Состояния определяющие значения всех переменных. Определение переменной состояния

Основы > Теоретические основы электротехники

Метод переменных состояния
Уравнениями состояния можно назвать любую систему уравнений, определяющих режим цепи. В более узком смысле - это система дифференциальных уравнений первого порядка, разрешенная относительно производных.
Методом переменных состояния назовем анализ цепи, основанный на решении уравнений состояния (первого порядка), записанных в форме Коши. Таким образом, метод переменных состояния - один из методов расчета прежде всего переходных процессов. Далее предполагается, что цепь имеет только независимые источники и не содержит индуктивных сечений и емкостных контуров. В противном случае составление уравнений становится намного сложнее.
Для линейной цепи с постоянными сосредоточенными параметрами ток каждой ветви, напряжение между выбранными выводами, заряд на обкладках конденсатора и т. д. всегда можно найти как решение составленного для этого тока, напряжения, заряда и т. д. дифференциального уравнения (например, исключением других токов и напряжений из системы уравнений Кирхгофа):


Введением переменных это уравнение сводится к эквивалентной системе дифференциальных уравнений первого порядка:

Здесь переменными, которые называются переменными состояния , служат переменная х и ее производные.
Как известно, переходный процесс в любой цепи, кроме ее параметров (значений
r , L, С, М) и действующих источников [ e(t) и J(t)], определяется независимыми начальными (t = 0) условиями - токами в индуктивных элементах и напряжениями на емкостных элементах , которые должны быть известны или рассчитаны. Через них выражаются искомые величины во время переходного процесса. Они же определяют энергетическое состояние цепи. Поэтому в качестве переменных состояния целесообразно выбирать токи и напряжения . Действующие источники можно назвать входными величинами , искомые величины - выходными . Для цепи с n независимыми токами и напряжениями должны быть заданы еще n независимых начальных условий.

Сокращенно дифференциальные уравнения состояния запишем в матричной форме так:

или короче

где X матрица-столбец (размера n x 1) переменных состояния (вектор переменных состояния); F - матрица-столбец (размера m x 1) ЭДС и токов источников (внешних возмущений); А - квадратная матрица порядка n (основная); В - матрица размера п х m (матрица связи). Элементы этих матриц определяются топологией и параметрами цепи.
Для выходных величин (если определяются не токи в индуктивных и напряжения на емкостных элементах) в матричной форме система алгебраических уравнений имеет вид

или короче

где W - матрица-столбец (размера l x 1 ); M - матрица связи (размера l x n ); N - матрица связи (размера l x m ).
Элементы матриц зависят от топологии и параметров цепи. Для уравнений состояния разработаны и машинные алгоритмы формирования на основе топологии и значений параметров.
Уравнения в матричной форме (14.91) можно составить, например, с применением метода наложения. Для получения зависимостей между производными переменных состояния, т. е.
и переменными состояния , а также ЭДС и токами источников, действующими в цепи, будем считать, что переменные состояния заданы. Рассматриваемую цепь, например на рис. 14.41, а, заменим после коммутации эквивалентной (рис. 14.41,6), у которой каждый заданный ток представлен источником тока , а каждое заданное напряжение - источником напряжения (ЭДС) . Применив метод наложения (положительные направления выбраны), запишем напряжения и токи (сначала учитываем действие источников затем и далее источников, действующих в цепи):


Так как , то

Конечно, уравнения (14.93) можно получить и из уравнений Кирхгофа исключением токов и напряжений ре-зистивных элементов. Однако совместное решение уравнений Кирхгофа с увеличением числа ветвей цепи становится все более громоздким.
Уравнения состояния можно формировать и сразу в матричной форме.
Если источников тока и ЭДС нет, т. е. F = 0, то уравнения (14.91) упрощаются

и характеризуют свободные процессы в цепи. Решение запишем в виде

где X (0) - матрица-столбец начальных значений переменных состояния; - матричная экспоненциальная функция.
Подставив (14.94) в (14.91в), убедимся, что получается тождество.
При
решение уравнения (14.91) представим в виде

где Ф(t ) - некоторая матричная функция цепи. После дифференцирования (14.95) получим

Сравним (14.96) с (14.91а)

и, умножив на , после интегрирования найдем, что

где q - переменная интегрирования, или



Подставим это выражение в (14.95):



В частности, при t = 0 имеем

Следовательно, решение для переменных состояния записывается в виде


(реакция цепи равна сумме реакций при нулевом входе и при нулевом начальном состоянии).
Это решение можно получить и применив операторный метод расчета переходных процессов, рассматриваемый в разделе .
Выходные величины можно найти по (14.92).
Если состояние цепи задано не при t = 0, а при
, то в (14.97) первое слагаемое записывается так: , а нижний предел интеграла не 0, а t .
Главная трудность расчета заключается в вычислении матричной экспоненциальной функции. Один из путей такой: сначала находим собственные значения
l матрицы А, т. е. корни уравнения

где 1 - единичная матрица порядка n , которые определяются из уравнения


где - элементы матрицы А.
Собственные значения совпадают с корнями характеристического уравнения цепи.
Матричная экспонента, аргумент которой - матрица А t , имеющая порядок n , представима конечным числом n слагаемых. Если собственные значения различны, то

Где - функции времени; и т. д.
Далее для определения составляем алгебраическую систему n уравнений

Наконец, определив из (14.100), по (14.99) находим и затем X (t) по (14.97).

Пример 14.6. Определить ток в цепи на рис. 14.42 после коммутации при .

Решение. Выбираем положительные направления токов в индуктивных элементах, т. е. переменных состояния, и тока . Независимые начальные условия: . Дифференциальные уравнения цепи


Исключив ток , получим уравнения относительно производных переменных состояния:

т. е. согласно (14.91)

и матрица-столбец начальных значений

Вычислим собственные значения; по (14.98)

откуда . Если приравнять нулю главный определитель уравнений с переменными состояния, то получим те же значения .
Находим коэффициенты ак по (14.100), т. е. из системы уравнений


Значения тока вычисленные в моменты секунд для интервала времени 0 - 0,1 с, в конце которого ток отличается от установившегося менее чем на 1,5%, приведены в табл. 14.1. При вычислениях цифры записывались с 8 разрядами, а во всех приведенных в примере формулах и в табл. 14.1 указаны с округлением.

Таблица 14.1

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

1,079

1,213

1,343

1,455

1,550

1,628

1,692

1,746

1,790

1,827

0,055

0,060

0,065

0,070

0,075

0,080

0,085

0,090

0,095

0,100

, то для n - q разных корней составляется система (14.100), а для q кратных уравнения получаются после вычисления первых q - 1 производных по от обеих частей уравнения с корнем , т. е.

Если в цепи действует только один источник ЭДС (или тока), представляющий единичный скачок 1(

t ), т. е. F(t )=1(t ), и начальные условия нулевые, то решение (14.97) запишется в виде



Для выходных величин по (14.92а) получим

Это будут переходные функции цепи h(t). Импульсные переходные функции

k (t ) определяются по (14.84) или (14.85).
Более общим путем вычисления матричной экспоненциальной функции служит ее представление бесконечным рядом


но ряд при больших t медленно сходится. При ограничении конечным числом слагаемых вычисление сводится к умножению и суммированию матриц. Такие операции есть в математическом обеспечении ЭВМ. Известен метод вычисления матричной экспоненциальной функции, основанный на критерии Сильверста.
Уравнения состояния цепей, порядок которых больше двух-трех, проще решаются не аналитическими, а численными методами, дающими возможность автоматизировать расчет в случае применения ЭВМ.

А б в

Накопителем энергии - емкостью

Расчет переходных процессов в цепях с одним

Электромагнитные процессы при переходном процессе в таких цепях обусловлены запасом электрической энергии в емкости С и рассеиванием этой энергии в виде тепла на активных сопротивлениях цепи. При составлении дифференциального уравнения следует в качестве неизвестной функции выбрать напряжение u C на емкости. Следует отметить, что при расчете установившихся режимов, т. е. при определении начальных условий и принужденной составляющей, сопротивление емкости в цепях постоянного тока равно бесконечности.

Пример 6.2. Включение последовательной цепи R,C на постоянное напряжение.

Цепь (рис. 6.3, а ), состоящая из последовательно соединенных сопротивления R = 1000 Ом и емкости С = 200 мкФ, в некоторый момент времени подключается к постоянному напряжению U= 60 В. Требуется определить ток и напряжение емкости в переходном процессе и построить графики u C (t ), i (t ).

R i R i, A u, B

U C U C t = 0.02,c

0 t 2t 3t t , с

Решение. 1. Определяем начальные условия. Начальное условие u C (-0) = 0, так как цепь до коммутации была отключена (полагаем достаточно длительное время).

2. Изображаем электрическую цепь после коммутации (рис. 6.3, б ), указываем направления тока и напряжений и для нее составляем уравнение по второму закону Кирхгофа

или .

3. Преобразуем уравнение п.2 в дифференциальное. Для этого, подставив вместо тока i известное уравнение , получим:

4. Решение уравнения (искомое напряжение на емкости) ищем в виде:

.

5. Определяем . Так как в цепи постоянного тока в установившемся режиме сопротивление емкости равно бесконечности (при этом ), то все напряжение будет приложено к емкости. Поэтому

u C пр =U= 60 В.

6. Составляем однородное дифференциальное уравнение

решением которого будет функция

7. Составляем характеристическое уравнение RC l + 1= 0, корень которого равен

Постоянная времени

8. Запишем решение .

9. Согласно второму закону коммутации и начальным условиям

10. Определим постоянную интегрирования А путем подстановки t =0 в уравнение п.8

Напряжение на емкости в переходном процессе

11. Ток в цепи можно определить по уравнению

или по уравнению п. 2

Графики u C (t ) и i (t ) представлены на рис. 6.3, в .

Мгновенные значения токов и напряжения, определяющие энергетическое состояние электрической цепи, называются в данном методе переменными, а сам метод назван методом переменных состояния.

Этот метод основан на составлении системы дифференциальных уравнений и, как правило, численном их решении с помощью ЭВМ.



В качестве неизвестных здесь следует принимать переменные, которые не имеют разрывов, т.е. за время не должно быть скачкообразного изменения этих величин. Такими переменными, следовательно, должны быть ток i и потокосцепление в индуктивности, напряжение и заряд на емкости. В противном случае при численном решении производных в точках, где имеется разрыв, возникает бесконечно большая величина, что недопустимо.

Существуют различные численные методы расчета дифференциальных уравнений. Это методы Эйлера, Рунге-Кутта и другие, которые отличаются друг от друга точностью расчета, объемом и временем вычислений. При этом, чем больше точность вычислений, тем больше требуется времени для решения.

1. Определить начальные условия.

2. Составить систему дифференциальных уравнений.

3. Все переменные в уравнениях п.2 выразить через токи или потокосцепления в индуктивностях и напряжения или заряды на емкостях.

4. Все уравнения п.3 свести к нормальной форме Коши.

Как указывалось выше САУ, независимо от природы составляющих его звеньев, может быть описана подобными дифференциальными уравнениями (2.1). Эти способы относятся к так называемым внешним описаниям системы. Наоборот, внутреннее описание дается в переменных состояния, предпочтительно используется для тех систем, которые имеют более одного входа и выхода. При этом под переменными состояния системы понимается набор переменных , производные первого порядка от которых входят в математическую модель САУ. С другой стороны, под переменными состояния понимается совокупность переменных, значения которых наряду с входным воздействием позволяет определить будущее состояние системы и выходные величины . Математическая модель системы в переменных состояния удобна для компьютерного анализа.

Пусть линейная система, характеризуется вектором состояния , составленным из n -переменных состояния. На вход системы поступают входные управляющие сигналы . Система описывается следующими уравнениями состояния в векторном виде:

(3.2)

где и - матрицы, составленные из постоянных коэффициентов, имеют вид:

, .

Кроме уравнения (3.2) для системы можно составить следующее матричное уравнение:

(3.3)

Здесь - вектор выходных величин. Матрицы постоянных величин имеют вид

.

Решение систем уравнений (3.2) и (3.3) для некоторого момента времени t = t 0 позволяет найти для времени t>t 0 , т. е. определить будущее состояние системы, а также дает возможность определить выходные величины .

Из системы уравнений (3.2) и (3.3) можно исключить вектор . В этом случае преобразование «вход-выход» может быть описан линейными дифференциальными уравнениями n-го порядка с постоянными коэффициентами в виде (2.1).

Все рассматриваемые виды описаний тесно взаимосвязаны, поэтому, зная одно из них, можно получить остальные. Например, связь между матрицами , , описания в пространстве состояний и комплексной передаточной функцией системы W(s) задается уравнением

W(s)= (sE- ) -1

где s  оператор Лапласа, E  единичная матрица.

Управляемость и наблюдаемость

В п-мерном пространстве состояний каждому состоянию системы соответствует не­которое положение изображающей точки, определяемое значениями переменные состояния (i = 1, 2,... п).

Пусть в пространстве состояний заданы два множества и . Рассматриваемая система будет управляемой, если существует управление , определенное на конечном интерва­ле времени 0, переводящее изображающую точку в пространстве из подобласти G 1 в подобласть G 2 .

Система называется наблюдаемой, если в формирова­нии вектора выходных координат участвуют все состав­ляющие вектора переменных состояния . Если ни одна из составляющих вектора не влияет на формирование выхода системы , то такая система будет ненаблюдаемой.

Анализ управляемости и наблюдаемости выполняется с помощью матриц управляемости и наблюдаемости или с помощью грамианов управляемости и наблюдаемости .

Сформируем на основе матриц , , две вспомогательные матрицы

R = [ , , ..., n -1 ], D = [ , ,…, n -1 ]

Mатрицы R и D называются соответственно матрицей управляемости и матрицей наблюдаемости системы. В пакете MATLAB их можно построить с помощью команд ctrb и obsv .

Для того чтобы система (3.2) была управляемой, необходимо и

достаточно, чтобы матрица управляемости имела полный ранг rankR = n.

Для того чтобы система (3.2) была наблюдаемой, необходимо и достаточно, чтобы матрица наблюдаемости имела полный ранг rankD=n.

В случае систем с одним входом и одним выходом матрицы R и D квадратные, поэтому для проверки управляемости и наблюдаемости достаточно вычислить определители матриц R и D. Если они не равны нулю, то матрицы имеют полный ранг.

Лекция 4. Оценка функционирования САУ

Оценка статических свойств

В зависимости от процессов, происходящих в САУ различают два режима функционирования работы САУ и их элементов: динамический и статический.

Переходному процессу соответствует динамический режим функционирования САУ и их элементов. Этому режиму в ТАУ уделяется наибольшее время. В динамическом режиме величины, определяющие состояние САУ и их элементов изменяется во времени. Выше были представлены математические модели САУ в динамическом режиме в виде дифференциальных уравнений n -го (2.1) или в виде уравнений состояния (3.2, 3.3).

Наоборот, установившийся процесс в САУ соответствует статическему режиму функционирования, при котором величины, характеризующие состояние САУ не изменяются во времени. Для оценки САУ в статическом (установившемся) режиме используется показатель называемый точностью управления. Этот показатель определяется по статической характеристике САУ.

Рис. 4.1. Статические характеристики статических и астатических систем

Статическая характеристика САУ представляет зависимость установившегося значения выходного параметра – y 0 от входного параметра – u 0 при постоянном возмущении или же зависимость выходного параметра - y 0 в установившемся режиме от возмущения–f при постоянном входном параметре. Уравнения статики САУ имеют вид или . В общем случае уравнения могут быть нелинейным. Рассмотрим статическую характеристику элементов или САУ в целом (рис. 4.1) построенную по второму уравнению. Если установившееся значение ошибки в системе зависит от установившегося значения возмущения f , то система называ­ется статической (Рис.4.1,а), а если не зависит - то астатической (Рис.4.1,б).

Относительная статическая ошибка, или статизм, системы равен

Также, статизм можно характеризовать коэффициентом статизма , равным тангенсу угла наклона статической характеристики (Рис. 3.1, а).

Эффективность статического регулирования САУ в установившемся режиме оценива­ют по так называемой степени точности управления, равной отношению абсолютной статической ошибки неавтоматизированного объек­та управления (без регулятора) к абсо­лютной статической ошибке автоматической системы.

В некоторых случаях статическая ошибка нежелательна, тогда переходят к астатическому регулированию или вводят компенсирующие воздействия на возмущения.

В. Н. Непопалов

Метод переменных состояния

Учебное пособие

Челябинск 2003

УДК 621.3.011(075.8)

Непопалов В. Н. Метод переменных состояния: Учебное пособие. – Нижневартовск, Изд. 2003.– 26 с.

Рассматривается метод переменных состояния расчета переходных процессов в линейных электрических цепях. Учебное пособиепредназначено в помощь студентам при самостоятельной работе по курсу «Дополнительные главы электротехники».

1. Нормальная форма уравнений состояния 4

2. Получение нормальной формы уравнений состояния 5

3. Примеры получения нормальной формы уравнений состояния 6

4. Решение уравнений состояния классическим методом 9

5. Использование элементов теории матриц для решения уравнений состояния 15

6. Применение к расчету переходных процессов 22

7. Контрольные вопросы 24

Метод переменных состояния

Переменными состояния будем называть определенный в момент времени t 0 набор функций (напряжений, потокосцеплений, токов или зарядов), значений которого вместе с заданными для t t 0 входными воздействиями, достаточно для однозначного определения выходных функций для любого момента времени t t 0 .

В качестве переменных состояния электрической цепи можно выбрать некоторый набор напряжений, зарядов, токов или потокосцеплений, определенных строго для момента времени , т. е. в момент непосредственно после коммутации. Это обстоятельство ограничивает возможность выбора переменных состояния напряжениями или зарядами на емкостях и токами или потокосцеплениями в индуктивностях, так как значения этих величин не изменяются в момент коммутации t  0:

,,,.

Число величин, определяющих количество переменных состояния, равно числу независимых физических начальных условий.

1. Нормальная форма уравнений состояния

Переменные состояния в момент времени t определяются матрицей-столбцом
, размерностью

С помощью переменных состояния математическая модель линейной электрической цепи, с независящими от времени параметрами, определяется совокупностью дифференциальных уравнений:

и алгебраических уравнений:

где X (t )– матрица-столбец переменных состояния размерностью
;

матрица-столбец производных переменных состояния;

F (t )– матрица-столбец заданных входных переменных или входных воздействий;

Y (t )матрица-столбец выходных переменных;

А ,В ,С ,D – матрицы известных величин, причем,А – квадратная матрица порядкаn . Размерности матрицВ, С , D определяются условиями конкретной задачи.

Дифференциальные уравнения вида

будем называть нормальной формой уравнений состояния, а алгебраические уравнения вида

уравнениями выходных функций.

2. Получение нормальной формы уравнений состояния

Для получения нормальной формы уравнений состояния

1. Нарисовать направленный граф схемы электрической цепи. Составить для этого графа нормальное дерево. В нормальное дерево необходимо включить все ветви с емкостями и источниками э. д. с . Если этого недостаточно для получения дерева, добавить ветви с резисторами, если и этого недостаточно для получения дерева, добавить ветви с индуктивностями. Связями (хордами) графа должны быть ветви с индуктивностями, источниками тока и резистивными ветвями, не вошедшими в дерево графа.

2. Для каждой ветви дерева определить сечение, в которое входит только одна ветвь дерева и некоторый набор связей графа (хорд). Число независимых сечений равно числу ветвей дерева: b t q – 1, где –q число узлов. Записать уравнения Кирхгофа для токов каждого главного сечения и выразить токи ветвей дерева через токи ветвей хорд. Основными из уравнений являются те, в которые входят токи емкостей (если они есть).

3. Для каждой связи определить контур, в который входит только одна связь и некоторый набор ветвей дерева. Число независимых контуров равно числу связей: b l b – q+ 1, гдеb число ветвей графа. Записать уравнения по второму закону Кирхгофа для каждого контура и выразить напряжения на индуктивностях (если они есть) через напряжения на других элементах. Если связями является ветви с источниками тока, то при составлении уравнений состояния уравнения по второму закону Кирхгофа для этих контуров не записываются. Основными являются те уравнения, в которые входят напряжения на индуктивностях.

4. С помощью оставшихся уравнений исключить из основных уравнений напряжения и токи резистивных ветвей. Выразить токов емкостей и напряжения на индуктивностях через напряжения на емкостях и токи в индуктивностях.

5. Подставить в основные уравнений уравнения элементов:

;
.

6. Преобразовать полученную систему в нормальную форму уравнений состояния.

7. Записать алгебраические уравнения выходных функций.

Уравнениями состояния электрической цепи называют любую систему дифференциальных уравнений, которая описывает состояние (режим) данной цепи. Например, система уравнений Кирхгофа является уравнениями состояния цепи, для которой она составлена.

В более узком смысле в математике уравнениями состояния называют систему дифференциальных уравнений 1-го порядка, разрешенных относительно производных (форма Коши). Система уравнений состояния в обобщенной форме имеет вид:

Та же система уравнений в матричной форме:

или в обобщённой матричной форме:

Система уравнений состояния формы Коши решается методом численного интегрирования (метод Эйлера или метод Рунге-Кутта) на ЭВМ по стандартной программе, которая должна быть в пакете стандартных программ. При отсутствии такой программы в пакете она легко может быть составлена по следующему алгоритму (метод Эйлера) для к-го шага:

Значения производных на к-ом шаге:

Значения переменных на к-ом шаге:

Для определения значений переменных и их производных на 1-м шаге ин¬тегрирова¬ния используются их значения на момент t=0, т.е. их начальные условия x1(0), x2(0)...xn(0).

Уравнения состояния формы Коши для заданной схемы могут быть получены из системы уравнений Кирхгофа путем их преобразования. Для этой цели: а) из системы уравнений Кирхгофа методом подстановки исключаются ""лишние"" переменные, имеющие зависимые начальные условия, и оставляют переменные iL(t) и uC(t), которые не изменяются скачком и имеют независи-мые начальные условия iL(0) и uC(0); б) оставшиеся уравнения решаются относительно производных и приводятся их к форме Коши.

В случае сложных схем уравнения состояния формы Коши могут быть составлены топологическими методами с использованием матриц соединений [A] и [B].

Последовательность расчета переходного процесса методом переменных состояния выглядит так:

1. Производится расчет схемы в установившемся режиме до коммутации и определяются независимые начальные условия iL(0) и uC(0).

2. Составляется система дифференциальных уравнений по законам Кирхгофа для схемы после коммутации.

3. Методом исключения ""лишних"" переменных система уравнений Кирхгофа преобразуется в систему уравнений Коши, составляются матрицы коэффициентов.

4. Выбирается расчетное время (продолжительность переходного процесса) и число шагов интегрирования N.

5. Решение задачи выполняется на ЭВМ по стандартной программе. Выходную функцию получают в виде графической диаграммы x=f(t)или в виде таблицы координат функций для заданных моментов времени.

Пример. Для схемы рис. 74.1 с заданными параметрами элементов (e(t)=Emsin(ωt+ψE), R, R1, R2, R3, L1, L2, C) выполнить расчет переходного процесса и определить функцию uab(t).


1. Выполняется расчет схемы в установившемся режиме переменного тока до коммутации и определяются начальные условия i1(0), i2(0), uC(0).

2. Составляется система дифференциальных уравнений по законам Кирхгофа:

3. Система уравнений Кирхгофа преобразуется в систему уравнений Коши.

Для этой цели из (1) выражаем

и делаем подстановку в (1) и (2), а из (4) делаем подстановку в (1). Тогда получим:


Введем обозначения.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: