Системы электросвязи. Основные тенденции развития сетей электросвязи

Основу теории и техники электросвязи составляет передача на расстояние различного рода сообщений (информации). Под информацией понимают совокупность сведений о каких-либо предметах, событиях, процессах чьей-либо деятельности и т.д. Форма представления информации называется сообщением . Это может быть речь или музыка, рукописный или машинописный текст, чертежи, рисунки, телевизионное изображение.

Для передачи по каналам связи каждое сообщение преобразуется в электрический сигнал. Сигнал – физический процесс, отображающий передаваемое сообщение (физический носитель сообщения). Физическая величина изменением, которой обеспечивается отображение сообщений, называется информационным или представляющим параметром сигнала.

Перенос сообщений из одной точки пространства в другую осуществляет система электросвязи. Система электросвязи (телекоммуникационная система) – комплекс технических средств, обеспечивающий передачу сообщений от источника к получателю на расстояние (рисунок 1.1).

Система электросвязи в целом решает две задачи:

1) доставка сообщений – функции системы электросвязи;

2) формирование и распознавание сообщений – функции оконечного оборудования.

Трактом передачи называют совокупность приборов и линий, обеспечивающих передачу сообщений между пользователями.

Канал передачи (связи) – часть тракта передачи между двумя любыми точками. В канал передачи не входят оконечные устройства.

Рисунок 1.1 – Структурная схема системы электросвязи (телекоммуникационной системы)

Принцип передачи сигналов электросвязи показан на рисунке 1.2.

Рисунок 1.2 – Принцип передачи сигналов электросвязи

На входе и на выходе тракта передачи сообщений включаются оконечные устройства, обеспечивающие преобразование сообщений в электрические сигналы и обратное преобразование. Данные устройства называются первичными преобразователями и сформированные ими сигналы также называются первичными . Например, при передаче речи первичным преобразователем является микрофон, при передаче изображения – электронно-лучевая трубка, при передаче телеграммы – передающая часть телеграфного аппарата.

Источник сообщения формирует сообщение a (t ) , которое преобразуется в электрический сигнал s (t ) . В системе электросвязи происходят вторичные преобразования сигналов и они транспортируются в форме, отличной от первоначальной.

Сеть электросвязи (телекоммуникационная сеть) - совокупность линий (каналов) связи коммутационных станций, оконечных устройств, на определенной территории, обеспечивающая передачу и распределение сообщений (рисунок 1.3).


Рисунок 1.3 – Обобщенная структурная схема сети электросвязи (телекоммуникационной сети)

На входе и на выходе сети связи включаются оконечные устройства, обеспечивающие преобразование сообщений в электрические сигналы и обратное преобразование. Оконечные устройства соединяются с коммутационной станцией абонентскими линиями. Коммутационные станции между собой связаны соединительными линиями. Коммутационные станции осуществляют соединение входящих линий с исходящими линиями по соответствующему адресу.

В общем виде, сообщение, передаваемое от источника к получателю состоит из двух частей: адресной и информационной. По содержимому адресной части коммутационная станция определяет направление связи и осуществляет выбор конкретного получателя сообщения. Информационная часть содержит само сообщение.

Совокупность процедур и процессов, в результате выполнения которых обеспечивается передача сообщений, называется сеансом связи , а набор правил в соответствии, с которыми организуется сеанс связи, называется протоколом .

«Цепи и сигналы электросвязи» – базовый курс в системе подготовки современного инженера в области электрорадиотехники и радиоэлектроники. Его целью является изучение фундаментальных закономерностей, связанных с получением сигналов, их передачей по каналам связи, обработкой и преобразованием в радиотехнических цепях.

Круг вопросов, которые охватывает данный курс, весьма обширен. В него входят, во-первых, вопросы теории сигналов:

· спектральный и корреляционный анализ информационных и управляющих сигналов;

· особенности спектрального и корреляционного анализа узкополосных радиосигналов, введение понятий комплексного и аналитического сигналов;

· основы теории дискретных и цифровых сигналов;

· статистический анализ случайных сигналов и помех, изучаемый в едином комплексе с детерминированными сигналами.

Во-вторых, в курс «Цепи и сигналы электросвязи» входит теория преобразования перечисленных выше сигналов в линейных цепях – апериодических и частотно-избирательных.

В-третьих, в него входят основные положения теории нелинейных и параметрических устройств и преобразования в них сигналов.

Большое значение приобрели вопросы теории цифровой обработки сигналов, оптимальной обработки сигналов на фоне помех и основные положения теории синтеза радиотехнических цепей – аналоговых и цифровых.

Таким образом, в результате изучения дисциплины студент должен знать:

· основные понятия: информация, сообщение, сигнал,

· структуру построения системы электросвязи,

· виды электросвязи,

· назначение и структуру канала связи,

· сущность основных физических процессов при передаче информации с помощью электрических сигналов,

· виды сигналов, их параметры,

· физические характеристики сигналов,

· математические модели, отображающие периодические сигналы,

· спектры периодических сигналов,

· спектры непериодических сигналов;

а также уметь:

· пояснить структуру одноканальной системы связи,

· пояснить принцип действия основных видов преобразователей сообщения в сигнал и сигнала в сообщение,

· исследовать спектральный состав сигналов,

· математически и графически представить различные виды сигналов,

· построить временные и спектральные диаграммы по параметрам сигналов,

· провести лабораторные исследования спектров периодических и непериодических сигналов.

Изучение курса необходимо начать с основных понятий электросвязи – информации, сообщения и сигнала.

Понятия информации и сообщения употребляются довольно часто. Эти близкие по смыслу значения сложны и дать их точное определение нелегко. Слово «информация» происходит от латинского «informatio» – разъяснение, ознакомление, осведомленность. Обычно под информацией понимают совокупность сведений, данных о каких-либо событиях, явлениях или предметах. Мы живем в информационном мире. Все, что мы видим, слышим, помним, знаем, переживаем, – все это различные формы информации. Совокупность сведений, данных становится знанием лишь после их интерпретации с учетом ценности и содержания этих сведений. Следовательно, информацию в широком смысле можно определить как совокупность знаний об окружающем нас мире. В таком понимании информация является важнейшим ресурсом научно-технического и социально-экономического развития общества. В отличие от материального и энергетического ресурсов, информационный ресурс не уменьшается при потреблении, накапливается со временем, сравнительно легко и просто с помощью технических средств обрабатывается, хранится и передается на значительные расстояния.



Таким образом, под информацией понимается вся совокупность сведений о событиях, процессах и фактах, имеющих место в живой и неживой природе и предназначенных для обработки, хранения и передачи.

Для передачи или хранения информации используют различные знаки (символы), позволяющие выразить (представить) ее в некоторой форме. Этими знаками могут быть слова и фразы в человеческой речи, жесты и рисунки, формы колебаний, математические знаки и т.п. Так, при телеграфной передаче сообщением является текст телеграммы, представляющий собой последовательность отдельных знаков – букв и цифр. При разговоре по телефону сообщением является непрерывное изменение во времени звукового давления, отображающее не только содержание, но и интонацию, тембр, ритм и иные свойства речи. При передаче движущихся изображений в телевизионных системах сообщение представляет собой изменение во времени яркости элементов изображения. Поэтому форма, в которой человек получает информацию, может быть разной.

Сообщение – это форма представления информации.

Передача сообщений на расстояние осуществляется с помощью какого-либо материального носителя (бумаги, магнитной ленты и т.д.) или физического процесса (звуковых или электромагнитных волн, тока и т.д.).

Физический процесс, отображающий передаваемое сообщение и распространяющийся в определенном направлении называется сигналом .

В качестве сигнала можно использовать любой физический процесс, изменяющийся в соответствии с передаваемым сообщением. В современных системах связи чаще всего используют электрические сигналы. Физической величиной, определяющей такой сигнал, является ток или напряжение.

Электрическое колебание, содержащее сообщение называется электрическим сигналом .

Сигналы формируются путем изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением. Этот процесс (изменения параметров носителя) принято называть модуляцией. Все преобразования сигналов будут рассмотрены в следующих разделах курса.

Совокупность технических средств, для передачи сообщений от источника к потребителю называется системой связи .

Рассмотрим принцип построения простейшей одноканальной системы связи, приведенной на рисунке 1. Разберем назначение отдельных элементов схемы, представленной на этом рисунке.

Источником сообщений и получателем в одних системах связи может быть человек, в других – различного рода устройства.

Преобразователь сообщения в сигнал – преобразует звуковой сигнал или сигнал изображения в электрический сигнал.

В передатчике первичный сигнал (обычно низкочастотный) превращается во вторичный (высокочастотный) сигнал , пригодный для передачи по используемому каналу. Это преобразование осуществляется посредством модуляции.

Линией связи называется физическая среда и совокупность аппаратных средств, используемых для передачи сигналов от передатчика к приемнику. В системах электрической связи – это, прежде всего, кабель или волновод, в системах радиосвязи – область пространства, в которой распространяются электромагнитные волны от передатчика к приемнику. При передаче канальный сигнал может искажаться, так как на него могут накладываться помехи .

Приемник обрабатывает принятое колебание , представляющее собой сумму пришедшего искаженного сигнала и помехи , и восстанавливает по нему переданный сигнал (он также будет несколько искаженным).

Преобразователь сигнала в сообщения преобразует сигнал в сообщение , которое с некоторой погрешностью отображает переданное сообщение a . Другими словами, приемник должен на основе анализа колебания определить, какое из возможных сообщений передавалось. Поэтому приемное устройство является одним из наиболее ответственных и сложных элементов системы связи.

По виду передаваемых сообщений различают следующие системы связи:

· передача речи (телефония);

· передача текста (телеграфия);

· передача неподвижных изображений (факсимильная связь);

· передача подвижных изображений (телевидение), телеизмерение, телеуправление;

· передача данных.

По назначению телефонные и телевизионные системы делятся на:

· вещательные, отличающиеся высокой степенью художественности воспроизведения сообщений;

· профессиональные, имеющие специальное применение (служебная связь, промышленное телевидение и т.п.).

В системе телеизмерения физическая величина, подлежащая измерению (температура, давление, скорость и т.п.), с помощью датчиков преобразуется в первичный электрический сигнал, поступающий в передатчик. На приемном конце переданную физическую величину или ее изменения выделяют из сигнала и наблюдают или регистрируют с помощью записывающих приборов. В системе телеуправления осуществляется передача команд для автоматического выполнения определенных действий. Нередко эти команды формируются автоматически на основании результатов измерения, переданных телеметрической системой.

Внедрение высокоэффективных ЭВМ привело к необходимости быстрого развития систем передачи данных, обеспечивающих обмен информацией между вычислительными средствами и объектами автоматизированных систем управления. Этот вид электросвязи по сравнению с телеграфной отличается более высокими требованиями к скорости и верности передачи информации.

Теперь разберем понятие канала связи. Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки A системы до точки B (рисунок 2). Точки A и B могут быть выбраны произвольно, главное, чтобы между ними проходил сигнал. Часть системы связи, расположенная до точки A, является источником сигнала для этого канала. Если сигналы, поступающие на вход канала и снимаемые с его выхода, являются дискретными (по уровням), то канал называется дискретным .

Если входные и выходные сигналы канала являются непрерывными (по уровню), то и канал называется непрерывным . Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот.

Следует отметить, что некоторые блоки на схеме рисунка 2 не обозначены, так как их структура зависит от вида системы связи и типа канала.

Типы каналов, по которым передаются сигналы, многочисленны и разнообразны. Различают каналы проводной связи (воздушные, кабельные, оптические и др.) и каналы радиосвязи .

Кабельные линии связи являются основой магистральных сетей дальней связи, по ним осуществляется передача сигналов в диапазоне частот от десятков кГц до сотен МГц. Весьма перспективными являются волоконно-оптические линии связи. Они позволяют в диапазоне 600 – 900 ТГц обеспечить очень высокую пропускную способность (сотни телевизионных каналов или сотни тысяч телефонных каналов).

Наряду с проводными линиями связи широко используются радиолинии различных диапазонов (от сотен кГц до десятков ГГц). Эти линии более экономичны и незаменимы для связи с подвижными объектами. Широкое распространение для многоканальной радиосвязи получили радиорелейные линии (РРЛ) метрового, дециметрового и сантиметрового диапазонов на частотах от 60 МГц до 15 ГГц. Все большее применение находят спутниковые линии связи – РРЛ с ретранслятором на искусственном спутнике Земли (ИСЗ). Для этих линий (систем) связи отведены диапазоны частот 4 – 6 и 11 – 275 ГГц. Большая дальность при одном ретрансляторе на спутнике, гибкость и возможность организации глобальной связиважные преимущества спутниковых систем.

Системы для передачи непрерывных сообщений . Системы телефонной связи предназначены для передачи на расстояние звуковых (акустических) сообщений, создаваемых голосовыми связками и воспринимаемых органом слуха (ухом) человека. Поэтому в качестве передатчиков используются устройства, которые преобразуют звуковые колебания, происходящие в воздушном пространстве, в электрические сигналы, передаваемые на расстояние. Такие акустоэлектрические преобразователи называются микрофонами .

Приемник в системе телефонной связи выполняет обратное преобразование электрических сигналов в звуковые колебания.

Такой электроакустический преобразователь называется телефоном .

Кроме микрофона и телефона, являющихся основными элементами системы, у каждого абонента имеется ряд вспомогательных устройств, необходимых для удобства подключения, вызова и сигнализации. Основные и вспомогательные элементы, которыми пользуется абонент, конструктивно составляют телефонный аппарат. Современные телефонные аппараты весьма разнообразны. Они отличаются типами микрофонов, телефонов, номеронабирателей, а также формой корпуса аппарата.

Каналы связи в системах телефонной связи образуются совокупностью устройств и среды распространения, обеспечивающих прохождение сигналов от одного телефонного аппарата к другому.

Системы звукового вещания обеспечивают одностороннюю передачу звуковых сообщений (речи, музыки) от источника до большого числа слушателей, рассредоточенных в пространстве. В зависимости от технических средств, используемых для этого, различают системы радиовещания и проводного вещания.

В первом случае сигналы передаются по радиоканалу, в котором средой распространения является открытое пространство. Радиоканал образуется с помощью специальных устройств, основными из которых являются радиопередатчик, передающая антенна, приемная антенна и радиоприемник.

Радиопередатчик преобразует первичный низкочастотный сигнал на выходе микрофона в высокочастотный сигнал, излучаемый передающей антенной в окружающее пространство в виде электромагнитных волн.

Под воздействием поля излучения в приемной антенне возникает высокочастотный ток, характер изменения которого повторяет закон изменения высокочастотного сигнала. В радиоприемнике из высокочастотного сигнала после соответствующей обработки выделяется первичный (исходный) сигнал. Далее низкочастотный первичный сигнал преобразуется громкоговорителем в звуковое сообщение.

В системах проводного вещания сигналы звукового вещания доставляются слушателям по так называемым проводным каналам, использующим в качестве среды распространения специальные направляющие устройства -проводные линии передачи. Иногда часть канала реализуется радиотехническими средствами, а часть - проводными. При этом сообщения также преобразуются в сигнал с помощью микрофона, устанавливаемого в специальных помещениях - студиях. Приемниками являются абонентские громкоговорители, устанавливаемые непосредственно в квартирах слушателей. Передача сигналов между микрофоном и приемником осуществляется по проводам, проходящим через специальные узлы проводного вещания.

Телевизионная связь предназначена для одновременной передачи оптических и звуковых сообщений, поэтому системы телевизионной связи содержат две подсистемы. Подсистема передачи звуковых сообщений практически не отличается от рассмотренной выше системы звукового вещания. Подсистема передачи оптических сообщений обеспечивает передачу подвижных изображений. Телевизионные сигналы, как правило, передаются по радиоканалу. Радиоканал содержит телевизионный радиопередатчик (РПер), передающую антенну, среду распространения радиоволн, приемную антенну и телевизионный радиоприемник (РПр).

Спектр видеосигнала содержит низкие частоты и поэтому его невозможно передать в открытом пространстве. Преобразование видеосигнала в радиочастотный сигнал, способный излучаться передающей системой в окружающее пространство в виде радиоволн, осуществляется в телевизионном радиопередатчике.

На приемной стороне системы часть энергии радиоволн перехватывается приемной антенной, усиливается и вновь преобразуется в телевизионном радиоприемнике в видеосигнал.

Для преобразования видеосигналов в сообщения используется свойство некоторых веществ, которые светятся под действием падающего на них потока электронов. Такие вещества называются люминофорами. Яркость их свечения пропорциональна интенсивности падающего потока.

Слой люминофора нанесен на внутреннюю поверхность широкой части стеклянного баллона. Электронный луч создается прожектором, формируется и ускоряется специальными электродами.

Интенсивностью электронного луча управляет видеосигнал. Луч направляется на люминофор и высвечивает поэлементно строку за строкой. Движение луча по горизонтали и вертикали задается отклоняющей системой. Поскольку интенсивность луча изменяется в соответствии с изменением сигнала, яркость свечения каждой строки будет изменяться. Ввиду большой скорости перемещения луча по строкам и определенной инерционности зрения человек наблюдает на экране цельное оптическое изображение.

Устройства, обеспечивающие преобразование радиочастотных сигналов в электрические сигналы звуковых частот и видеосигналы, а также громкоговоритель и кинескоп конструктивно объединены в один аппарат, называемый телевизором.

Системы телеграфной связи предназначены для двухсторонней передачи дискретных сообщений (телеграмм). Они состоят из двух подсистем. При этом на каждом конце системы необходимо иметь передатчик и приемник. Эти два устройства обычно конструктивно объединяются и образуют устройство, называющееся оконечным телеграфным аппаратом. Следовательно, телеграфная связь реализуется системой, состоящей из двух оконечных телеграфных аппаратов, соединенных каналом связи.

В системах передачи дискретных сообщений используется кодовый метод преобразования сообщения в сигнал и обратно. Смысл этого метода заключается в том, что знаки сообщения при передаче заменяются кодовыми комбинациями, составляемыми из определенных элементов. При этом каждому знаку сообщения соответствует своя комбинация. Совокупность всех используемых комбинаций составляет телеграфный код. Старейшим и наиболее известным является код Морзе, комбинации которого составляются из двух различных элементов -- "точка" и "тире".

При использовании кодов передача сообщений сводится к передаче двух различных элементов кодовых комбинаций. Процесс преобразования знаков сообщения в сигнал начинается с кодирования, в результате которого знаки заменяются кодовыми комбинациями. Затем элементы комбинации последовательно преобразуются в элементы сигнала, то есть в импульсы тока. Эти функции выполняются специальными устройствами передающей части оконечного телеграфного аппарата.

Приемник системы телеграфной связи выполняет обратное преобразование сигнала в сообщение в следующей последовательности. Вначале элементы сигнала поочередно принимаются, преобразуются в элементы кодовой комбинации и запоминаются. Затем определяется знак, соответствующий принятой кодовой комбинации, то есть выполняется операция, обратная кодированию, называемая декодированием. Процесс приема заканчивается записью знака на бумаге. Все перечисленные операции выполняются специальными устройствами приемной части оконечных телеграфных аппаратов.

Системы передачи данных не имеют принципиальных отличий от систем телеграфной связи. В них также используют условный (кодовый) метод преобразования сообщений в сигнал и обратно, и поэтому процесс передачи сообщений и устройства передатчика и приемника не отличаются от соответствующих элементов системы телеграфной связи.

Как отмечалось выше, системы передачи данных способны передавать дискретные сообщения значительно быстрее и точнее, то есть обеспечивать более высокую скорость и качество передачи сообщений. Они гарантируют заданную верность передачи при любой практически необходимой скорости передачи сообщений. Это достигается благодаря использованию дополнительных устройств повышения качества передачи сообщений, которые конструктивно объединяются с передатчиками и приемниками систем передачи данных, образуют приемопередающие устройства, называемые аппаратурой передачи данных.

Одна её часть, выполняющая различные преобразования сигналов при передаче, размещается на передающем, а вторая, обеспечивающая прием, корректировку и другие преобразования сигналов и кодовых комбинаций, размещается на приемном конце системы передачи данных.

Устройства повышения качества передачи позволяют обнаруживать или даже исправлять ошибки в сообщениях, появляющиеся в процессе передачи. Системы передачи данных используют двухсторонний канал, обратный канал используется для борьбы с ошибками.

Типичная функциональная схема организации цифрового канала электросвязи изображена на рис. 2.10. Цифровой канал имеет зеркальное функционирование передающего и приёмного плеч.

Системы электросвязи классифицируются по назначению, по типу применяемого сигнала, по способу осуществления соединения, по степени интеграции решаемых задач и по способу обмена информацией (рис.1.7).

По назначению различают сети телефонной, факсимильной связи, сети передачи данных и телетекса.

По типу применяемого сигнала системы связи подразделяются на аналоговые и цифровые.

В аналоговых сетях используется непрерывный сигнал. Особенностью его является то, что два сигналы могут отличаться один от другого как угодно мало. В цифровых сетях используется сигнал, который состоит из различных элементов. Такими элементами являются 1 и 0. Единица обычно обозначается импульсом или отрезком гармонического колебания с определенной амплитудой. Нуль обозначается отсутствием переданного напряжения. Совокупность 1 и 0 составляет сообщение - кодовую комбинацию.


По способу осуществления соединения системы подразделяются на сети с коммутацией каналов, коммутацией сообщений и коммутацией пакетов.

В сетях с коммутацией каналов соединения абонентов осуществляется по типу автоматической телефонной станции. Основной их недостаток – это большое время вхождения в связь из-за занятости каналов или вызываемого абонента. Обмен информацией в сетях с коммутацией сообщений осуществляется по типу передачи телеграмм. Отправитель составляет текст сообщения, указывает адрес, категорию срочности и секретности и это сообщение записывается в запоминающее устройство (ЗУ). При освобождении канала сообщение автоматически передается на следующий промежуточный узел или непосредственно абоненту. На промежуточном узле сообщения также записывается в ЗУ и при освобождении следующего участка передается дальше. Преимуществом таких сетей является отсутствие отказа в приеме сообщения. Недостаток заключается в сравнительно большом времени задержки сообщения за счет его сохранения в ЗУ. Поэтому такие сети не используют для передачи информации, которая требует доставки в реальном времени. В сетях с коммутацией пакетов обмен информацией осуществляется также как в сетях с коммутацией сообщений. Однако сообщение делится на короткие пакеты, которые быстро находят себе маршрут к адресату. В результате время задержки пакетов будет меньшим.

По степени интеграции решаемых задач различают интегральные цифровые сети и цифровые сети интегрального обслуживания.

В цифровых интегральных сетях интеграция осуществляется на уровне технических устройств. Одно устройство решает несколько задач. Например, решает задачу уплотнения канала и коммутации. В цифровых сетях интегрального обслуживания интеграция осуществляется на уровне служб. Сигналы телефонии, телетекса, передачи данных и другие передаются цифровым способом с помощью одних и тех же устройств. В таких сетях отсутствует разделение на первичные и вторичные сети.

По способу обмена информацией сети подразделяются на синхронные, асинхронные и плезиохронные.

В синхронных сетях генераторы управляющих сигналов на конечных и промежуточных пунктах постоянно синхронизированы независимо от того передается информация или нет. В асинхронных сетях синхронизация осуществляется только на время приема сообщения.

Плезиохронный метод функционирования допускает отсутствие постоянного подстраивания местных генераторов. Прием сообщений обеспечивается за счет применения высокостабильных местных генераторов с автоподстройкой под сигналы единой частоты через довольно продолжительные интервалы времени.

Сеть телефонной связи предназначена для передачи на расстояние речевых (акустических) сообщений.

Сети передачи данных предназначены для обмена информацией между ЭВМ. Сети передачи данных как и телеграфные сети используют дискретные сигналы. В отличие от телеграфии в сетях передачи данных обеспечивается большая скорость и качество передачи сообщений. Гарантируется заданная вероятность доставки при любой практически необходимой скорости передачи сообщений. Это достигается благодаря использованию дополнительных устройств повышения качества передачи сообщений, которые конструктивно объединяются с передатчиками и приемниками систем передачи данных, образовывая приемо-передающие устройства, которые называются аппаратурами передачи данных (АПД).

Сеть факсимильной связи предназначена для передачи не только содержания, но и внешнего вида самого документа.

Оконечное устройство факсимильных сетей представляет собой цифровой факсимильный аппарат, который работает по телефонной сети со скоростями 2,4-4,8 кбит/с или по сетям передачи данных со скоростями 4,8; 9,6; и 48 кбит/с. В нем осуществляется статистическое кодирование информации с коэффициентом сжатия около 8, что позволяет передавать страницу текста за 2 мин. при скорости 2,4 кбит/с и соответственно за 30 с при скорости 9,6 кбит/с.

Телетекс это буквенно-цифровая система передачи деловой корреспонденции, которая построена по абонентскому принципу. Основная идея телетекса - объединение всех возможностей современной печатной машинки с передачей сообщений при условии сохранения содержания и формы текста. Эта система немного напоминает телекс (абонентский телеграф), но отличается от нее большим набором знаков (256 за счет 8- элементного кода), большей скоростью передачи (2400 бит/с), высокой достоверностью, возможностью редактировать подготовленную к передаче документацию и другие дополнительные особенности. Передача информации в системе телетекс осуществляется по телефонным сетям.

Важной особенностью и принципиальным преимуществом телетекса сравнительно с телексом является отсутствие необходимости в дополнительной работе на клавиатуре во время передачи текста. Это преимущество достигается благодаря тому, что подготовленный на оконечном устройстве текст, запоминается в его оперативном запоминающем устройстве, откуда информация передается по каналу связи. Принятое сообщение может быть воспроизведено на экране дисплея или отпечатано.

Система телетекс имеет много общего с системой передачи данных, а именно: цифровой метод передачи, скорость передачи 2,4 кбит/с, применяемые методы повышения борьбы с ошибками и управление соединением.

Расхождение между этими системами состоят в том, что в телетексе используется разговорный язык, передачи данных - формализованные языки.

На базе сетей телетекса и факса создаются службы электронной почты, т.е. службы передачи письменной корреспонденции по сетям электросвязи, которые обеспечивают получение “твердой копии” оригинала.

Раздельное использование приведенных выше вторичных сетей сдерживает развитие систем телекоммуникаций. Внедрение цифровых сетей позволяет на единой цифровой основе обеспечить передачу сигналов различных служб, т.е. организовывать цифровую сеть интегрального обслуживания . Под цифровой сетью интегрального обслуживания понимают совокупность архитектурно-технологических методов и аппаратно-программных средств доставки информации территориально удаленным пользователям, что позволяет на цифровой основе предоставлять пользователям различные услуги. Эта сеть позволяет передавать телефонные, телеграфные и другие сигналы с помощью одного универсального терминала. Этот терминал должен содержать телефон, дисплей и клавиатуру для набора текста. Абонент такой сети может наблюдать на дисплее за изображением и разговаривать с другим абонентом по телефону.

1.1 Состав и структура общегосударственной системы связи.

1 .2 Архитектура ЕСЭ. Статус сетей, служб, систем электросвязи.

1.3 Классификация служб, пользователей и услуг.

1.4 Номенклатура и виды предоставляемых услуг.

1.5 Основные тенденции развития сетей электросвязи.

1.6 Этапы развития ЕСЭ России.

1.7 Общие требования к сетям электросвязи.

Раздел 1 посвящен концептуально – целевым основам построения, развития

и общим огранизационно – техническим положениям Единой сети электросвязи

Российской Федерации. В данном разделе с системных позиций рассмотрено назначение, состав и структура Общегосударственной системы связи РФ. Особое внимание уделено архитектуре Единой сети электросвязи (ЕСЭ), принципам ее построения, категориям сетей, входящим в состав ЕСЭ. Рассмотрено назначение первичной сети, вторичных сетей, систем электросвязи и служб электросвязи. Приведены классификация пользователей сети, услуг и служб электросвязи. Значительное внимание уделено номенклатуре услуг электросвязи, предостав-ляемых населению страны, в настоящее время и недалеком будущем. Указаны основные тенденции развития электросвязи в мире, что в значительной степени определяет процесс развития ЕСЭ. Важное место в разделе занимает рассмотрение

этапов развития ЕСЭ, определяющие техническую политику, проводимую Министерством информационных технологий и связи РФ. Значительное внимание

уделяется требованиям, предъявляемым к сетям связи, которые определяют политику разработки средств связи, проектирования и эксплуатации сетей электросвязи. Для контроля уровня усвоения изучаемого материала приводятся

контрольные вопросы. Для повышения уровня знаний и оперативного получения

справочной информации приведен список литературы и глоссарий.

1.1 Состав и структура общегосударственной системы связи

Существование современного общества немыслимо без обмена информацией. Информация, понимаемая в широком смысле этого слова как отраженное разнообразие окружающего мира, выполняет в обществе следующие основные функции: коммуникативную , или функцию общения людей; познавательную, целью которой является получение новой информации; управленческую, целью которой является формирование целесообразного поведения управляемой системы. Для интенсификации информационных процессов при общении людей в первой половине прошлого века началось развитие средств электрической связи, обеспечивающих ускорение в первую очередь таких форм движения информации, как передача и распределение. За полтора столетия средства связи много раз изменялись, появлялись новые виды электрической связи, однако основная их функция в обществе – интенсификация коммуникатив-ных процессов – сохранилась. Потребности в интенсификации информаци-онных процессов, связанных с управленческой и познавательной деятель-ностью людей, привели к созданию вычислительной техники. Средства вычислительной техники позволили ускорить такие формы движения информации, как обработка, поиск, хранение, восприятие, отображение, распределение и др. Органическое объединение, интеграция средств элек-тросвязи и вычислительной техники позволили обеспечить согласованное ускорение всех форм движения информации, интенсификацию всех инфор-мационных процессов в обществе. Целесообразная информационная деятельность людей, информация и сред-ства информационной деятельности являются основными компонентами информационной системы общества. Если целью информационной деятель-ности является общение с помощью средств связи, то создаваемая для этой цели информационная система называется системой связи . В соответствии системным подходом при создании любой системы объеди-нение компонентов в систему, их взаимодействия, связи и отношения дол-жны быть направлены на достижение общей цели. В частности, в рамках системы связи должны быть согласованы принципы взаимодействия средств связи, указаны их параметры, установлены порядок пользования этими средствами, определены методы эксплуатации, пропорции и перспективы их развития, согласованы цели назначения всех элементов и подсистем с общей целью функционирования системы.

В нашей стране для наиболее полного удовлетворения потребностей населе-ния, органов государственной власти и управления, обороны и безопасности правопорядка, а также хозяйствующих объектов в услугах электрической и почтовой связи создается и действует система связи Российской Федера-ции (СС РФ). Система связи РФ (Связь РФ) объединяет все системы связи страны по организационному, технологическому, методологическому и другим признакам в единую систему связи и представляет собой совокупность сетей, служб связи и других средств обеспечения, расположенных и функционирующих на территории РФ. Средства СС РФ совместно со средствами ВТ (вычислительной техники) составляют техническую основу информатизации общества. Структура системы связи РФ, представлена на рис. 1.1

Рис. 1.1 Состав системы связи РФ

В СРФ входят федеральная связь и технологические системы связи. Основными компонентами федеральной связи являются федеральная электросвязь (ФЭС) и федеральная почтовая связь (ФПС).

Электросвязь – всякая передача или прием знаков, сигналов, письменного текста, изображений, звуков по проводной, радио -, оптической и другим электромагнитным системам.

Почтовая связь – прием, обработка, перевозка и доставка почтовых отправлений, а также перевод денежных средств.

Федеральная электросвязь включает системы связи общего пользования, системы связи специального назначения и выделенные системы связи.

Системы связи общего пользования - составная часть СС РФ, открытая для пользования всем физическим и юридическим лицам, в услугах которых этим лицам не может быть отказано.

Выделенные системы связи – это системы электросвязи физических и юридических лиц, не имеющих выхода на системы связи общего пользования.

Системы связи специального назначения предназначены для обеспечения нужд государственного управления, обороны, безопасности и охраны право-порядка в Российской Федерации. Такие системы связи не могут быть использованы для возможного оказания услуг населению. Технологические системы связи – это системы электросвязи предприятий, учреждений и организаций, создаваемые для управления внутрипроизвод-ственной деятельностью и технологическими процессами, не имеющие выхо-да на системы общего пользования. При наличии свободных ресурсов в технологических системах связи эти сетевые ресурсы могут быть присоеди-нены к системе связи общего пользования и использованы для предоставле-ния возможных услуг любому пользователю. Выделенные системы связи также могут быть присоединены к системе электросвязи общего пользования, если они соответствуют ее требованиям. В настоящее время в состав Федеральной электросвязи входят следующие системы электросвязи общего пользования: телефонной связи (СТФС); телеграфной связи (СТгС); факсимильной связи (СФС); передача газет (СПГ); передача данных (СПД); распределения программ звукового вещания (СРПЗВ); распределения программ телевизионного вещания (СРПТВ). В процессе развития СС РФ состав систем электросвязи претерпевает суще-ственные изменения за счет интеграции ряда систем и образования новых. Этот процесс обусловлен, прежде всего, внедрением новых технологий и новых технических решений на сетях электросвязи. В качестве первого шага интеграции отдельных систем электросвязи возможно объединение систем электросвязи, обеспечивающих передачу документальных сообщений, в систему документальной электросвязи (СДЭС). Дальнейшее развитие интеграции связано с созданием системы с интеграцией служб (N – ISDN и B - ISDN) и интеллектуальных систем электросвязи, а также системы связи нового (следующего) поколения - NGN. Система телефонной связи(T C ) предназначена для удовлетворения потребностей населения, учреждений, организаций и предприятий в передаче телефонных, факсимильных сообщений и данных со скоростью не более 64 кбит/с. Система ТС обеспечивает выход на технологические телефонные сети, международную телефонную сеть, а также связь с подвижными абонен-тами и Internet. Система телеграфной связи обеспечивает передачу документальных сообщений, представленных в виде буквенно-цифрового текста. Система передачи данных обеспечивает передачу данных широкому кругу предприятий и учреждений страны, населению, а также для удовлетворения нужд автоматизированных систем управления. Система факсимильной связи обеспечивает передачу неподвижных, как цветных, так черно-белых, полутоновых и штриховых изображений в виде фотографий, рисунков, графиков, рукописных текстов и т.п. на любом языке и с любым алфавитом, нанесенных на бланки типовых размеров. Система передачи газет предназначена для передачи оригиналов-оттисков газет, поступающих от издательств в пункты децентрализованной печати. Система распределения сигналов программ звукового вещания предназ-начена для передачи программ вещания населению страны. Система распределения сигналов телевизионных программ предназначена для реализации телевизионного вещания.

Средства обеспечения СС РФ

Все средства, обеспечивающие нормальное функционирование СС РФ, можно разделить на средства технического, программного, методического, информационного и организационного обеспечения. Техническое обеспечение СС РФ – совокупность устройств и систем связи, электронных и вычислительных машин и систем, линейных и гражданский сооружений, объединенных в единый комплекс технических средств связи страны. Программное обеспечение – совокупность операционных систем, трансля-торов, компиляторов, пакетов прикладных программ и эксплуатационных документов, обеспечивающих функционирование СС РФ. Методическое обеспечение – совокупность методов, моделей, алгоритмов, правил, нормативов, инструкций, регламентирующих взаимодействие техни-ческих средств и людей с техническими средствами в процессе функциони-рования СС РФ. Информационное обеспечение включает: описание аппаратуры; справочные данные (например, телефонные справочники); сообщения для программ радио и телевизионного вещания; учетные и архивные сведения, необходимые для планирования и развития СС РФ; текущие сведения о функционировании системы и другую информацию. Организационное обеспечение включает : инструкции, руководящие материалы, приказы, штатные расписания, а также документы, определя-ющие цели, права, обязанности, режимы работы, взаимодействие работников и организационных подразделений на различных стадиях функционирования и развития Системы связи РФ. Опыт и разработки в создании больших организационно-технических систем показывает, что переоценка роли каких-либо средств обеспечения, может свести на нет все усилия по созданию эффективно действующей системы связи. В соответствии с принципами целостности системной методологии на всех этапах развития системы ее необходимо рассматривать как целое, т.е. учитывать все ее компоненты, их связи и отношения, существенно влияющие на достижение цели, на ее системные свойства.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: