец, третий параметр, по которому можно характеризовать жёсткие диски, - тип накопителя информации . По данному критерию различают классические HDD на базе вращающихся дисков из металла или керамики и твердотельные SSD без движущихся частей, которые работают на основе флеш-памяти:

Пожалуй, этот способ классификации можно назвать одним из самых критичных для пользователя, поскольку принципы работы и ухода за SSD довольно сильно отличаются от классических HDD. Об обслуживании и выборе твердотельных накопителей Вы можете прочесть , а здесь мы рассмотрим общие и различные принципы функционирования жёстких дисков вообще (с большим упором на классические HDD).

Обслуживание HDD

Жёсткий диск компьютера - устройство весьма автономное, но, всё-таки, периодически он требует специального обслуживания. Наиболее часто встречаемая рекомендация - проводить регулярную дефрагментацию . О ней мы поговорим отдельно, поскольку для SSD-дисков она, например, приносит больше вреда, нежели пользы. А здесь упомянём несколько нечасто встречающихся, но важных советов.

И первый из них, лежащий, вроде бы на поверхности, но игнорируемый многими, - обязательно создавайте резервную копию важных данных ! Вы можете сохранять нужные файлы на различных "облачных" хранилищах или на съёмных носителях, но делать это нежелательно на другие разделы жёсткого диска. Тут дело в том, что Ваш винчестер может выйти из строя физически и тогда данные хоть и останутся записаны на нём, но считать их без специального оборудования будет невозможно!

Второй совет - периодически избавляйтесь от больших файлов , которые Вы редко используете, либо хотя бы перезаписывайте их в другие области жёсткого диска. Часто можно встретить пользовательские ПК, диски которых буквально забиты фильмами, играми и прочим контентом, который лежит фактически "мёртвым" грузом. При этом для оперативного хранения данных остаётся слишком мало места. Как результат, большая часть диска фактически простаивает, тогда как определённые секторы из-за частой перезаписи со временем изнашиваются, что приводит к появлению так называемых "бэдов" или "битых" областей.

Чтобы выявить самых "злостных" поглотителей дискового пространства, Вы можете воспользоваться специальными утилитами, которые визуализируют содержимое жёсткого диска. Из бесплатных я бы рекомендовал WinDirStat , которая позволит Вам найти и удалить бесполезные файлы и папки без особых проблем:

Из предыдущего совета также выплывает ещё один - нежелательно допускать чтобы на разделе диска оставалось менее 30% свободного пространства . В современных версиях Windows в окне "Этот компьютер" имеются специальные индикаторы заполненности локальных и съёмных дисков, по цвету которых можно судить, требуется ли диску очистка (индикатор становится красным). Если в Вашей Windows индикатор не отображается, переключите в "Вид" окна в режим "Плитка" или установите специальную утилиту (актуально для Windows XP):

Ну и напоследок стоит периодически проверять состояние жёсткого диска при помощи специальных утилит (о них ниже). Обычно подобные программы считывают данные с системы самоконтроля носителя (SMART) и позволяют быстро оценить его "здоровье", износ и количество неработоспособных блоков.

Дефрагментация диска

Практически везде на различных околокомпьютерных ресурсах долгое время велись споры на тему, нужно ли проводить дефрагментацию диска. Чтобы ответить на данный вопрос нужно понять из-за чего возникает фрагментация и чем она чревата. А возникает она по причине того, что данные на диске постоянно перезаписываются. При этом часть старых данных остаётся на своих местах и при записи новой их порции часто они записываются фрагментами: часть в освобождённых ранее секторах, а часть в новых - более отдалённых.

Теперь представим, что нам нужно считать большой файл (скажем, архив), который записан на диске в фрагментированном виде. Считывающая головка жёсткого диска будет вынуждена "скакать" между довольно широко разнесёнными по поверхности магнитного диска секторами с данными, что в итоге замедлит скорость их считывания и вывода:

Смысл же дефрагментации в том, чтобы расположить все фрагментированные данные единым массивом в смежных секторах. Это позволит значительно ускорить скорость считывания информации, что в свою очередь избавит от заметных "зависаний" компьютера при выполнении файловых операций.

Однако, всё это справедливо лишь для традиционных HDD. Современные твердотельные SSD-накопители не имеют подвижных считывающих головок. Все данные в них хранятся на основе флеш-памяти, которой совершенно неважно в каком порядке считывать блоки данных. Зато у этих блоков имеются серьёзные ограничения на количество циклов перезаписи. Поэтому для SSD-дисков дефрагментация не только не принесёт пользы, но ещё и незначительно сократит срок их службы. Поэтому производить дефрагментацию SSD-дисков НЕЛЬЗЯ !

Что же касается традиционных HDD, то в Windows, начиная с "Семёрки", имеется функция так называемой фоновой дефрагментации . Специальная служба под названием "Оптимизация дисков" призвана периодически в автоматическом режиме проверять диск на наличие фрагментированных файлов и устранять фрагментацию. Если у Вас твердотельный накопитель, то вышеописанную службу нужно отключить (сделать это можно через раздел "Службы" в разделе Панели управления "Администрирование"), а при наличии HDD наоборот активировать:

Однако, целиком и полностью полагаться на автоматическую дефрагментацию не стоит. Периодически нужно производить её в ручном режиме. Заранее учтите, что на полный цикл дефрагментации требуется немало времени (от получаса до нескольких часов, в зависимости от ёмкости Вашего HDD), поэтому производить её лучше тогда, когда Вы не пользуетесь компьютером (например, в ночное время).

Запустить дефрагментацию можно несколькими способами. Для простого пользователя проще всего зайти в оснастку "Этот компьютер", правой кнопкой мыши кликнуть по нужному разделу (например, Диск C) и вызвать его "Свойства" . В окне свойств перейдите на вкладку "Сервис" . Здесь Вы и увидите кнопку с надписью "Оптимизировать" (ранее "Дефрагментация"), которая запускает оснастку оптимизации работы диска в визуальном режиме (более продвинутые пользователи могут вызвать штатный дефрагментатор командой "dfrgui"):

Для оценки степени фрагментации данных на разделе нужно предварительно выделить нужный диск в списке и нажать кнопку "Анализировать" (кстати, зажав кнопку CTRL, можно выделить несколько разделов сразу). После этого достаточно будет выделить диск с фрагментацией и нажать кнопку "Оптимизировать" . Если у Вас активирована служба автоматической дефрагментации, обратите внимание также на кнопку "Изменить параметры" . С её помощью Вы сможете перенастроить свойства и частоту проверок под собственные нужды.

Некоторые пользователи не доверяют штатному инструменту дефрагментации. Ранее и правда дефрагментация штатными средствами выполнялась весьма посредственно. Сегодня ситуация улучшилась, но многие по прежнему предпочитают пользоваться сторонними программами-дефрагментаторами. Если Вы в их числе, то из бесплатных решений подобного рода могу рекомендовать Вам от Piriform (фирмы, которая разработала популярный CCleaner) или . Первая программа имеет portable-версию и отличается высокой скоростью работы, а вторая позволяет производить фоновую дефрагментацию.

Тестирование винчестера

Наконец, мы добрались до ещё одной важной вехи в обслуживании жёсткого диска - его периодическому тестированию. Тестирование винчестера можно рассматривать в трёх аспектах:

  1. Тестирование штатными средствами.
  2. Быстрая проверка данных SMART при помощи сторонних утилит.
  3. Углублённая проверка с коррекцией "битых" секторов.

Протестировать жёсткий диск (а точнее отдельные его разделы) штатно можно при помощи кнопки "Проверить" , которая находится на уже упомянутой нами вкладке "Сервис" в "Свойствах" раздела жёсткого диска:

Фактически запустится фоновое выполнение упоминаемой мною не раз консольной команды CHKDSK . При этом самого окна Командной строки Вы не увидите, а лишь будете проинформированы о результатах выполнения функции проверки и, возможно, восстановления повреждённых файлов. Таким образом оснастка работает для несистемных логических дисков. Для тестирования Диска С потребуется перезагрузка системы и проверка запустится перед запуском Windows с выводом подробностей.

CHKDSK, несомненно, вещь полезная во многих случаях, однако, она помогает лишь устранить сбои, не отображая никакой информации о состоянии винчестера. Между тем, практически все жёсткие диски имеют встроенную систему самодиагностики под названием SMART, а точнее даже S.M.A.R.T. (сокр. англ. "self-monitoring, analysis and reporting technology" - "технология самоконтроля, анализа и отчётности"), информацию которой бывает весьма полезно знать.

Если же мы имеем дело с проблемным жёстким диском, у которого уже есть серьёзные сбои и критические предупреждения в S.M.A.R.T., то при помощи некоторых утилит можно временно продлить ему его существование. Обычно большинство таких утилит работают вне операционной системы со специальных загрузочных дисков. Приятным исключением среди бесплатных инструментов данного типа является программа "родом" из Белоруссии - Victoria (официальный сайт, увы, уже давно не работает):

Запускать Викторию нужно обязательно с правами администратора. С её помощью можно переразметить, а иногда и исправить, повреждённые секторы, снизить уровень шума от диска (за счёт понижения скорости его работы), посмотреть данные S.M.A.R.T., полностью стереть информацию с винчестера и многое другое. Увы, "оконная" версия программы не всегда справляется со всеми функциями, если нужно обслужить системный раздел. Но с этим справляется консольная версия Виктории , работающая из-под DOS.

Программа весьма специфична, да ещё и имеет англоязычный интерфейс, поэтому для работы с ней Вам потребуется изучить инструкции .

Выводы

Жёсткие диски постепенно совершенствуются и требуют от пользователя всё меньше внимания. Но их отказоустойчивость и срок эксплуатации, увы. снижаются. Это справедливо для современных SSD-носителей. Традиционные же HDD при нормальном режиме работы прослужат Вам не один год, но как раз они требуют специального ухода за собой.

Поэтому не подвергайте свой винчестер вредным физическим воздействиям (ударам, температурным перепадам, магнитным полям), выполняйте нехитрое обслуживание, описанное в нашей статье и он будет долго служить Вам верой и правдой!

P.S. Разрешается свободно копировать и цитировать данную статью при условии указания открытой активной ссылки на источник и сохранения авторства Руслана Тертышного.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: