Сеть и сетевые компоненты. Назначение, компоненты и общая структура компьютерной сети

Модель сетевого взаимодействия

В настоящее время взаимодействие в компьютерных сетях описывается с помощью модели взаимодействия открытых систем (Open Systems Interconnection, OSI). Модель была разработана Международной Организацией по Стандартизации (International Standard Organization, ISO) в 1984 году и представляет собой международный стандарт для проектирования сетевых коммуникаций.

Модель OSI предполагает уровневый подход к построению сетей. Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Работу модели OSI обеспечивают различные службы, каждая на своем уровне. Службы работают по определенным правилам - протоколам. Соответственно, на каждом уровне работает свой протокол. Все вместе, данные службы выполняют одну общую работу - передачу данных по сети, придерживаясь общего правила (общего протокола). Примером такого протокола может служить сетевой протокол TCP/IP, состоящий из различных протоколов и служб.
Говоря о протоколе TCP/IP, всегда подразумевается набор протоколов сетевого и транспортного уровней. Набор протоколов TCP/IP еще называют стеком протоколов, в состав которого входят два основных протокола: TCP (Transmission Control Protocol) - протокол транспортного уровня и IP (Internet Protocol) - протокол сетевого уровня.
Деление на уровни упрощает совместную работу оборудования и программного обеспечения. Ниже приведена модель OSI, разделяющая сетевые функции на семь уровней:

  • Физический уровень (Physical layer) определяет способ физического соединения компьютеров в сети. Функциями средств, относящихся к данному уровню, являются побитовое преобразование цифровых данных в сигналы, передаваемые по физической среде (например, по кабелю), а также собственно передача сигналов.
  • Канальный уровень (Data Link layer) отвечает за организацию передачи данных между абонентами через физический уровень, поэтому на данном уровне предусмотрены средства адресации, позволяющие однозначно определить отправителя и получателя во всем множестве абонентов, подключенных к общей линии связи. В функции данного уровня также входит упорядочивание передачи с целью параллельного использования одной линии связи несколькими парами абонентов. Кроме того, средства канального уровня обеспечивают проверку ошибок, которые могут возникать при передаче данных физическим уровнем.
  • Сетевой уровень (Network layer) обеспечивает доставку данных между компьютерами сети, представляющей собой объединение различных физических сетей. Данный уровень предполагает наличие средств логической адресации, позволяющих однозначно идентифицировать компьютер в объединенной сети. Одной из главных функций, выполняемых средствами данного уровня, является маршрутизация - целенаправленная передача данных конкретному получателю независимо от его расположения относительно отправителя.
  • Транспортный уровень (Transport layer) реализует передачу данных между двумя программами, функционирующими на разных компьютерах, обеспечивая при этом отсутствие потерь и дублирования информации, которые могут возникать в результате ошибок передачи нижних уровней. В случае, если данные, передаваемые через транспортный уровень, подвергаются фрагментации, то средства данного уровня гарантируют сборку фрагментов в правильном порядке.
  • Сессионный (или сеансовый) уровень (Session layer) позволяет двум программам поддерживать продолжительное взаимодействие по сети, называемое сессией (session) или сеансом. Этот уровень управляет установлением сеанса, обменом информацией и завершением сеанса. Он также отвечает за идентификацию, позволяя тем самым только опреде-ленным абонентам принимать участие в сеансе, и обеспечивает работу служб безопасности с целью упорядочивания доступа к информации сессии.
  • Уровень представления (Presentation layer) осуществляет промежуточное преобразование данных исходящего сообщения в общий формат, который предусмотрен средствами нижних уровней, а также обратное преобразование входящих данных из общего формата в формат, понятный получающей программе.
  • Прикладной уровень (Application layer) предоставляет высокоуровневые функции сетевого взаимодействия, такие, как передача файлов, отправка сообщений по электронной почте и т.п.

При уровневой организации процесса взаимодействия должны соблюдаться следующие требования:

  • компоненты одного уровня одной системы могут взаимодействовать с компонентами только того же уровня другой системы. Набор правил, определяющих порядок взаимодействия средств, относящихся к одному и тому же уровню и функционирующих в разных системах, называется протоколом (protocol).
  • в рамках одной системы компоненты какого-либо уровня могут взаимодействовать только с компонентами смежных (вышележащего и нижележащего) уровней. Правила взаимодействия между собой средств, относящихся к смежным уровням и функционирующих в одной системе, называются интерфейсом (interface).

Хотя различные компоненты, относящиеся к разным уровням сетевой модели формально должны быть функционально независимыми друг от друга, при практической разработке протоколов такая независимость не всегда выдерживается. Это объясняется тем, что попытка добиться точного соответствия эталонной модели может привести к неэффективности работы программно-аппаратного обеспечения, реализующего протокол. Поэтому практическая реализация методов взаимодействия, как правило, подразумевает разработку не отдельных протоколов, а целых наборов протоколов - стеков , включающих зависимые друг от друга протоколы смежных уровней модели OSI.

Архитектура сетевых средств Windows

Сетевое обеспечение Windows имеет уровневую архитектуру, соотносящуюся с уровнями модели OSI.

На самом нижнем уровне физические устройства - сетевые адаптеры (Network Interface Card, NIC) и модемы (modem), обеспечивающие возможность подключения компьютеров к линиям связи. Как правило, эти устройства реализуют функции физического и частично - канального уровня.

Второй уровень составляют программные компоненты, обеспечивающие функции канального уровня, не реализованные аппаратно. К ним относятся:

  • драйверы устройств;
  • драйверы протоколов удаленного доступа;
  • программное обеспечение, реализующее взаимодействие по технологиям IrDA и ATM;

Третий уровень составляют драйверы транспортных протоколов, представляющие собой реализации основных современных стеков сетевого и транспортного уровня модели OSI. Для стандартизации взаимодействия транспортных протоколов со средствами нижнего уровня предназначен интерфейс NDIS (Network Driver Interface Specification).

К средствам верхнего уровня архитектуры сетевого программного обеспечения Windows относятся различные службы. Основными из них являются:

  • служба рабочей станции, обеспечивающая клиентскому компьютеру доступ к файлам и папкам, расположенным на удаленном компьютере;
  • служба сервера, обеспечивающая предоставление доступа другим компьютерам к локальным файлам и папкам.

В исполнительной системе Windows эти службы представлены отдельными компонентами, реализованными в качестве драйверов файловых систем - редиректором и сервером. Редиректор и сервер взаимодействуют с транспортным уровнем через стандартный интерфейс транспортных драйверов (Transport Driver Interface, TDI), что позволяет использовать в сетях Windows любой транспортный протокол.

Дополнительно Windows позволяет устанавливать клиентские службы для доступа к ресурсам сетей, управляемых другими операционными системами, например Nowell NetWare или MAC OS.

Существует множество сетевых устройств, которые возможно использовать для создания, сегментирования и усовершенствования сети. Основными из них являются сетевые адаптеры, повторители, усилители, мосты, маршрутизаторы и шлюзы.

Сетевые адаптеры (карты), или NIC (Network Interface Card), являются теми устройствами, которые физически соединяет компьютер с сетью. Прежде чем выполнить такое соединение, надо правильно установить и настроить сетевой адаптер. Простота или сложность этой установки и настройки зависит от типа сетевого адаптера, который предполагается использовать. Для некоторых конфигураций достаточно просто вставить адаптер в подходящий слот материнской платы компьютера. Автоматически конфигурирующиеся адаптеры, а также адаптеры, отвечающие стандарту Plug and Play (Вставь и работай), автоматически производят свою настройку. Если сетевой адаптер не отвечает стандарту Plug and Play, требуется настроить его запрос на прерывание IRQ (Interrupt Request) и адрес ввода/вывода (Input/Output address). IRQ представляет собой логическую коммуникационную линию, которую устройство использует для связи с процессором. Адрес ввода/вывода - это трехзначное шестнадцатеричное число, которое идентифицирует коммуникационный канал между аппаратными устройствами и центральным процессором. Чтобы сетевой адаптер функционировал правильно, должны быть правильно настроены как IRQ, так и адрес ввода/вывода.

Повторители и усилители.

Сигнал при перемещении по сети ослабевает. Чтобы противодействовать этому ослаблению, можно использовать повторители и/или усилители, которые усиливают сигналы, проходящие через них по сети.

Повторители (repeater) используются в сетях с цифровым сигналом для борьбы с ослаблением сигнала. Повторители обеспечивают надежную передачу данных на большие расстояния, нежели обычно позволяет тип носителя. Когда повторитель получает ослабленный входящий сигнал, он очищает сигнал, увеличивает его мощность и посылает этот сигнал следующему сегменту,

Усилители (amplifier), хоть и имеют сходное назначение, используются для увеличения дальности передачи в сетях, использующих аналоговый сигнал. Аналоговые сигналы могут переносить как голос, так и данные одновременно - носитель делится на несколько каналов, так что разные частоты могут передаваться параллельно.

Концентратор (hub) представляет собой сетевое устройство, служащее в качестве центральной точки соединения в сетевой конфигурации “звезда” (star). Концентратор также может быть использован для соединения сетевых сегментов. Существуют три основных типа концентраторов: пассивные (passive), активные (active) и интеллектуальные (intelligent). Пассивные концентраторы, не требующие электроэнергии, действуют просто как физическая точка соединения, ничего не добавляя к проходящему сигналу. Активные концентраторы требуют энергии, которую они используют для восстановления и усиления сигнала, проходящего через них. Интеллектуальные концентраторы могут предоставлять такие сервисы, как переключение пакетов (packet switching) и перенаправление трафика (traffic routing).

Мост (bridge) представляет собой другое устройство, используемое для соединения сетевых сегментов. Мост функционирует в первую очередь как повторитель, он может получать данные из любого сегмента, однако он более разборчив в передаче этих сигналов, чем повторитель. Если получатель пакета находится в том же физическом сегменте, что и мост, то мост знает, что этот пакет достиг цели и, таким образом, больше не нужен. Однако, если получатель пакета находится в другом физическом сегменте, мост знает, что его надо переслать. Эта обработка помогает уменьшить загрузку сети. Например, сегмент не получает сообщений, не относящихся к нему.

Мосты могут соединять сегменты, которые используют разные типы носителей (кабелей). Они могут соединять сети с разными схемами доступа к носителю - например, сеть Ethernet и сеть Token Ring. Примером таких устройств являются мосты-трансляторы (translating bridge), которые осуществляют преобразование между различными методами доступа к носителю, позволяя связывать сети разных типов. Другой специальный тип моста, прозрачный, (transparent bridge) или интеллектуальный мост (learning bridge), периодически “изучает”, куда направлять получаемые им пакеты. Он делает это посредством непрерывного построения специальных таблиц, добавляя в них по мере необходимости новые элементы.

Возможным недостатком мостов является то, что они передают данные дольше, чем повторители, так как проверяют адрес сетевой карты получателя для каждого пакета. Они также сложнее в управлении и дороже, нежели повторители.

Недокументированные и малоизвестные возможности Windows XP Клименко Роман Александрович

Сеть и сетевые компоненты

Сеть и сетевые компоненты

Отдельно хотелось бы сказать о параметрах реестра, относящихся к настройке сетевых компонентов операционной системы Windows. Их очень много, поэтому для описания всех параметров не хватит одной главы - для этого нужна целая книга. Здесь же будут рассмотрены наиболее интересные параметры, с помощью которых можно настроить различные возможности работы протоколов и стеков протоколов, а также отдельных сетевых служб.

Из книги Самоучитель UML автора Леоненков Александр

10.1. Компоненты Для представления физических сущностей в языке UML применяется специальный термин – компонент (component). Компонент реализует некоторый набор интерфейсов и служит для общего обозначения элементов физического представления модели. Для графического

Из книги Десять «горячих точек» в исследованиях по искусственному интеллекту автора Поспелов Дмитрий Александрович

9. Сетевые модели. Интеллектуальные системы, основанные на правилах (продукциях), принесли не только радость решения ряда важных задач, но и породили сомнения в том, что именно они призваны остаться основными моделями представления знаний в интеллектуальных системах.

Из книги Fedora 8 Руководство пользователя автора Колисниченко Денис Николаевич

7.8.5. Сетевые параметры Каталог /proc/sys/net содержит файлы, определяющие работу сети. /proc/sуs/net/core/message_burst - можно использовать для предотвращения Dos-атаки, когда система заваливается сообщениями. Определяет время в десятых долях секунды, которое необходимо для записи нового

Из книги Защити свой компьютер на 100% от вирусов и хакеров автора Бойцев Олег Михайлович

Сетевые черви Если средой распространения вирусов можно считать файловую систему операционной системы, то средой распространения червей является сеть. Сетевые черви для своего распространения могут использовать самые разнообразные из сетей/ сетевых технологий:?

Из книги Windows Vista. Мультимедийный курс автора Мединов Олег

Сетевые настройки Рассмотрим группу настроек Сеть и Интернет. Здесь есть две подгруппы – Просмотр состояния сети и задач и Настройка общего доступа к файлам. В обоих случаях запускается окно центра управления сетями и общим доступом. В Windows Vista все операции по

Из книги Советы по Delphi. Версия 1.0.6 автора Озеров Валентин

Из книги Основы AS/400 автора Солтис Фрэнк

Сетевые вычисления В компьютерной индустрии любят революции. В центре внимания постоянно находятся принципиально новые модели вычислений. Газеты, журналы, консультанты и эксперты до небес превозносят их достоинства и убеждают Вас немедленно применить их на деле. Но

Из книги Виртуальные машины [Несколько компьютеров в одном] автора Гультяев Алексей Константинович

Виртуальные сетевые компоненты Для формирования сетей с участием виртуальных машин VMware использует виртуальные сетевые компоненты. Некоторые из них устанавливаются непосредственно на хостовую ОС при установке VMware Workstation, другие - на гостевую ОС при создании ВМ, третьи

Из книги Основы объектно-ориентированного программирования автора Мейер Бертран

Компоненты Пример использует представление точки в двумерной графической системе: Рис. 7.1. Точка и ее координатыДля определения типа POINT как абстрактного типа данных потребуется четыре функции-запроса: x, y, ?, ?. (В текстах подпрограмм для двух последних функций будут

Из книги TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) автора Фейт Сидни М

4.3 Сетевые технологии Все сетевые технологии можно разделить на четыре категории:1. Связи "точка-точка" в региональных сетях2. Локальные сети3. Службы доставки пакетов региональных сетей4. Службы коммутации ячеекДля каждой технологии необходим механизм,

Из книги О чём не пишут в книгах по Delphi автора Григорьев А. Б.

2.1.7. Сетевые экраны Сеть не только позволяет пересылать полезные данные, но и может служить путем проникновения вредоносных программ, несанкционированного доступа к данным и т. п. С этим, естественно, борются, и один из способов борьбы - сетевые экраны (они же брандмауэры,

Из книги Программирование на языке Ruby [Идеология языка, теория и практика применения] автора Фултон Хэл

18.2. Сетевые клиенты Иногда сервер пользуется хорошо известным протоколом - тогда нам надо лишь спроектировать клиента, который общается с сервером на понятном тому языке.В разделе 18.1 мы видели, что это можно сделать с помощью протоколов TCP или UDP. Но чаще применяются

Из книги Интернет – легко и просто! автора Александров Егор

Сетевые Большинство популярных современных компьютерных игр поддерживает возможность сетевой игры (так называемый multiplayer). Для организации подобного рода действа необходимо несколько компьютеров (как минимум два), объединенных в единую сеть. Сеть может быть локальной,

Из книги Интернет для ваших родителей автора Щербина Александр

Сетевые черви С развитием Интернета этот тип вирусов стал самым распространенным, и именно он представляет главную угрозу для пользователей Сети. Последние известнейшие эпидемии, в результате которых за считанные часы заразились миллионы компьютеров по всему миру,

Из книги Виртуальная библиотека Delphi автора

Сетевые игры Большое место в Интернете занимают различные игры. У меня есть знакомые, которые практически живут в этом виртуальном мире. Они проводят турниры, ездят на собрания в другие города или за границу, где могут встретиться лицом к лицу со своими партнерами, с

Из книги автора

Компоненты и VCL 1. Каковы ограничения на стандартные компоненты Delphi? Все компоненты, использующие TList для сохранения информации, имеют верхний предел 16368 единиц. Hапример, TTabControl может содержать до 16368 закладок и Delphi Component Palette может содержать до 16368 страниц. Многие из

Архитектура открытых информационных систем . Современная тенденция развития информационных систем, в составе которых или ресурсы которых могут использовать системы управления, состоит по сути в том, что структура системы должна удовлетворять следующим требованиям, обеспечивающим ее живучесть, способность к развитию и совершенствованию:

Система должна обладать открытой архитектурой;

Система должна быть распределённой.

Только с развитием микропроцессорной техники и сетевых технологий стало возможно и экономически оправданно строить системы автоматики, действительно удовлетворяющие этим требованиям. Стало целœесообразным выделять в общей структуре системы отдельные локальные задачи, решение которых поручать локальным контроллерам. Сеть же позволяет контроллерам в качестве аргументов для вычисления управляющего вектора использовать переменные других контроллеров, обеспечивая связанность системы управления в целом. Такая архитектура существенно увеличивает производительность, надежность и масштабируемость систем. Международная организация по стандартизации (ISO) в 1984 ᴦ. сформулировала модель взаимодействия открытых систем (OSI), выделив семь уровней такого взаимодействия.

Эталонная модель взаимодействия открытых систем декларирует не только взаимодействие, но и архитектуру таких систем. Всякая открытая система является иерархически построенной, и внутренняя архитектура системы подобна глобальной архитектуре, в которую входит множество подсистем. Это означает, что программное обеспечение для систем любого уровня создаётся на общих принципах и является достаточно универсальным. Предполагается, что непосредственная связь между физически различными системами или подсистемами осуществляется на физическом уровне. В идеальном случае каждый из уровней должен взаимодействовать непосредственно лишь с двумя прилежащими к нему уровнями.

Уровни модели взаимодействия открытых систем (снизу вверх) означают следующее:

1. Физический уровень (нижний). Отвечает за физическую среду передачи: кабели, разъемы, согласование линий связи, электрическое преобразование сигналов.

2. Канальный уровень. Основная задача - логическое управление линией передачи, управление доступом к сети, обнаружение ошибок передачи и их исправления.

3. Сетевой уровень. Отвечает за адресацию пакетов данных, связывает физические сетевые адреса и логические имена, осуществляет выбор маршрута доставки данных.

4. Транспортный уровень. Здесь осуществляется создание пакетов данных и доставка этих пакетов. При крайне важно сти используются процедуры восстановления потерянных данных.

5. Сеансовый уровень. Сеанс связи означает, что между абонентами сети установлено логическое соединœение, определœены логические имена, контролируются права доступа.

6. Представительский уровень. На этом уровне происходит преобразование рабочей информации в логическую и физическую форму, пригодную для передачи в сети (сжатие, шифрование, преобразование форматов данных и пр.).

7. Прикладной уровень (уровень приложений). Уровень программ пользователя. Верхний уровень, непосредственно взаимодействующий с пользователœем.

Структура уровней такова, что замена аппаратной части сказывается лишь на уровнях 1 и 2, вышестоящие уровни этой замены не должны заметить.

Локальные управляющие вычислительные сети . Для передачи информации в системах автоматики всё шире используются не традиционные каналы связи (многожильные кабели, телœефонные каналы и т.п.), а локальные сети. Существенная разница при этом заключается не столько в виде физической среды передачи информации, сколько в гораздо более сложных и эффективных способах кодирования и сжатия информации. К сожалению, современные решения для построения локальных и глобальных информационных сетей не всœегда оказываются приемлемыми в силу негарантированного времени доставки информации, что малопригодно для систем реального времени, и сложности аппаратных решений, особенно для скоростных сетей.

В системах автоматики часто используют сегменты обычных локальных и глобальных сетей. Большинство локальных сетей имеет выход в глобальную сеть, но характер передаваемой информации, принципы организации обмена, режимы доступа к ресурсам внутри локальной сети, как правило, сильно отличаются от тех, что приняты в глобальной сети. По локальной сети может передаваться самая разная цифровая информация: данные, изображения, телœефонные разговоры, электронные письма и т.д. Задача передачи полноцветных динамических изображений предъявляет самые высокие требования к быстродействию сети. Чаще всœего локальные сети используются для совместного использования таких ресурсов, как дисковое пространство, принтеры и выход в глобальную сеть, но это лишь часть возможностей локальных сетей. К примеру, они позволяют осуществлять обмен информацией между компьютерами разных типов. Абонентами (узлами) сети бывают не только компьютеры, но и другие устройства (принтеры, плоттеры, сканеры). Локальные сети дают возможность организовать систему параллельных вычислений на всœех компьютерах сети, что позволяет многократно ускорить решение сложных математических задач. С их помощью можно также управлять работой сложной технологической системы или исследовательской установки с нескольких компьютеров одновременно.

Упомянем о таких важнейших понятиях теории сетей, как сервер и клиент. Сервером принято называть абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует ресурсы других абонентов. Серверов в сети должна быть несколько, и не обязательно сервер - самый мощный компьютер.
Размещено на реф.рф
Выделœенный сервер - это сервер, занимающийся только сетевыми задачами. Невыделœенный сервер может заниматься помимо обслуживания сети и другими задачами. Клиентом (рабочей станцией) принято называть абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает. В принципе, каждый компьютер должна быть одновременно как клиентом, так и сервером. Под сервером и клиентом часто понимают не сами компьютеры, а работающие на них программные приложения.

Топологии локальных сетей . Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети принято понимать физическое расположение компьютеров сети друг относительно друга и способ их соединœения линиями связи. Топология определяет требования к оборудованию, тип используемого кабеля, методы управления обменом, надежность работы, возможности расширения сети. На разных уровнях сетевой архитектуры различают также:

Физическую топологию, схему расположения компьютеров и прокладки кабелœей.

Логическую топологию, структуру логических связей и способов передачи сигналов.

Информационную топологию, пути распространения информации по сети.

Существует три базовых топологии сети:

‣‣‣ шина (bus), при которой всœе компьютеры параллельно подключаются к одной линии связи и информация от каждого компьютера одновременно передается всœем остальным компьютерам.

‣‣‣ звезда (star), при которой к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует свою отдельную линию связи.

‣‣‣ кольцо (ring), при которой каждый компьютер передает информацию всœегда только одному компьютеру, следующему в цепочке, а получает информацию только от предыдущего в цепочке компьютера, и эта цепочка замкнута в ʼʼкольцоʼʼ.

На практике используют и любые комбинации базовых топологий, но большинство сетей ориентированы именно на эти три.

Топология ʼʼшинаʼʼ (или ʼʼобщая шинаʼʼ) предполагает идентичность сетевого оборудования компьютеров и равноправие всœех абонентов. При таком соединœении линия связи единственная и в шинœе реализуется режим полудуплексного (half duplex) обмена в обоих направлениях, но по очереди. Какой-либо центральный абонент, через которого передается вся информация, отсутствует, что увеличивает ее надежность (при отказе центра перестает функционировать вся система).

Так как разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого абонента͵ аппаратура сетевого адаптера получается сложнее, чем при других топологиях. Шинœе не страшны отказы отдельных компьютеров. На концах шины крайне важно предусматривать включение согласующих устройств - терминаторов, для исключения отражений от концов линии. Отказ сетевого оборудования в шинœе трудно локализовать, так как всœе адаптеры включены параллельно. При прохождении по ʼʼшинœеʼʼ информационные сигналы ослабляются, что накладывает ограничения на суммарную длину линий связи. Каждый абонент может получать из сети сигналы разного уровня исходя из расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования. Для увеличения длины сети используют сегментирование шины, с соединœением сегментов через специальные восстановители сигналов - репитеры.

Топология ʼʼзвездаʼʼ - это топология с явно выделœенным центром, к которому подключаются всœе остальные абоненты. Обмен информацией идет через центральный компьютер, как правило, самый мощный в сети. Никакие конфликты в сети в принципе невозможны. Выход из строя периферийного компьютера не отражается на функционировании сети, но любой отказ центрального компьютера делает сеть неработоспособной.

В звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. К каждому периферийному абоненту может подходить как один кабель (передача в обоих направлениях), так и два кабеля (с передачей в одном направлении). Проблема затухания сигналов в линии связи решается проще, каждый приемник получает сигнал одного уровня.

Недостаток топологии ʼʼзвездаʼʼ - ограничение количества абонентов. Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов. Иногда в звезде предусматривается возможность подключения вместо периферийного абонента еще одного центрального абонента͵ в результате получается топология из нескольких соединœенных между собой звезд.

Большое достоинство звезды состоит в том, что всœе точки подключения собраны в одном месте, что позволяет легко контролировать работу сети, а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения.

Существует топология, называемая пассивной звездой, которая только внешне похожа на звезду. В центре сети с данной топологией помещается не компьютер, а концентратор (hub), выполняющий ту же функцию, что и репитер.
Размещено на реф.рф
Он восстанавливает приходящие сигналы и пересылает их в другие линии связи. Фактически мы имеем дело с шинной топологией, так как информация от каждого компьютера одновременно передается ко всœем остальным компьютерам, а центрального абонента не существует.

Топология ʼʼкольцоʼʼ - это топология, в которой каждый компьютер соединœен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает) приходящий к нему сигнал, то есть выступает в роли репитера. Четко выделœенного центра в сети нет, однако часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Наличие управляющего абонента снижает надежность сети.

Максимальное количество абонентов в кольце должна быть до тысячи и больше. Кольцевая топология обычно является самой устойчивой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками передаваемой по сети информации. В ней, как правило, нет конфликтов. Так как сигнал в кольце проходит через всœе компьютеры, выход из строя хотя бы одного из них или его сетевого оборудования нарушает работу всœей сети. В этой топологии обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве. В то же время крупное преимущество кольца состоит в том, что ретрансляция сигналов каждым абонентом позволяет существенно увеличить размеры всœей сети в целом (порой до нескольких десятков километров).

Иногда топология ʼʼкольцоʼʼ выполняется на базе двух кольцевых линий связи, передающих информацию в противоположных направлениях, что позволяет увеличить скорость передачи информации, а при повреждении одного из кабелœей работать с одним кабелœем.

литература

1. Мирошник И.В. Теория автоматического управления. Линœейные системы: Учебное пособие для вузов. - СПб.: Питер, 2005. - 336 с.

10. Туманов М.П. Технические средства автоматизации и управления: Учебное пособие. – М.: МГИЭМ, 2005, 71 с. URL: http://rs16tl.rapidshare.com/files/21651582/2889232/ Tehnicheskie_sredstva_avtomatizatsii_i_upravleniya.rar

11. Михайлов В.С. Теория управления. – К.: Выща школа, 1988.

12. Зайцев Г.Ф. Теория автоматического управления и регулирования. – К.: Выща школа, 1989.

О замеченных опечатках, ошибках и предложениях по дополнению: [email protected].

Компьютерная сеть состоит из трех основных аппаратных компонент и двух программных, которые должны работать согласованно. Для корректной работы устройств в сети их нужно правильно инсталлировать и установить рабочие параметры.

4.1. Основные компоненты

Основными аппаратными компонентами сети являются следующие:

1. Абонентские системы: компьютеры (рабочие станции или клиенты и серверы); принтеры; сканеры и др.

2. Сетевое оборудование: сетевые адаптеры; концентраторы (хабы); мосты; маршрутизаторы и др.

3. Коммуникационные каналы: кабели; разъемы; устройства передачи и приема данных в беспроводных технологиях.

Основными программными компонентами сети являются следующие:

1. Сетевые операционные системы, где наиболее известные из них это: MS Windows; LANtastic; NetWare; Unix; Linux и т.д.

2. Сетевое программное обеспечение (Сетевые службы): клиент сети; сетевая карта; протокол; служба удаленного доступа.

ЛВС (Локальная вычислительная сеть) – это совокупность компьютеров, каналов связи, сетевых адаптеров, работающих под управлением сетевой операционной системы и сетевого программного обеспечения.

В ЛВС каждый ПК называется рабочей станцией, за исключением одного или нескольких компьютеров, которые предназначены для выполнения функций серверов. Каждая рабочая станция и сервер имеют сетевые карты (адаптеры), которые посредством физических каналов соединяются между собой. В дополнение к локальной операционной системе на каждой рабочей станции активизируется сетевое программное обеспечение, позволяющее станции взаимодействовать с файловым сервером.

Компьютеры, входящие в ЛВС клиент – серверной архитектуры, делятся на два типа: рабочие станции, или клиенты, предназначенные для пользователей, и серверы, которые, как правило, недоступны для обычных пользователей и предназначены для управления ресурсами сети.

Рабочие станции

Рабочая станция (workstation) – это абонентская система, специализированная для решения определенных задач и использующая сетевые ресурсы. К сетевому программному обеспечению рабочей станции относятся следующие службы:

Клиент для сетей;

Служба доступа к файлам и принтерам;

Сетевые протоколы для данного типа сетей;

Сетевая плата;

Контроллер удаленного доступа.

Рабочая станция отличается от обычного автономного персонального компьютера следующим:

Наличием сетевой карты (сетевого адаптера) и канала связи;

На экране во время загрузки ОС появляются дополнительные сообщения, которые информируют о том, что загружается сетевая операционная система;

Перед началом работы необходимо сообщить сетевому программному обеспечению имя пользователя и пароль. Это называется процедурой входа в сеть;

После подключения к ЛВС появляются дополнительные сетевые дисковые накопители;

появляется возможность использования сетевого оборудования, которое может находиться далеко от рабочего места.

Сетевые адаптеры

Для подключения ПК к сети требуется устройство сопряжения, которое называют сетевым адаптером, интерфейсом, модулем, или картой. Оно вставляется в гнездо материнской платы. Карты сетевых адаптеров устанавливаются на каждой рабочей станции и на файловом сервере. Рабочая станция отправляет запрос через сетевой адаптер к файловому серверу и получает ответ через сетевой адаптер, когда файловый сервер готов.

Сетевые адаптеры вместе с сетевым программным обеспечением способны распознавать и обрабатывать ошибки, которые могут возникнуть из-за электрических помех, коллизий или плохой работы оборудования.

Различные типы сетевых адаптеров отличаются не только методами доступа к каналу связи и протоколами, но еще и следующими параметрами:

Скорость передачи;

Объем буфера для пакета;

Тип шины;

Быстродействие шины;

Совместимость с различными микропроцессорами;

Использованием прямого доступа к памяти (DMA);

Адресация портов ввода/вывода и запросов прерывания;

конструкция разъема.

Сетевые операционные системы

Сетевые операционные системы NOS (Network Operating System) – это комплекс программ, обеспечивающих в сети обработку, хранение и передачу данных.

Для организации сети кроме аппаратных средств, необходима также сетевая операционная система. Операционные системы сами по себе не могут поддерживать сеть. Для дополнения какой-нибудь ОС сетевыми средствами необходима процедура инсталляции сети.

NOS необходима для управления потоками сообщений между рабочими станциями и файловым сервером. Она является прикладной платформой, предоставляет разнообразные виды сетевых служб и поддерживает работу прикладных процессов, реализуемых в сетях.
NOS используют архитектуру клиент-сервер или одноранговую архитектуру.

NOS определяет группу протоколов, обеспечивающих основные функции сети. К ним относятся:

Адресация объектов сети;

Функционирование сетевых служб;

Обеспечение безопасности данных;

Управление сетью.

Типовой состав оборудования локальной сети

На рис. 4.1 приведен фрагмент вычислительной сети. Фрагмент вычислительной сети включает основные типы коммуникационного оборудования, применяемого сегодня для образования локальных сетей и соединения их через глобальные связи друг с другом.

Для построения локальных связей между компьютерами используются различные виды кабельных систем, сетевые адаптеры, концентраторы, повторители. Для связей между сегментами локальной вычислительной сети используются концентраторы, мосты, коммутаторы, маршрутизаторы и шлюзы.

Рис. 4.1. Фрагмент сети

Для подключения локальных сетей к глобальным связям используются:

Специальные выходы (WAN–порты) мостов и маршрутизаторов;

Аппаратура передачи данных по длинным линиям – модемы (при работе по аналоговым линиям);

Устройства подключения к цифровым каналам (TA – терминальные адаптеры сетей ISDN, устройства обслуживания цифровых выделенных каналов типа CSU/DSU и т.п.).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: