Зависимости частоты радиопередачи и качества приема. Большая советская энциклопедия - излучение и прием радиоволн

Радиоволны, и их распространение, являются неоспоримой загадкой для начинающих любителей эфира. Здесь можно познакомиться с азами теории распространения радиоволн. Данная статья предназначена для ознакомления начинающих любителей эфира, а также и для тех, кто имеет некоторое представление о нём.

Самая главная вводная, про которую часто забывают сказать, прежде чем познакомить с теорией распространения радиоволн, так это то, что радиоволны распространяются вокруг нашей планеты за счет отражения от ионосферы и от земли как от полупрозрачных зеркал отражается луч света.

Особенности распространения средних волн и перекрёстная модуляция

К средним волнам относятся радиоволны длиной от 1000 до 100 м (частоты 0,3 — 3,0МГц). Средние волны используются главным образом для вещания. А так же они являются колыбелью отечественного радиопиратства. Они могут распространяться земным и ионосферным путём. Средние волны испытывают значительное поглощение в полупроводящей поверхности Земли, дальность распространения земной волны 1, (см. рис. 1), ограничена расстоянием 500-700 км. На большие расстояния радиоволны 2 и 3 распространяются ионосферной (пространственной) волной.

В ночное время средние волны распространяются путем отражения от слоя Е ионосферы (см. рис. 2), электронная плотность которого оказывается достаточной для этого. В дневные часы на пути распространения волны расположен слой D, чрезвычайно сильно поглощающий средние волны. Поэтому при обычных мощностях передатчиков, напряженность электрического поля недостаточна для приема, и в дневные часы распространение средних волн происходит практически только земной волной на сравнительно небольшие расстояния, порядка 1000 км. В диапазоне средних волн, более длинные волны испытывают меньшее поглощение, и напряженность электрического поля ионосферной волны больше на более длинных волнах. Поглощение увеличивается в летние месяцы и уменьшается в зимние. Ионосферные возмущения не влияют на распространение средних волн, так как слой Е мало нарушается во время ионосферно-магнитных бурь.

В ночные часы см. рис. 1, на некотором расстоянии от передатчика (точка В), возможен приход одновременно пространственной 3 и поверхностной волн 1, причем длина пути пространственной волны меняется с изменением электронной плотности ионосферы. Изменение разности фаз этих волн приводит к колебанию напряженности электрического поля, называемому ближним замиранием поля.

На значительное расстояние от передатчика (точка С) могут прийти волны 2 и 3 путем одного и двух отражений от ионосферы. Изменение разности фаз этих двух волн также приводит к колебанию напряженности электрического поля, называемому дальним замиранием поля.

Для борьбы с замираниями на передающем конце линии связи применяются антенны, у которых максимум диаграммы направленности «прижат» к земной поверхности, к ним можно отнести простейшую антенну «Inverted-V», достаточно часто применяемую радиолюбителями. При такой диаграмме направленности зона ближних замираний удаляется от передатчика, а на больших расстояниях поле волны, пришедшей путем двух отражений, оказывается ослабленным.

К сожалению не все начинающие радиовещатели, работающие в диапазоне частот 1600-3000кГц знают, что слабый сигнал от маломощного передатчика подвержен ионосферным искажениям. Сигнал от более мощных радиопередатчиков ионосферным искажениям подвержен меньше. Ввиду нелинейной ионизации ионосферы, происходит модуляция слабого сигнала модулирующим напряжением сигналов мощных станций. Это явление называется перекрестной модуляцией. Глубина коэффициента модуляции достигает 5-8%. Со стороны приема создаётся впечатление не качественно выполненного передатчика, со всевозможными гулами и хрипами, особенно это заметно в режиме АМ модуляции.

За счет перекрестной модуляции в приемник часто проникают интенсивные грозовые помехи, которые невозможно отфильтровать — грозовой разряд модулирует принимаемый сигнал. Именно по этой причине радиовещатели для проведения двусторонней радиосвязи стали применять однополосные передатчики и стали чаще работать на более высоких частотах. Зарубежные радиовешатели СВ станций, умощняют их, и подвергают компрессии модулирующие сигналы, а для неискаженной работы в эфире, применяют инверсные частоты.

Явления демодуляции и перекрестной модуляции в ионосфере наблюдаются только в диапазоне средних волн (СВ). В диапазоне коротких волн (КВ) скорость электрона под действием электрического поля ничтожно мала по сравнению с его тепловой скоростью и присутствие поля не меняет числа столкновений электрона с тяжелыми частицами.

Наиболее благоприятны, в диапазоне частот от 1500 до 3000кГц для дальних связей, являются зимние ночи и периоды минимума солнечной активности. Особо дальние связи, более 10000 км, обычно возможны в часы захода и восхода солнца. В дневные часы связь возможна на расстояние до 300 км. Свободные радиовещатели FM диапазона могут только позавидовать таким большим радиотрассам.

В летнее время на этом диапазоне часто мешают помехи от статических разрядов в атмосфере.

Особенности распространения коротких волн и их характеристики

К коротким волнам относятся радиоволны длиной от 100 до 10 м (частоты 3-30 МГц). Преимуществом работы на коротких волнах по сравнению с работой на более длинных волнах является то, что в этом диапазоне можно легко создать направленные антенны. Короткие волны могут распространяться как земные, в низкочастотной части диапазона, и как ионосферные.

С повышением частоты сильно возрастает поглощение волн в полупроводящей поверхности Земли. Поэтому при обычных мощностях передатчика земные волны коротковолнового диапазона распространяются на расстояния, не превышающие нескольких десятков километров. На морской глади, это расстояние значительно увеличивается.

Ионосферной волной короткие волны могут распространяться на многие тысячи километров, причем для этого не требуется передатчиков большой мощности. Поэтому в настоящее время короткие волны используются главным образом для связи и вещания на большие расстояния.

Короткие волны распространяются на дальние расстояния путем отражения от ионосферы и поверхности Земли. Такой способ распространения называют скачковым см. рис. 2 и характеризуется расстоянием скачка, числом скачков, углами выхода и прихода, максимальной применимой частотой (МПЧ) и наименьшей применимой частотой (НПЧ).

Если ионосфера однородна в горизонтальном направлении, то и траектория волны симметрична. Обычно излучение происходит в некотором спектре углов, так как ширина диаграммы направленности коротковолновых антенн в вертикальной плоскости составляет 10-15°. Минимальное расстояние скачка, для которого выполняется условие отражения, называют расстоянием зоны молчания (ЗМ). Для отражения волны необходимо, чтобы рабочая частота была не выше значения, максимально применимой частоты (МПЧ), являющаяся верхней границей рабочего диапазона для данного расстояния. Волна 4.

Применение антенн зенитного излучения, как один из приёмов уменьшения зоны молчания, ограничивается понятием максимально применимой частоты (МПЧ) с учётом снижения её на 15-20% от МПЧ. Антенны зенитного излучения применяют для вещания в ближней зоне методом односкачкового отражения от ионосферы.

Второе условие ограничивает рабочий диапазон снизу: чем ниже рабочая частота (в пределах коротковолнового диапазона), тем сильнее поглощение волны в ионосфере. Наименьшую — применимую частоту (НПЧ) определяют из условия, что при мощности передатчика в 1кВт, напряженность электрического поля сигнала должна превышать уровень шумов, а следовательно, поглощение сигнала в слоях ионосферы должно быть не больше допустимого. Электронная плотность ионосферы меняется в течение суток, в течение года, и периода солнечной активности. Значит, изменяются и границы рабочего диапазона, что приводит к необходимости изменения рабочей длины волны в течение суток.

Диапазон частот 1,5–3 МГц, является ночным. Понятно, что для успешного проведения сеанса радиосвязи нужно каждый раз правильно выбирать частоту (длину волны), к тому же это усложняет конструкцию станции, но для настоящего ценителя дальних связей это не является трудностью, это часть хобби. Проведём оценку КВ диапазона по участкам.

Диапазон частот 5-8 мГц, во многом схож с диапазоном 3 мГц, и в отличае от него, здесь в дневное время можно связаться до 2000 км, зона молчания (ЗМ) отсутствует и составляет несколько десятков километров. В ночные часы возможна связь на любое расстояние за исключением ЗМ, которая увеличивается до нескольких сот километров. В часы смены времени суток (заход/восход), наиболее удобны для дальних связей. Атмосферные помехи менее выражены, чем в диапазоне 1,5-3 мГц.

В диапазоне частот 10-15 мГц в периоды солнечной активности возможны связи в дневное время суток практически с любой точкой земного шара. Летом продолжительность радиосвязи в этом диапазоне частот бывает круглосуточной, за исключением отдельных дней. Зона молчания ночью имеет расстояния в 1500-2000 км и по этому возможны только дальние связи. В дневное время они уменьшаются до 400-1000 км.

Диапазон частот 27-30 мГц пригоден для связи только в светлое время суток. Это самый капризный диапазон. Он обычно открывается на несколько часов, дней или недель особенно при смене сезонов, т.е. осенью и весной. Зона молчания (ЗМ) достигает 2000-2500 км. Это явление относится к теме МПЧ, здесь угол отраженной волны должен быть малым по отношению к ионосфере, иначе он имеет большое затухание в ионосфере, или простой уход в космические просторы. Малые углы излучения соответствуют большим скачкам и соответственно большим зонам молчания. В периоды максимума солнечной активности возможна связь и ночью.

Помимо перечисленных моделей, возможны случаи аномального распространения радиоволн. Аномальное распространение может возникнуть при появлении на пути волны спорадического слоя, от которого могут отражаться более короткие волны, вплоть до метровых. Это явление можно наблюдать на практике прохождением дальних телестанций и FM радиостанций. МПЧ радиосигнала в эти часы доходит до 60-100 мГц в годы солнечной активности.

В диапазоне УКВ FM, за исключением редких случаев аномального распространения радиоволн, распространение обусловлено строго так называемой «прямой видимостью». Распространение радиоволн в пределах прямой видимости говорит само за себя, и обусловлено высотой расположения передающей и приёмной антенн. Понятно, что в условиях городской застройки ни о какой визуальной и прямой видимости говорить нельзя, но радиоволны проходят сквозь городские застройки с некоторым ослаблением. Чем выше частота, тем выше затухание в городских застройках. Диапазон частот 88-108 МГц так же подвержен некоторым затуханиям в условиях города.

Замирание радиосигналов диапазона КВ

Приём коротких радиоволн всегда сопровождается измерением уровня принимаемого сигнала, причем это изменение носит случайный и временной характер. Такое явление называют замираниями (федингом) радиосигнала. В эфире наблюдаются быстрые и медленные фединги сигнала. Глубина фединга может достигать до нескольких десятков децибел.

Основной причиной быстрых замираний сигнала является многолучевое распространение радиоволн. В этом случае причиной федингов служит приход в точку приема двух лучей, распространяющихся путем одного и двух отражений от ионосферы, волна 1 и волна 3, см. рис 2.

Поскольку лучи проходят различные пути по расстоянию, фазы прихода их неодинаковы. Изменения электронной плотности, непрерывно происходящие в ионосфере, приводят к изменению длины пути каждого из лучей, а следовательно, и к изменению разности фаз между лучами. Для изменения фазы волны на 180° достаточно, чтобы длина пути изменилась всего на ½. Следует напомнить, что при приходе лучей одного сигнала в точку приёма с одинаковой силой и с разностью фаз на 180°, они полностью вычитаются по закону векторов, а сила приходящего сигнала в этом случае может быть равна нулю. Такие незначительные изменения длины пути могут происходить непрерывно, поэтому, колебания напряженности электрического поля в диапазоне коротких волн являются частыми и глубокими. Интервал их наблюдения в 3-7 минут может составлять на низких частотах КВ диапазона, и до 0,5 секунд на частотах ближе к 30 МГц.

Помимо этого, фединг сигнала вызываются рассеянием радиоволн на не однородностях ионосферы и интерференцией рассеянных волн.

Кроме интерференционных федингов, на коротких волнах, имеют место поляризационные фединги. Причиной поляризационных федингов является поворот плоскости поляризации волны относительно принимаемой антенны. Это происходит при распространении волны в направлении силовых линий магнитного поля Земли, и с изменением электронной плотности ионосферы. Если передающая и приемная антенны представляют собой горизонтальные вибраторы, то излученная горизонтально — поляризованная волна, после прохождения в ионосфере претерпит поворот плоскости поляризации. Это приводит к колебаниям э. д. с., наводимой в антенне, которое имеет дополнительное затухание до 10 дБ.

На практике все указанные причины замираний сигнала действуют, как правило, комплексно и подчиняются описанным законом распределения Релея.

Помимо быстрых замираний, наблюдаются медленные замирания, которые наблюдаются с периодом в 40-60 мин в низкочастотной части КВ диапазона. Причиной этих федингов является изменение поглощения радиоволн в ионосфере. Распределение огибающей амплитуды сигнала при медленных замираниях подчиняется нормально логарифмическому закону с уменьшением сигнала до 8-12 дБ.

Для борьбы с замираниями, на коротких волнах применяют метод приема на разнесенные антенны. Дело в том, что увеличение и уменьшение напряженности электрического поля происходят не одновременно даже на сравнительно небольшой площади земной поверхности. В практике коротковолновой связи используют обычно две антенны, разнесенные на расстояние нескольких длин волн, а сигналы складывают после детектирования. Эффективным является разнесение антенн по поляризации, т. е. одновременный прием на вертикальную и горизонтальную антенны с последующим сложением сигналов после детектирования.

Хочется отметить, что указанные меры борьбы действенны только для устранения быстрых замираний, медленные изменения сигнала не устраняются, так как это связано с изменением поглощения радиоволн в ионосфере.

В радиолюбительской практике метод разнесённых антенн используется довольно редко, ввиду конструктивной дороговизны и отсутствием необходимости приёма достаточно достоверной информации. Это связано с тем, что любители часто используют резонансные и диапазонные антенны, количество которых в его хозяйстве составляет около 2-3 штук. Использование разнесённого приёма требует увеличение парка антенн минимум вдвое.

Другое дело, когда любитель живёт в сельской местности, имея при этом достаточную площадь для размещения антифединговой конструкции, он может применить для этого просто два широкополосных вибратора, перекрывающие все, или почти все необходимые диапазоны. Один вибратор должен быть вертикальным, другой горизонтальным. Для этого совсем не обязательно иметь несколько мачт. Достаточно разместить их так, на одной мачте, чтобы они были сориентированы относительно друг друга под углом в 90°. Две антенны, в этом случае будут напоминать широко известную антенну «Inverted-V».

Расчет радиуса покрытия радиосигналом в УКВ/FM диапазонах

Частоты метрового диапазона распространяются в пределах прямой видимости. Радиус действия распространения радиоволны в пределах прямой видимости без учета мощности излучения передатчика и прочих природных явлений, уменьшающих эффективность связи, выглядит так:

r = 3,57 (√h1 + √h2), км,

Рассчитаем радиусы прямой видимости при установке приемной антенны на разных высотах, где h1 — параметр, h2 = 1,5 м. Сведем их в таблицу 1.

Таблица 1

h1 (м) 10 20 25 30 35 40 50 60
r (км) 15,6 20,3 22.2 24 25.5 27,0 29,6 32

Данная формула не учитывает затухание сигнала и мощности передатчика, она говорит лишь о возможности прямой видимости с учетом идеально круглой земли.

Произведем расчет необходимого уровня радиосигнала вместе приема для длины волны 3 м.

Поскольку на трассах между передающей станцией и подвижным объектом всегда присутствуют такие явления как, отражения, рассеяния, поглощения радиосигналов различными объектами и пр, следует вводить поправки в уровень затухания сигнала, что предложил японский ученый Okumura. Среднеквадратическое отклонение для этого диапазона с городскими застройками составит 3 дБ, а при вероятности связи в 99% введем множитель 2, что составит общую поправку П в уровне радиосигнала в
П = 3 × 2 = 6 дБ.

Чувствительность приемников определяется соотношением полезного сигнала над шумами в 12 дБ, т.е. в 4 раза. Такое соотношение при качественном радиовещании не приемлемо, поэтому введем дополнительную поправку еще в 12–20 дБ, примем 14 дБ.

Итого общая поправка в уровне принимаемого сигнала с учетом затухания его по трассе и специфике приемного устройства, составит: 6+16 20дБ (в 10 раз). Тогда при чувствительности приемника в 1,5 мкВ. в месте приема должно создаваться поле с напряженностью в 15 мкВ/м.

Рассчитаем по формуле Введенского радиус действия при заданной напряженности поля в 15 мкВ/м с учетом мощности передатчика, чувствительности приемника и городских застроек:

где r — км; Р — кВт; G — дБ (=1); h — м; λ — м; Е — мВ.

В данном расчете не учитывается коэффициент усиления приемной антенны, а также затухание в фидере и полосовом фильтре.

Ответ: При мощности в 10 Вт, высоте излучения h1=27 метров и h2=1,5м, реально качественный радиоприем с радиусом в городских застройках составит 2,5-2,6 км. Если учитывать, что прием радиосигналов вашего радиопередатчика будет осуществляться на средних и высоких этажах жилых зданий, то этот радиус действия увеличится примерно в 2-3 раза. Если принимать радиосигналы на вынесенную антенну, то радиус действия будет исчисляться десятками километров.

73! UA9LBG & Радио-Вектор-Тюмень

Электромагнитные волны излучаются проводником, по которому проходит ток высокой частоты. В проводнике, изогнутом в виде петли (рис. 3.4, а ), токи I в двух его половинах направлены в противоположные стороны. Электромагнитные волны, создаваемые этими токами, противоположны по фазе, и если расстояние между проводами мало по сравнению с длиной волны, то эти волны будут в пространстве взаимно уничтожаться. Следовательно, провод в виде петли не излучает электромагнитные волны. То же можно сказать о колебательном контуре (рис. 3.4, 6).

Закрытый колебательный контур не излучает электромагнитных колебаний, так как электрическое поле сосредоточено в основном в конденсаторе и токи смещения в диэлектрике замыкаются наиболее коротким путем - между его обкладками. Магнитное поле сосредоточено в основном в катушке.

Если раздвинуть обкладки конденсатора и развернуть соединительные провода в прямую линию (рис. 3.4, в ), то токи в этих проводах будут иметь одинаковое направление. Такой контур называется открытым, он может излучать электромагнитные волны.

а - петлевой элемент провода, не излучающий электромагнитные волны; б - замкнутый колебательный контур; в - разомкнутый колебательный контур; г - прямолинейный элемент провода, излучающий электромагнитные волны; д - элемент индуктивной связи

с антенной

Увеличение излучения электромагнитных волн можно получить, если вытянуть провод катушки в прямую линию и вместо обкладок конденсатора для создания необходимой емкости применить провода достаточной длины (рис. 3.4, г ). Тогда направление токов во всех элементах провода будет одно и то же, т. е. электромагнитные колебания во всех частях провода будут совершаться в одинаковых фазах и излучение станет наибольшим. Таким образом, открытый контур в простейшем случае представляет собой прямолинейный провод. Практически же в нем оставляют небольшую катушку для индуктивной связи с генератором высокой частоты передатчика и с избирательным усилием радиоприемника, на входе которого, как правило, включается колебательный контур (рис. 3.4, д ).

Всякий провод обладает собственными индуктивностью и емкостью, распределенными по его длине, а поэтому является своеобразным колебательным контуром. На схеме рис. 3.5, а в положении 1 переключателя П обе половины провода заряжаются от батареи Б. После перевода переключателя в положение 2 электроны будут двигаться вдоль провода в направлении от нижней его половины к верхней, а затем в обратном направлении, т.е. в проводе возникнут свободные затухающие колебания. Отдельные фазы колебательного процесса в проводе изображены на рис. 3.5, 6 . В верхней части рисунка показано распределение электрического и магнитного полей, а в нижней - график изменения тока и напряжения в антенне.

Рис. 3.5. Схема для возбуждения свободных колебаний в открытом

контуре и колебательный процесс в нем:

а - эквивалентная схема колебательного контура; б - схемы, поясняющие колебатель-

ный процесс в контуре; в - силовые линии магнитного и электрического полей

Напряжением в какой-либо точке антенны принято называть разность потенциалов между данной точкой и точкой, расположенной симметрично на другой половине провода. График тока показывает также изменение напряженности магнитного поля, а график напряжения - изменение напряженности электрического поля.

В начальный момент (точка 0 на рис. 3.5. 6) провод обладает потенциальной энергией электрического поля зарядов, сосредоточенных в его верхней и нижней половинах. Разность потенциалов имеет максимальную величину, а тока пока нет. При движении зарядов вдоль провода ток возрастает, а напряжение уменьшается, и энергия электрического поля переходит в кинетическую энергию магнитного поля, создаваемого током. Через четверть периода электрическое поле заменяется магнитным. В момент (точка 1 на рис. 3.5, 6) ток достигает максимума, а напряжение равно нулю. Затем ток и магнитное поле уменьшается, в результате чего возникает ЭДС самоиндукции, которая поддерживает движение электронов, и провод перезаряжается. Энергия переходит из магнитного поля в электрическое и т.д. В промежуточные моменты одновременно существуют электрическое и магнитное поля. Электрическое и магнитное поля имеются вдоль провода, причем магнитное поле наиболее сильное в середине провода, где ток наибольшей величины, а на концах провода ток равен нулю и магнитное поле отсутствует.

Токи смещения в открытом колебательном контуре замыкаются через окружающее пространство, удаляясь на значительное расстояние от своих источников (заряд на проводе). Поэтому переменное электрическое поле, созданное токами смещения, достигшее некоторого удаления от провода, может потерять связь с ним (оторваться). При этом линии тока смещения будут замыкаться сами на себя, т.е. образуется синусоидальное переменное электрическое поле, создающее переменное магнитное поле, которое, в свою очередь, создает электрическое поле, и т. д. (рис. 3.5, а). Возникает волновой процесс. Электромагнитные волны, не связанные со своими источниками (свободные волны), распространяются в пространстве. Таким образом, излучение возможно благодаря конечной скорости распространения электромагнитных волн, вследствие чего фаза поля в точке, находящейся на некотором расстоянии от излучателя, отстает от фазы своего источника. Чем больше частота колебаний питающего напряжения, тем легче происходит процесс излучения.

Если в проводах открытого контура и в непосредственной близости (расстояние, меньше длины волны) магнитное поле сдвинуто на 90 о по отношению к электрическому полю, то за пределами этого расстояния свободные магнитное и электрическое поля находятся в фазе, так как образование одного невозможно без другого.

Открытый контур в виде прямолинейного провода, в котором могут происходить электрические колебания, называют симметричным вибратором или просто вибратором (диполем). Чтобы электрические колебания были незатухающими, его соединяют с генератором (Ген) индуктивной связью (см. рис. 3.4, д ).

В простейшем случае антенное устройство для длинных, средних, а иногда коротких волн может быть выполнено так, как показано на рис. 3.6. Над землей на некоторой высоте (чем выше, тем эффективнее излучение) подвешивается антенна - провод или система проводов, играющая роль одной обкладки конденсатора. Второй обкладкой является земля или второй провод - противовес, подвешенный невысоко над землей.

Вибратор является главной частью антенн, работающих на коротких и ультракоротких волнах.

Мощность излучаемых электромагнитных волн рассчитывается по формуле

(3.1)

где I a - ток в пучности вибратора; Р изл - сопротивление излучения вибратора, величина которого составляет 73-80 Ом.

Рис. 3.6. Антенное устройство с заземлением (а ) и противовесом (б )

Сопротивление излучения вибратора определяется как

(3.2)

где l - длина провода антенны; l - длина электромагнитной волны.

Распространяющиеся от вибратора электромагнитные волны всегда имеют определенную поляризацию, т.е. электрические и магнитные силовые линии у них располагаются в соответствующих плоскостях.

На рис. 3.7 приведено графическое изображение радиоволн в виде двух синусоид, расположенных во взаимно перпендикулярных плоскостях. Векторы электрического поля Е расположены в вертикальной плоскости, а векторы магнитного поля Н - в горизонтальной, причем эти векторы перпендикулярны вектору П , называемому вектором Умова -Пойнтинга. Направление вектора П совпадает с направлением распространения электромагнитных волн, а его длина в принятом масштабе соответствует количеству электромагнитной энергии, которую переносят радиоволны:

По мере удаления от излучающей антенны плотность потока энергии радиоволны уменьшается:

где r - расстояние от излучения.

Частота собственных колебаний открытого контура зависит от емкости и индуктивности провода. Можно считать, что каждый метр провода имеет емкость около 5 пФ и индуктивность около 2 мкГн. Более длинному проводу соответствуют большие емкость и индуктивность, а следовательно, и меньшая частота (и большая длина электромагнитной волны) собственных колебаний антенны.

Рис. 3.7. Графическое изображение электромагнитной волны

Так как электромагнитная волна проходит вдоль провода антенны за полупериод определенное расстояние, то длина провода открытого контура совпадает с этим расстоянием и рассчитывается как

где l - длина электромагнитной волны.

Это же вытекает из распределения тока и напряжения в антенне. Следовательно, длина радиоволны равна

Учитывая, что

получаем

Максимальная мощность, излучаемая антенной, может быть достигнута при условии равенства частоты генератора и частоты собственных колебаний открытого контура (антенны). Именно по этой причине радиостанции, работающие в диапазоне длинных волн, нуждаются в длинных антеннах.

На практике для удлинения электромагнитной волны собственных колебаний антенны в нее последовательно включают катушку, что равносильно увеличению длины провода (рис. 3.8, а). Последовательно включенный в антенну конденсатор вызовет укорочение собственной длины электромагнитной волны антенны, так как при последовательном включении емкостей общая емкость уменьшается (рис. 3.8, 6).

Для заземленной антенны длина радиоволны составит

С учетом влияния земли и окружающих предметов длина радиоволн составит

l=(5-6)l.

Рис. 3.8. Схемы удлинения (а) и укорочения (б) длин радиоволн собственных

колебаний антенн (L св - катушка связи)

На прохождение электромагнитных волн, используемых для связи на земной поверхности, оказывают влияние рельеф поверхности земли и электрические свойства грунта, а также свойства самых нижних слоев атмосферы (тропосферы) и верхних ионизированных слоев атмосферы (ионосферы). Тропосфера - это слой атмосферы высотой до 16 км, примыкающий к поверхности земли, и с некоторым допущением принимаемый за диэлектрик без потерь. Потери могут быть за счет перемещения молекул (ингредиентов), обладающих электрическими и магнитными моментами. Потери увеличиваются на сверхвысоких частотах при дожде и тумане.

Ионосфера располагается на высоте около 60 км от поверхности земли и простирается до высоты 600 км. Степень ионизации ионосферы сильно зависит от воздействия ультрафиолетовых лучей солнца. Между тропосферой и ионосферой находится стратосфера .

Радиоволны от передающей антенны достигают ионосферы и отражаются от нее. При встрече непрозрачных препятствий электромагнитные волны стремятся огибать их. Это явление называют дифракцией . Чем длиннее электромагнитная волна, тем сильнее сказывается дифракция. Радиоволны, распространяющиеся по поверхности земного шара, огибающие его вследствие дифракции, называют земными радиоволнами (поверхностными). Радиоволны, распространяющиеся вокруг земного шара благодаря однократному или многократному отражению от ионосферы, называют пространственными или ионосферными .

Если бы земля была идеально плоской и обладала высокой электропроводностью, а воздух был идеальным диэлектриком, радиоволны распространялись бы в этом воздушном диэлектрике, отражаясь от поверхности земли, как от экрана, не проникал в глубь ее. Но так как земля не является идеальным проводником, то силовые линии радиоволн частично проникают в нее и образуют там токи, в результате чего возникают потери энергии на нагревание почвы.

Кроме того, радиоволны поглощаются твердыми диэлектриками, полупроводниками и проводниками при встрече с ними. Поглощение радиоволн проводником объясняется тем, что электромагнитная волна приводит в движение электроны проводника и создает в нем ток высокой частоты. На образование этого тока и расходуется электромагнитная энергия радиоволны. Если электромагнитная волна движется вдоль проводника, то поглощение энергии гораздо меньше. Поэтому над проводящей поверхностью, например водой, железнодорожными рельсами, радиоволны распространяются дальше, чем над сухой землей.

При распространении радиоволны (особенно в городах) поглощаются не только землей, но и металлическими крышами, железобетонными сооружениями и другими электропроводящими сооружениями. Радиоволны при встрече с электропроводящими телами способны отражаться. Физический смысл отражения радиоволн заключается в том, что падающая радиоволна создает в поверхностном слое отражающего тела токи, которые дают излучение новых, т.е. отраженных радиоволн.

Таким образом, радиоволны, распространяющиеся от передающей антенны к приемной, ослабевают по мощности из-за поглощения землей, поглощения и отражения другими препятствиями.

Радиоволны различных радиопередатчиков могут накладываться (складываться) друг на друга в точке приема. Именно по этой причине в приемнике прослушиваются писки, свисты, гудение и т.д. Явление сложения двух или нескольких радиоволн называют интерференцией. Интерференция радиоволн от одного и того же передатчика ввиду разницы фаз приходящих радиоволн приводит к усилению или ослаблению результирующей радиоволны в точке приема, а следовательно, и к изменению выходного сигнала приемника (в частности, к изменению громкости звучания речи при телефонной радиосвязи).

Н. - А как принимают радиоволны?

Л. - С помощью приемной антенны, представляющей собой проводник, находящийся на пути распространения волн, проходя по которому, электромагнитные волны наводят в нем токи высокой частоты. Эти волны без какого бы то ни было ослабления проходят через диэлектрики. Однако, наводя токи в проводниках, они теряют часть своей энергии.

Н. - Ты меня пугаешь, Любознайкин. Человеческое тело - проводник электричества. Следовательно, волны всех радио- и телевизионных передатчиков наводят в моем теле токи?

Л. - Несомненно, но успокойся: эти токи чрезвычайно малы и никоим образом не могут причинить тебе вреда.

Н. - Тем лучше. А как они ведут себя в радио- или телевизионных приемниках?

Л. - Здесь наводимые ими токи тоже очень малы. Антенна непосредственно или индуктивно соединена с входным колебательным контуром приемника. Если контур настроен на частоту принимаемых волн, то благодаря явлению резонанса в контуре возникает относительно большой ток.

Антенна через катушку должна быть заземлена. Если колебательный контур включен непосредственно между антенной и заземлением (рис. 44) и если он точно настроен на частоту принимаемых волн, его сопротивление большое, поэтому падение напряжения, создаваемое токами антенны на выводах контура, относительно высокое.

Настройка и избирательность

Н. - А что произойдет, если контур окажется не в резонансе с принимаемыми волнами?

Л. - В этом случае его полное сопротивление станет меньше, что приведет к снижению напряжения на выводах контура.

Рис. 44. В приемнике контур настройки может включаться непосредственно между антенной и заземлением (а) или же индуктивно связываться с катушкой, по которой протекают токи, наводимые принимаемыми сигналами (б).

Рис. 45. Кривые, показывающие, как изменяется напряжение U на колебательном контуре в зависимости от частоты сигнала . Кривые представлены для контура с низкой (а) и высокой (б) избирательностью.

Рис. 46. Переключение с одного диапазона воли на другой осуществляется переключением катушек (а) или части витков одной катушки (б).

Это то самое явление, которое лежит в основе избирательности контура, его способности наилучшим образом принимать частоты, на которые он настроен.

Измеряя напряжение на выводах контура для различных частот, можно вычертить кривую избирательности, показывающую, как изменяется напряжение в зависимости от частоты (рис. 45).

Н. - А что определяет форму этой кривой? Я имею а виду прежде всего ее большую или меньшую ширину, так как чем уже эта кривая, тем выше, на мой взгляд, избирательность контура.

Л. - И ты не ошибаешься. Избирательность определяется коэффициентом затухания контура. Этот коэффициент в основном зависит от активного сопротивления катушки, вносящего в контур потери.

Н. - А каким образом удается установить колебательный контур в резонанс с частотой передачи, которую желают принять?

Л. - Для этого настраивают контур на требуемую частоту соответствующим изменением индуктивности катушки или емкости конденсатора. Если использовать конденсатор переменной емкости, настройку можно осуществить плавно. Что же касается индуктивности, то ее обычно меняют скачками для переключения диапазонов, например чтобы перейти с длинных волн на короткие. Для этой цели служит переключатель, позволяющий заменить одну катушку другой или использовать часть витков одной катушки, имеющей специальные отводы (рис. 46). Раньше использовали также катушки с плавным изменением индуктивности. Примером такого устройства может служить вариометр, состоящий из двух последовательно соединенных катушек, одну из которых можно было вращать внутри другой и, таким образом, изменять их взаимную индукцию.

Н. - Хорошо. Я понял, как излучают волны и как их принимают. Но каким образом заставляют волны передавать звук или изображение? И как при приеме удается их воспроизводить?

Л. - Все это потребует немало объяснений. Мой дядюшка и я сам сможем теперь приступить к этим вопросам, так как ты постиг основы общей электротехники.

Излучение радиоволн — процесс возбуждения бегущих электромагнитных волн радиодиапазона в пространстве, окружающем источник колебаний тока или заряда. При этом энергия источника преобразуется в энергию распространяющихся в пространстве электромагнитных волн. Приём радиоволн является процессом, обратным процессу излучения. Он состоит в преобразовании энергии электромагнитных волн в энергию переменного тока. И. и п. р. осуществляются с помощью передающих и приёмных антенн (См. Антенна).

Излучение радиоволн.

Рис. 1. Виток катушки индуктивности.

Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны λ, соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1), существует другой участок В, удалённый от А на расстояние, меньшее, чем λ/2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В, ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает Колебательный контур , содержащий катушку индуктивности и конденсатор. В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем λ/2. Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь, в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с λ/2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. Квазистационарный процесс) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с λ < 10 км.

Излучатели.

Рис. 2. Электрический диполь.

Простейший излучатель радиоволн состоит из двух отрезков А и В прямолинейного проводника, присоединённых к концам OO’ двухпроводной линии, вдоль которой распространяется электромагнитная волна (рис. 2). В отрезках А и В под действием электрического поля волны возникает движение зарядов, т. е. переменный ток. В каждый момент времени заряды в точках О и О’ равны по величине и противоположны по знаку, т. е. отрезки А и В образуют электрический диполь, что определяет конфигурацию создаваемого им электрического поля. С другой стороны, токи в отрезках А и В совпадают по направлению, поэтому силовые линии магнитного поля, как и в случае прямолинейного тока, — окружности (рис. 3).

Рис. 3. Структура электрического Е и магнитного H полей вблизи диполя: пунктир — силовые линии электрического поля; тонкие линии — силовые линии магнитного поля; О — точка наблюдения.

Таким образом, в пространстве, окружающем диполь, возникает электромагнитное поле, в котором поля Е и Н перпендикулярны друг другу. Электромагнитное поле распространяется в пространстве, удаляясь от диполя (рис. 4).

Рис. 4. Мгновенные картины электрических силовых линий вблизи диполя для промежутков времени, отстоящих друг от друга на 1/8 периода Т колебаний тока.

Волны, излучаемые диполем, имеют определённую поляризацию. Вектор напряжённости электрического поля Е волны в точке наблюдения О (рис. 3) лежит в плоскости, проходящей через диполь и радиус-вектор r, проведённый от центра диполя к точке наблюдения. Вектор магнитного поля Н перпендикулярен этой плоскости.

Переменное электромагнитное поле возникает во всём пространстве, окружающем диполь, и распространяется от диполя во всех направлениях. Диполь излучает сферическую волну, которую на большом расстоянии от диполя можно считать плоской (локально-плоской). Однако амплитуды напряжённостей электрического и магнитного полей, создаваемых диполем, а следовательно и излучаемая энергия, в разных направлениях различны. Они максимальны в направлениях, перпендикулярных диполю, и постепенно убывают до нуля вдоль оси диполя. В этом направлении диполь практически не излучает. Распределение излучаемой мощности по различным направлениям характеризуется диаграммой направленности. Пространственная диаграмма направленности диполя имеет вид тороида (рис. 5).

Рис. 5. Пространственная диаграмма направленности электрического диполя.

Рис. 6. Несимметричный вибратор; Г — генератор электрических колебаний.

Полная мощность, излучаемая диполем, зависит от подводимой мощности и соотношения между его длиной l и длиной волны λ. Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с λ/2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника, подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения Rи, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность. Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал Г. Герц (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. Герца вибратор) возбуждались с помощью искрового разряда — единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости.

Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна. Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью μ, на который намотана катушка из тонкого провода. Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7, а, б), что обусловлено принципом двойственности.

Рис. 7. Сопоставление электрического диполя (а), магнитного (6) и щелевого (в, г) излучателей; 1 — проводник с током; 2 — стержень из материала с высокой магнитной проницаемостью; 3 — металлический экран, в котором прорезана щель; 4 — проводники, идущие от генератора высокочастотных электрических колебаний; 5 — силовые линии электрического поля; 6 — силовые линии магнитного поля.

На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счёт боковых лепестков её диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землёй, высока; она может достигать 140—250 К; у остронаправленных антенн она составляет обычно 50—80 К, а специальными мерами её можно снизить до 15—20 К.

О конкретных типах антенн, их характеристиках и применении см. в ст. Антенна .

Лит.: Хайкин С. Э., Электромагнитные волны, 2 изд., М. — Л., 1964; Гольдштейн Л. Д., Зернов Н. В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. — Л., 1950. Под редакцией Л. Д. Бахража.

Доказал, что электромагнитная энергия может быть отправлена в космос в виде радиоволн, которые проходят через атмосферу примерно со скоростью света. Это открытие помогло разработать принципы радиосвязи, которыми пользуются и сегодня. Кроме того, ученый доказал, что радиоволны имеют электромагнитную природу, а главная их характеристика - это частота, при которой энергия колеблется между электрическими и магнитными полями. Частота в герцах (Гц) связана с длиной волны λ, представляющей собой расстояние, которое радиоволна проходит в течение одного колебания. Таким образом, получается следующая формула: λ = C/F (где C равна скорости света).

Принципы радиосвязи основаны на передаче несущих информацию радиоволн. Они могут передавать голос или цифровые данные. Для этого радиостанция должна иметь:

Устройство для сбора информации в электрический сигнал (например, микрофон). Этот сигнал называется основной полосой частот в обычном звуковом диапазоне.

Модулятор внесения информации в полосу частот сигнала на выбранной

Передатчик, сигнала, который посылает его на антенну.

Антенну из проводящего электричество стержня определенной длины, которая будет излучать электромагнитную радиоволну.

Усилитель сигнала на стороне приемника.

Демодулятор, который будет способен восстановить первоначальную информацию из принимаемого радиосигнала.

Наконец, устройство для воспроизведения переданной информации (например, громкоговоритель).

Современный принцип радиосвязи был задуман еще в начале прошлого века. В то время радио разработали в основном для передачи голоса и музыки. Но очень скоро появилась возможность использовать принципы радиосвязи для передачи более сложной информации. Например, такой ​​как текст. Это привело к изобретению телеграфа Морзе.

Общим для голоса, музыки или телеграфа является то, что основная информация зашифрована в которые характеризуются амплитудой и частотой (Гц). Люди могут слышать звуки в диапазоне от 30 Гц и примерно до 12 000 Гц. Этот диапазон называется звуковой спектр.

Радиочастотный спектр делится на различные Каждый из которых имеет конкретные характеристики в отношении излучения и затухания в атмосфере. Выделяют описанные в таблице ниже коммуникационные приложения, которые работают в том или ином диапазоне.

LF-диапазон от 30 кГц до 300 кГц В основном используется для воздушных судов, маяков, навигации, а также для передачи информации.
FM-диапазон от 300 кГц до 3000 кГц Используется для цифрового вещания.
ВЧ-диапазон от 3000 кГц до 30000 кГц Этот диапазон широко подходит для средней и дальней наземной радиосвязи.
УКВ-диапазон от 30000 кГц до 300000 кГц УКВ обычно используется для наземного радиовещания и связи морских и воздушных судов
UHF-диапазон от 300000 кГц до 3000000 кГц С помощью этого спектра работают спутниковые системы позиционирования, а также мобильные телефоны.

Сегодня сложно представить, что делало бы человечество без радиосвязи, которая нашла свое применение во многих современных устройствах. Например, принципы радиосвязи и телевидения используются в мобильных телефонах, клавиатуре, GPRS, Wi-Fi, беспроводных компьютерных сетях и так далее.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: