Робот объезжающий и избегающий препятствия. Четвероногий робот на базе Arduino

26.01.2011, 09:18
Источник:

Обычно, в статьях, я стараюсь излагать материал в порядке его разработки, но думаю, что это не тот случай. Поэтому, пропустим этапы проектирования принципиальной электрической схемы, разводки печатной платы и всего прочего. На рисунке 1 смотрим какое «безобразие» у меня получилось.

С первого взгляда кажется просто нагромождением железа, электроники и проводов. Наверное, это потому, что в ход пошли куски разнородных материалов. Давайте разбираться.

Теперь все по порядку. На микроконтроллер Attiny2313 с двух инфракрасных датчиков поступает сигнал о препятствии (логическая единица или нуль). Затем, согласно, прошивки микроконтроллер управляет микросхемой драйвер двигателя L293D (ток управления до 1 Ампера). На рисунке 3 представлена фотография перевернутого робота.

Основой конструкции самодельного робота является согнутая в трапецию металлическая полоска. Угол изгиба порядка 120°. Принципиально важно, чтобы с обеих сторон получился одинаковый изгиб, иначе робот будет двигаться не прямолинейно. Хотя, с другой стороны, что плохо сделал механик или электроник, иногда может загладить программист, скажем, с помощью ШИМ добиться прямолинейного движения робота

Из курса школьной геометрии все мы знаем, что плоскость образуется или тремя точками или прямой и точкой в пространстве. Третей точкой является свободно вращающееся роликовое колесо.

Приемники ИК-датчиков, фототранзисторы находятся снизу, дабы снизить засветку и свести к минимуму ложное срабатывание. Сами ИК-датчики крепятся на подвижных шарнирах, что позволяет производить настройку зоны сканирования. Интересная, кстати, реакции была моего кота на ползающего робота в коридоре?. Кот у меня черный. ИК-датчики я настраивал серого цвета обои, поэтому робот поворачивал перед котом почти в самый последний момент, а кот отпрыгивал на шаг назад с громким шипением.

Следующий моддингом для роботы стали ИК-датчики на его пузе, позволяющие роботу следовать по черной линии, нарисованной на белой бумаге маркером. Для реализации потребовалось три датчика и компаратор на микросхеме LM339N, чтобы разгрузить микроконтроллер. Существенным минусом оказалось, необходимая предварительная настройка датчиков подстроечными резисторами в зависимости от освещения в помещении.

P.S. Наградой за потраченное время на создание бессмысленного устройства, пожалуй, будет наглядность работы микроконтроллера и память которая будет пылиться на полке, до тех пор пока ей может быть не заинтересуется чей то ребенок.

На Arduino очень легко делать разные машинки с дистанционным управлением, простыми сенсорами и логикой. Поэтому линейка эта невероятно популярна. Продается множество совместимых с ней сенсоров и плат расширения. Интернет наполнен готовыми программными библиотеками и проектами с открытым исходным кодом на все случаи жизни. Практически все вопросы, которые у тебя возникнут в процессе освоения Arduino, уже кем-то задавались, и ты всегда найдешь ответ.

Давай с чего-нибудь начнем? Главный вопрос - выбор контроллера. Существует множество ревизий Arduino, а также сторонних клонов, построенных на основе этих версий. Вот, пожалуй, два самых интересных для нас класса:

  • Arduino Uno - лучший выбор новичка, самая простая, бюджетная и распространенная плата. В основе - чип ATmega328 с тактовой частотой в 16 МГц, 32 Кб флеш-памяти, 2 Кб ОЗУ и 1 Кб EEPROM. В Uno 14 цифровых входов/выходов, которые могут использоваться для управления сенсорами и сервоприводами и другими устройствами;
  • Arduino Mega / Mega 2560 - плата, которая подойдет в случае, когда ты заранее знаешь, что проект будет сложным. Главное отличие - большее количество входов/выходов (48 в Mega, 54 в Mega 2560). Также тут намного больше памяти: 8 Кб ОЗУ, 4 Кб EEPROM, а флеш-памяти 128 и 256 Кб (в Mega и Mega 2560 соответственно). Между собой платы также отличаются чипом, скоростью USB и некоторыми другими характеристиками.

Разумеется, еще есть Arduino Pro, Arduino LilyPad и многие другие. Но сейчас давай остановимся на первых двух моделях. В нашем случае все довольно просто: Mega нужна для робота с большим количеством ног.

Первый код

Для начала установим Arduino IDE (arduino.cc) - это кросс-платформенная бесплатная среда разработки. Теперь, если мы подключим наш Arduino, мы сможем попробовать написать первый код на самом простом примере: программе мигания светодиодом. На большинстве Arduino-контроллеров он есть и подключен к пину 13. Кстати, в мире Arduino программы принято называть скетчами. Вот текст скетча с комментариями:

// Дадим этому пину имя LED: const int LED = 13; void setup() { // Инициализация цифрового пина // для вывода: pinMode(LED, OUTPUT); } void loop() { // Подать уровень логической единицы // на пин 13 (зажечь светодиод): digitalWrite(LED, HIGH); // Приостановить выполнение скетча // на секунду: delay(1000); // Подать уровень логического нуля // на пин 13 (потушить светодиод): digitalWrite(LED, LOW); // Снова приостановить выполнение // скетча на секунду: delay(1000); }

Обрати внимание на функции setup и loop. Они должны присутствовать в любом Arduino-скетче. Setup вызывается единожды при включении или после перезапуска контроллера. Если хочешь, чтобы код выполнялся только один раз, его следует размещать именно здесь. Чаще всего это всевозможные процедуры инициализации чего-либо. Наш скетч не исключение: цифровые пины Arduino могут работать и как входы, и как выходы. В функции setup мы говорим, что пин 13 будет работать как цифровой выход контроллера.

После того как функция setup завершит свою работу, автоматически запускается замкнутый цикл, внутри которого будет вызываться функция loop. От нас требуется написать, что мы хотим там выполнять. А мы хотим подать на пин 13 уровень логической единицы (5 В), то есть зажечь светодиод, затем подождать одну секунду (1000 в миллисекундах), потом подать уровень логического нуля (0 В) и опять подождать одну секунду. Следующий вызов loop все повторит.

Теперь «заливаем» наш скетч в контроллер. Нет, нам не понадобится программатор. Контроллеры Arduino, кроме наших скетчей, содержат специальную программу - bootloader, которая, в частности, управляет загрузкой кода из компьютера. Так что для заливки скетча нам понадобится только USB-кабель и пункт меню File → Upload (Ctrl + U) в Arduino IDE.

Ключевой вопрос

А сколько, собственно, нам нужно ног? Определимся во множестве конфигураций шагающих роботов. По количеству ног:

  • biped - двуногий (прототип - человек);
  • quadruped - четвероногий (прототип - большинство млекопитающих животных);
  • hexapod - шестиногий (прототип - большинство насекомых);
  • octopod - восьминогий (прототип - пауки, скорпионы, крабы и другие членистоногие).

Кроме количества ног, важна и конфигурация каждой. Главной характеристикой ноги является количество степеней свободы, или dimensions of freedom (DOF). Степень свободы - это способность поворачиваться или изгибаться вокруг одной оси (реже - поступательно двигаться вдоль нее). Очевидно, что если степень свободы одна, то на такой ноге далеко не уйдешь. Ноги с двумя степенями свободы (2DOF) уже позволяют двигаться многоногим роботам, хотя 2DOF дает возможность свободно перемещать кончик ноги только в одной плоскости. А 3DOF-нога перемещает «стопу» в 3D-пространстве (если, конечно, не все три оси параллельны). Есть и 4DOF-ноги, которые просто увеличивают гибкость и диапазон перемещения ноги. У насекомых чаще всего 4DOF-лапы.

Что это значит для нас? В дешевых любительских роботах каждую степень свободы реализует один двигатель, точнее, сервопривод, или серв. Конфигурация ног однозначно определяет, сколько таких сервов нужно. Так, 3DOF-гексапод потребует 18 сервов, а 4DOF-паук - уже 32. Не пугайся количества, маленькие сервоприводы, используемые в любительских радиоуправляемых моделях, очень дешевы. В интернет-магазинах их можно найти по запросу micro servo.

Чтобы программировать сервоприводы, достаточно знать, что в них уже есть контроллер, который делает основную работу. И все, что нужно, - подавать питание и цифровой сигнал, сообщающий контроллеру, в какую позицию мы хотим повернуть вал привода. Об их конструкции легко найти информацию. Протокол у них самый простой из всех цифровых протоколов связи: широтно-импульсная модуляция - ШИМ (PWM на английском). У всех простых сервов есть разъем с тремя контактами: земля, +5 В (вольтаж может отличаться в зависимости от размера и мощности) и сигнальный вход. Arduino-контроллеры могут двумя различными способами генерировать такой сигнал. Первый - аппаратный PWM, который сам чип умеет выдавать на нескольких из своих цифровых I/O-пинов. Второй - программный. Программный позволяет получить одновременно больше различных PWM-сигналов, чем аппаратный. Для него под Arduino предоставляется удобная обертка - библиотека Servo. Она позволяет использовать одновременно 12 сервоприводов на большинстве малогабаритных контроллеров (Uno, Due, Nano) и 48 сервоприводов на Arduino Mega и ему подобных. Сигнальный контакт серва подключается к цифровому выводу Arduino. Земля и питание - очевидно, к земле и питанию, они могут быть общими для всех сервов. В трехпроводных шлейфах сервов черный или коричневый - это земля, посередине обычно красный +5 В и, наконец, белый или желтый - сигнальный. С программной точки зрения управление предельно простое:

Servo myservo; // Сервопривод на 9-м пине Arduino myservo.attach(9); // Повернуть в положение на 90º myservo.write(90);

Большинство сервов умеют вращать вал на 180°, и для них 90° - среднее положение. Для упрощения подключения сервов к плате Arduino существует ряд решений. Самое каноничное - это Sensors Shield. Установив его на Uno и подав на клеммы питание для сервов, можно их разъемы подключать прямо в него.

Батарея

Еще один важный вопрос - питание. Если у тебя продвинутая плата, которая позволяет снабжать всю систему по одной линии питания (и двигатели сервов не дадут помех в работу контроллера), то можно обойтись одним источником. Выбор огромен, лучше всего, конечно, Li-Ion/Li-Po брикеты для радиомоделек. Но им нужны и соответствующие зарядные устройства. Если у тебя контроллер попроще (Uno/Due/Nano), то можно питать его отдельно, например 9-вольтовой «Кроной», а сервоприводы подключить к основной мощной батарее. Так сервоприводам точно хватит питания. В случае литиевых аккумуляторов нужно еще тщательней, чем обычно, следить за напряжением, чтобы не было переразряда (допустимые напряжения стоит уточнить для конкретного типа батареи). Для этого на робота-Слейпнира, о котором дальше пойдет речь, также прикручен маленький цифровой вольтметр.

Робожук своими руками

Набор

  • Контроллер Arduino Uno: 1150 р.
  • Три серводвигателя. Я использовал HXT500, 200 р. за штуку
  • Батарейный отсек для «Кроны» с выключателем: 50 р.
  • Батарейка «Крона»: 145 р.
  • ИК-приемник: 90 р.
  • Стальная проволока диаметром примерно 1,5 мм. Я, к примеру, использовал сломанный венчик для взбивания яиц

Итого: 2035 р.

DmitryDzz: Я хочу предложить тебе сделать небольшого дистанционно управляемого шестиногого робожука на базе контроллера Arduino Uno. Лапки будут иметь одну степень свободы, управление будет происходить с помощью обычного ТВ-пульта.

Надо сказать, что это цены дорогих московских магазинов. В китайских интернет-магазинах все это обойдется раза в два дешевле. Считая доставку. Правда, ждать придется, по моему опыту, от двух недель до трех месяцев.

Более простой способ - взять набор-конструктор, потому что на первых шагах одного контроллера будет мало. Сейчас много магазинов предлагают такие наборы. Например, есть замечательный интернет-магазин «Амперка» . Здесь тебе предложат несколько подобных конструкторов, отличающихся наполненностью и, конечно, ценой. Мне вполне хватило самого простого - «Матрешка X». В него входит контроллер Arduino Uno, USB-кабель для подключения к компьютеру, доска для прототипирования (незаменимая вещь!), набор перемычек, светодиоды, резисторы и прочая мелочь.

В этом же магазине есть раздел «Вики», где ты найдешь даже замечательные короткие видео­уроки, переведенные на русский язык. Обязательно посмотри их. И конечно, есть форум, где тебе наверняка постараются помочь.

Что понадобится из инструментов:

  • паяльник и все, что нужно для пайки. Паять много не придется, и особого мастерства не потребуется;
  • термоклеевой пистолет и стержни к нему;
  • пассатижи для работы с проволокой.

Если все собрали, приступим!

Управление

Перейдем к первому шагу: нам надо научиться взаимодействовать с пультом ДУ и выведать коды нажатий на некоторые его кнопки. Эти коды потом пригодятся для скетча управления роботом.

На этом этапе понадобится еще ИК-приемник и хорошо бы иметь доску для прототипирования. Подавляющее большинство ИК-пультов работают на несущих частотах 36 кГц, 38 кГц или 40 кГц (Panasonic, Sony). Исключение составляют пульты Sharp (56 кГц), Bang & Olufsen (455 кГц) и, может, кто-то еще более экзотический. Поэтому нам вполне подойдет любой ИК-приемник на 36, 38 или 40 кГц. Частота может точно не совпадать с несущей частотой сигнала. В таком случае чувствительность приемника будет снижаться, но на практике я не заметил дискомфорта, используя ИК-приемник TSOP2136 (36 кГц - последние две цифры - частота) и пульт ДУ Sony (40 кГц).

Итак, для большинства пультов подойдут ИК-приемники TSOP21xx, TSOP22xx, TSOP312xx. Две последние цифры могут быть 36, 37, 38 или 40. Перед включением ИК-приемника уточни разводку его контактов - их всего три: +5V (питание), GND (земля), Vs (выход). Соберем схему, как на иллюстрации (разводка для TSOP2136).


Как видишь, к аналоговому входу контроллера A0 мы подключили выход ИК-приемника.

Вот как выглядит код скетча:

#include "IRremote.h" // Аналоговый вход контроллера, // к которому подключен ИК-приемник: const int IR_PIN = A0; // Создаем объект ИК-приемник: IRrecv irrecv(IR_PIN); void setup() { Serial.begin(9600); Serial.println("ready"); // Начинаем прослушивание ИК- // сигналов: irrecv.enableIRIn(); } void loop() { // Описываем структуру results, // в которую будут помещаться // принятые и декодированные // ИК-команды: decode_results results; // Если ИК-команда принята и успешно // декодирована, то выводим // полученный код в последовательный // порт контроллера: if (irrecv.decode(&results)) { Serial.println(results.value); irrecv.resume(); } }

В скетче используется специальная библиотека IRremote.h, декодирующая сигналы самых разных ИК-пультов. Эта библиотека - открытый проект, скачать ее ты можешь со страницыhttps://github.com/shirriff/Arduino-IRremote. А чтобы ее подключить к нашему проекту, надо выполнить три действия:

  • каталог библиотеки скопировать в каталог libraries, который, в свою очередь, находится в инсталляционном каталоге Arduino IDE;
  • перезапустить IDE;
  • добавить в начало нашего скетча строку #include «IRremote.h».

Теперь в скетче будут доступны функции декодирования ИК-сигналов. Но, чтобы увидеть полученные коды, мы еще будем использовать объект Serial. С его помощью по последовательному порту (все тот же USB-кабель) мы будем передавать коды на компьютер. В функции setup мы выполняем инициализацию объекта Serial. «9600» - это 9600 бод - скорость, которая будет использоваться для передачи данных. После инициализации мы можем производить запись в последовательный порт с помощью функции println. Для просмотра результата этого вывода на компьютере в Arduino IDE выбери пункт меню Tools → Serial Monitor (Ctrl + Shift + M). Только убедись, что в нем установлена скорость 9600 бод.

Итак, питание контроллер получает по USB-кабелю, данные передает по нему же. Загружаем скетч, запускаем Serial Monitor и начинаем жать кнопки пульта ДУ. В окне Serial Monitor должны появляться коды. Протоколы пультов отличаются, иногда это может быть один код, иногда несколько. В любом случае ты всегда можешь выделить коды, уникальные для каждой кнопки пульта.

Нам потребуется 13 кнопок пульта. Я использовал следующие:

  • 1 - плавный поворот налево;
  • 2 - движение вперед;
  • 3 - плавный поворот направо;
  • 4 - поворот налево на месте;
  • 5 - стоп;
  • 6 - поворот направо на месте;
  • 7 - движение назад с поворотом направо;
  • 8 - движение назад;
  • 9 - движение назад с поворотом налево;
  • синяя кнопка - очень медленно;
  • желтая - медленно;
  • зеленая - быстро;
  • красная - очень быстро.

Запиши коды этих кнопок, позже они понадобятся для скетча управления роботом.

Алгоритм движения

Скетч управления роботом доступен на странице нашего проекта (bit.ly/1dEwNDC). Не забудь изменить значения констант кодов нажатых кнопок пульта на коды своего пульта (константы IR_COMMAND_XXX_CODES в файле ir_command_codes.h).

Скетч подробно мы разбирать не будем, думаю, достаточно комментариев в коде, но один вопрос все же стоит рассмотреть.

Движения насекомых очень интересны. И хоть всем этим жукам падать до земли совсем недалеко, они почему-то всегда устойчивы: в любой момент времени минимум три ноги (две с одной стороны и одна с другой) стоят на поверхности. И пока эти ноги тянут жука к одному ему ведомой цели, три другие подтягиваются, чтобы повторить это движение. Наша задача - сделать что-то похожее.

У нашего робожука три серводвигателя, расположенные в ряд перпендикулярно движению. У левого и правого серводвигателей ось вала направлена вверх, а у центрального - вперед. Задача, например, левой сервомашинки - качать сразу две ноги: левую переднюю и левую заднюю. Они, кстати, жестко соединены между собой и приклеены к качалке этой сервомашинки. Задача центральной сервы - приподнимать то левый бок жука, то правый. Поэтому к качалке этого двигателя крепятся центральные левая и правая ноги, представляющие собой единую П-образную деталь.

Скетч должен обеспечивать движение робота вперед, назад, плавные повороты в движении и повороты на месте. А еще хотелось бы управлять скоростью жука. Чтобы описать эти движения программно, нам пригодится математика. Посмотри на схему.

Синими кружками обозначены ноги робожука, стоящие на поверхности, а белыми - находящиеся в воздухе. Обрати внимание, что при движении вперед или назад левый и правый серводвигатели должны двигаться абсолютно одинаково. А при поворотах на месте двигатели должны крутиться в разных направлениях (симметрично). Еще интересно, что движение вперед и назад отличается только фазой центрального серводвигателя.

Итак, как это реализовано? Мы помним, что контроллер постоянно вызывает функцию loop. Значит, в эту функцию мы должны поместить код, который определяет текущее положение серводвигателей и устанавливает их в это положение. Каждый серводвигатель должен совершать колебательные движения. Рассчитать положение серводвигателя в момент времени t мы сможем по следующей формуле:

X = A sin(2πt/T),

где X - искомое положение серводвигателя, A - амплитуда колебаний, T - период колебаний.

Так, в зависимости от момента времени t мы получим изменение величины X в интервале от –A до +A. Серводвигатели могут принимать положение в диапазоне от 0 до 180°. Поэтому колебания нам лучше производить вокруг «нулевого» положения в 90°. И если мы хотим обеспечить колебания с периодом 1 с вокруг положения 90° с амплитудой 30°, то формула преобразуется в следующий вид:

X = 90 + 30 sin(2πt/1000),

где t - это время в миллисекундах, прошедшее от начала колебаний. Для управления скоростью движения робожука мы можем изменять период колебаний. Чем он больше, тем ниже скорость.

А теперь еще раз вернемся к нашей схеме, потому что формула, написанная выше, еще не завершена. Как обеспечить то синхронное, то встречное движение левого и правого серводвигателя? Как менять фазу центрального серводвигателя? Мы должны добавить в нашу формулу фазу колебаний. Сдвиг аргумента синуса на величину π для, например, правого двигателя заставит его работать в противофазу левому, то есть так, как нам надо для поворота на месте. Вот как теперь будет выглядеть наша формула:

X = 90 + 30 sin(2πt/1000 + Φ),

где Φ - фаза колебаний, значение от 0 до 2π.

Посмотри на таблицу, чтобы понять, какими должны быть фазы колебаний для серводвигателей применительно к каждому типу движения.

Сборка

Теперь давай соберем робота на доске для прототипирования и зальем скетч управления.

Это очень важный этап перед сборкой. Попробуй отключить USB-кабель и запитай макет от батарейки «Крона». Проверь все фазы движения и убедись, что все работает. После сборки робота что-либо менять (например, заменить неработающий серводвигатель) будет уже сложнее.

Теперь перейдем к самой сборке. Основной несущий элемент - это батарейный отсек. Я советую использовать отсек закрытого типа и обязательно с выключателем.

Закреплять детали жука проще всего термоклеем. Начни с серводвигателей. Удали ненужные ушки креплений и соедини машинки между собой. Затем приклей эту сборку из трех «серв» к крышке батарейного отсека. Не забывай, что батарейный отсек должен свободно открываться для смены батарейки.

Контроллер проще всего приклеить к отсеку, но мне этот вариант не очень нравится, так как придется навсегда отдать Arduino Uno жуку. Поэтому можно усложнить себе жизнь и использовать разъемы Arduino для крепления батарейного отсека. На нижней части отсека приклей штырьковый разъем с шагом между штырьками 2,54 мм. Он должен располагаться так, чтобы входить в гнездо контроллера в районе цифровых выводов 8–11. Они пока все равно нам не понадобятся. Если разъема под рукой не оказалось, подойдет П-образно изогнутая канцелярская скрепка.

Провода, идущие от батарейного отсека, надо соединить с выводами Vin и соседним с ним GND. Не перепутай полярность! Плюс «Кроны» на Vin, минус на GND. Чтобы обеспечить надежный контакт проводов с Arduino-разъемами, можно просто облудить кончик провода потолще, я же как штекер использовал короткий отрезок скрепки. А место пайки закрыл термоусадочной трубкой.

Разъемы со шлейфов сервоприводов следует срезать, провода питания (+5 В - обычно красный и GND - черный или коричневый) надо объединить и вывести к гнездам 5V и соседнему с ним GND на контроллере. Подключать будем чуть позже. Провода управляющего сигнала (обычно желтый) выводим на цифровые выводы контроллера: левый серводвигатель на пин 2, центральный на пин 4, правый на пин 7.

«+» и «–» ИК-приемника можно просто вставить в разъем Arduino (5V и соседний GND). Правда, согнув пополам, удвоив их толщину. К этим же ножкам питания ИК-приемника припаиваем ранее подведенные провода питания серводвигателей. Выход сигнала ИК-приемника до аналогового входа контроллера А0 уже вряд ли дотянется, и тебе придется наращивать его проводом.

Несколько советов по изготовлению ног. Сначала подготовь левую и правую «передне-задние» ноги. Убедись в их симметричности (обрати внимание и на длины, и на углы изгибов). Начинай клеить ноги, только убедившись, что серводвигатели установлены в «нулевое» положение (90°).

Среднюю пару ног лучше устанавливай в последнюю очередь. Советую сначала сделать средние ноги длиннее, а затем после установки подрезать их до нужной длины. В «нулевом» положении все шесть ног должны стоять на поверхности. Качение средних ног с амплитудой 15° не должно мешать поворотам «передне-задних».

Что дальше?

Робожук - это готовая мобильная платформа на базе одного из самых популярных и доступных контроллеров. Проект открытый: https://github.com/beetle-ringo/arduino . Делай в GitHub форк (ответвление) и добавляй свою функциональность. Дай волю фантазии - добавь ИК-светодиод, и робот готов для робобитвы. Подключи дальномеры, тактильные сенсоры, гироскоп… Научи робота обходить препятствия или ходить по линии, попробуй установить на него веб-камеру. Идей может быть миллион, и ты всегда можешь выбирать самую интересную.

Робот-Слейпнир

Набор

  • Контроллер Arduino Uno Dagu Spider Robot: 2530 р.
  • Сервоприводы SG90 9g (16 штук) 1150 р.
  • Аккумулятор LiPo battery pack, 7,4 В, 1800 мА ч 490 р.
  • Радиомодуль 4 Pin Bluetooth RF Transceiver 270 р.
  • Индикатор напряжения (опционален) DC 3,3–30 В Red LED Panel Meter 100 р.
  • Уголок алюминиевый. В ближайшем строймаркете 135 р.
  • Болтики и гайки. На ближайшей барахолке 35 р.

Итого: 4710 р.

*Компоненты покупались в разное время, и многие позиции можно оптимизировать

poconoco: Попробуем собрать нестандартную конфигурацию - восьминогого 2DOF-робота. 2DOF-ноги намного проще программировать, к тому же у меня есть в запасе куча неиспользованных сервоприводов. А главное, можно будет назвать его в честь восьминогого коня бога Одина Слейпниром (всегда мечтал!).

У нашего Слейпнира с каждой стороны будет по четыре ноги с двумя шарнирами. Каждый шарнир - сервопривод, значит, восемь сервоприводов на сторону. Для простоты все восемь шарниров одной стороны коня будут вращаться в одной плоскости. Хотя это вовсе не обязательно. Более того, если ноги с одной стороны пустить немного «шахматкой», чтобы две соседние ноги не могли задеть друг друга, это будет даже лучше, позволит делать шире шаг и скакать галопом.

Аккуратное и функциональное, но далеко не самое дешевое решение - использовать нестандартную плату контроллера, оптимизированную для подключения сервоприводов в большом количестве. Мне подвернулась Dagu Spider Robot Controller - это тот же самый Arduino Mega, но на плате с заранее распаянными 3-пиновыми штырьковыми разъемами, куда сразу, без всяких шилдов, можно подключить те самые 48 сервоприводов. Идеальна для многоногих роботов на Arduino.

Управление

Управление у нас будет происходить по Bluetooth. Для этого есть различные аппаратные решения. Это и шилды, и отдельные платки с UART последовательным интерфейсом (как обычный ком-порт, только с уровнями сигналов 5 В). Мне самой практичной показалась именно маленькая платка с UART-интерфейсом. Подключается к соответствующим контактам UART/Serial порта Arduino. Отметим два нюанса: на Uno/Due/Nano и подобных всего один такой порт, и он же используется для прошивки через USB. Поэтому, возможно, потребуется отключать Bluetooth-модуль на время прошивки. А второй нюанс - не забывай, что RX-контакт модуля подключается к TX-контакту Arduino, а TX - к RX. Такие дела в UART.

Программирование Bluetooth не сложнее сервов, данные можно побайтово вычитывать, чем мы и будем пользоваться:

Char cmd; Serial.begin(9600); if (Serial.available()) cmd = Serial.read();

Если используется Arduino Mega и Bluetooth подключен ко второму порту, то вместо Serial пишется Serial1. Примечательно, что можно и не использовать Bluetooth, а управлять роботом прямо по USB. И в коде выше не изменится ничего! Это просто работа с последовательным портом, а висит ли там BT-передатчик или преобразователь USB Serial - нам неважно.

Другая сторона Bluetooth

Самый удобный способ подключения - это стандартные утилиты Linux. Для работы нам понадобятся утилиты sdptool, rfcomm (входят в состав пакета bluez в репозиториях Ubuntu), а также minicom (пакет так и называется). Инструкции по работе с этими утилитами можно найти в Сети.

Алгоритм движения

Для гексапода самой простой походкой будет такая: ноги делятся на две группы по три ноги, и одна из групп полностью на земле, другая - в воздухе, переставляется вперед. Это далеко не единственная возможная походка. Можно в воздухе держать только две лапы или даже одну, а остальные четыре или пять - на земле. Для октапода походок тоже множество. Мы возьмем самую простую, также с двумя группами по четыре ноги.

Итак, что нам нужно делать для работы с 16 сервоприводами и выбранной походкой? Правильный ответ - читать про инверсную кинематику (ИК). Объем статьи не позволяет развернуть тему широко, но материалов в интернете предостаточно. Вкратце, ИК решает задачу нахождения необходимых управляющих сигналов для того, чтобы система в пространстве заняла нужное положение. Для ноги это значит, что по координатам точки, куда должна попасть стопа, следует определить углы сервоприводов, которые для этого нужно выставить. А управляя координатами стоп, можно управлять положением тела. У нас 2DOF-ноги, оси параллельны, поэтому стопа перемещается всегда в одной плоскости. Задача ИК в данном случае сводится к 2D-пространству, что сильно ее упрощает.

Пускай для каждой ноги локальным началом координат O будет вал верхнего серва, то есть бедра. И у нас есть координаты точки A, куда нужно попасть стопе. Тогда легко увидеть, что нужно решить задачу нахождения точек пересечения двух окружностей (см. схему ног одной стороны, там на самой правой ноге это проиллюстрировано). Найдя точку B пересечения окружностей (выбрав любую из них), несложно посчитать искомые углы, используя перевод из декартовых координат в полярные. В коде решение этой задачи выглядит так:

Float A = -2 * x; float B = -2 * y; float C = sqr(x) + sqr(y) + sqr(hipLength) - sqr(shinLength); float X0 = -A * C / (sqr(A) + sqr(B)); float Y0 = -B * C / (sqr(A) + sqr(B)); float D = sqrt(sqr(hipLength) - (sqr(C) / (sqr(A) + sqr(B)))); float mult = sqrt(sqr(D) / (sqr(A) + sqr(B))); float ax, ay, bx, by; ax = X0 + B * mult; bx = X0 - B * mult; ay = Y0 - A * mult; by = Y0 + A * mult; // или bx для другой точки пересечения float jointLocalX = ax; // или by для другой точки пересечения float jointLocalY = ay; float hipPrimaryAngle = polarAngle(jointLocalX, jointLocalY); float hipAngle = hipPrimaryAngle - hipStartAngle; float shinPrimaryAngle = polarAngle (x - jointLocalX, y - jointLocalY); float shinAngle = (shinPrimaryAngle - hipAngle) - shinStartAngle;

где x и y - координаты точки, куда нужно дотянуться стопой; hipStartAngle - угол, на который повернуто «бедро» изначально (при среднем положении серва), аналогично - shinStartAngle. Кстати, в этих расчетах углы, очевидно, в радианах, а в объекты Servo их передавать нужно уже в градусах. Полный работоспособный код прошивки, включающий этот кусочек, выложен на GitHub, см. ссылку в конце статьи. Это кусок ИК, но кроме него нужно еще немного довольно простого кода, чтобы использовать эту ИК на всех ногах (см. функции legsReachTo(), legWrite()). Также необходим будет код, который собственно реализует походку - движение одной группы ног «назад» (чтобы робот двигался вперед), в то время как другая группа ног приподнимается и переставляется вперед для следующего шага, см. функцию stepForward(). Она делает один шаг с заданными параметрами. Этими параметрами, кстати, можно сделать и шаг назад, несмотря на название функции. Если эту функцию вызывать в цикле, то робот будет шагать вперед.

Теперь получение команд и их интерпретация. Добавим в программу состояние:

Enum State { STOP, FORWARD, BACKWARD, FORWARD_RIGHT, FORWARD_LEFT };

И в главном цикле исполнения loop() будем смотреть на текущее состояние (переменная state) и дергать stepForward(), если движемся вперед (с поворотом или без), и опять же stepForward(), но с отрицательным аргументом xamp, если надо двигаться назад. Повороты при этом будут обрабатываться в legWrite(), и для поворота направо ноги с правой стороны будут стоять на месте (пока левые гребут). Вот такой вот конь-танк. Брутально, зато очень просто и работает. Плавный поворот можно сделать только с 3DOF-ногами, пример этого можно увидеть в репозитории buggybug.

Switch (state) { case FORWARD: case FORWARD_RIGHT: case FORWARD_LEFT: stepForward(h, dh, xamp, xshift); break; case BACKWARD: stepForward(h, dh, - xamp, xshift); break; }

Char command; while (Serial1.available()) command = Serial1.read(); switch (command) { case "w": state = FORWARD; break; case "s": state = BACKWARD; break; case "d": state = FORWARD_RIGHT; break; case "a": state = FORWARD_LEFT; break; default: state = STOP; }

На этом основные моменты прошивки закончились, остальное - всякая мелочевка. Хотя есть еще один, пожалуй, важный момент - возможность точной подстройки сервов. Даже при самой аккуратной сборке, если всем сервам подать команду повернуться на 90°, все равно некоторые из них получатся чуть со сбитым углом. Потому нужна возможность его подстраивать. Как у меня это сделано, можно посмотреть в методах hipsWrite() и shinsWrite() и собственно в массивах тонких настроек hipsTune и shinsTune.

Сборка

Для подобных конструкций не нужно ничего особенного: подойдет листок оргстекла подходящей толщины (с ближайшей хозяйственной барахолки) и лобзик либо ножовка, чтобы выпиливать детальки. И конечно, дрель, чтобы сверлить отверстия. Вместо оргстекла можно использовать фанеру (тогда на финальной конструкции можно еще сделать памятную надпись выжигателем). Можно использовать и листы или уголки алюминия. Со Слейпниром я пошел как раз по пути использования алюминиевого уголка с ребрами в 1 см (купил где-то в строительном супермаркете).

Основой будет прямоугольная рама. Конечности - 4-сантиметровые полосочки. Стоит также запастись множеством маленьких болтиков, гаечек. Режем уголок на нужные кусочки, вырезаем пазы для сервов, сверлим дырочки для крепежных болтов и шурупов. Конструкцию лучше раз показать, чем описывать. Размеры могут быть любые, роботы должны быть разнообразны. Но помни: чем длиннее ноги, тем больший рычаг придется толкать сервоприводу и тем больше будет на него нагрузка. Вплоть до невозможности провернуться и даже поломки. Но 4–5 см - без проблем.

Для бюджетных легких роботов часто не заморачиваются на отдельное шарнирное соединение конечностей, и вся нагрузка ложится целиком на вал сервопривода. При маленьком весе это совсем не критично. А при большем весе стоит подумать о сервах с металлическими шестеренками и шариковым подшипником вала.

В комплекте с каждым сервом, как правило, поставляется пара-тройка шурупов и набор насадок, которые можно закрепить шурупом на валу для различных применений. Нам больше всего подойдет одиночный «рог» (или horn), который позволяет прикрепить к серву планку. Так, к одной планке крепятся оси двух сервов, и планка становится «бедром». При этом один серв крепится на теле, а другой становится частью голени. К нему стоит прикрутить еще планку, просто чтобы удлинить или сделать конечность поинтересней. Немного кропотливой работы - и платформа готова (удобные наборы отверток, ключей, пинцеты, кусачки и прочее сильно ускоряют дело).


Что дальше?

Весь проект доступен на странице https://github.com/poconoco/sleipnir . Я описал одну из самых непрактичных конфигураций - много 2DOF-ног, высокий, узкий, легко валится на бок. Попробуй сделать лучше, робота с 3DOF-ногами. С 4DOF-ногами. С клешнями или челюстями. В качестве примера 3DOF инверсной кинематики можешь обращаться к репозиторию buggybug - там прошивка гексапода. Также можно делать не управляемых, а интеллектуальных роботов, ставя вместо Bluetooth датчики расстояния, научить робота обходить стены и препятствия. Если такой сенсор поставить на сервопривод и вращать им, то можно сканировать местность, практически сонаром.

Начнем с концепции: мы хотим робота, который может самостоятельно передвигаться по комнате, при этом объезжать все препятствия, встречаемые на своем пути.
Задачу поставили. Теперь бегом по магазинам! 1) Платформа. Есть такие варианты: сделать самому всё, купить детальки (например Tamiya) и собрать из них, либо же купить готовое. Я остановился на последнем варианте. Вид танка, ну или трактора мне почему-то пришелся более по душе, и в итоге я остановился на таком варианте (платформа от DF robot ):

В комплекте - платформа (по одному мотору на каждой гусенице) и отсек для батареек.
Ну, тут ничего сложного, поехали дальше.

Дальномер
Сонар (он же дальномер, он же Ultrasonic module) В качестве дальномера изначально выбор был между ультразвуковым и инфракрасным. Поскольку характеристики ультразвукового существенно лучше (максимальная дальность около 4-5 метров, против 30-60 см), а цена примерно одинаковая, то выбор пал на Ultrasonic. Наиболее распространена модель HC-SR04 .

Что бы понять, как устроен этот фрукт - есть даташит + достаточно информации в интернете.
Расскажу основное. На фотографии видны 2 цилиндра. Один из них приемник, другой передатчик. Приемник генерирует ультразвуковые волны, передатчик принимает отраженную волну от объекта, и сообщаем нам об этом. На его плате 4 контакта (5V, GND, Trig, Echo) .
Алгоритм работы таков:

Подаем на ножку Trig сигнал, длительностью 10мкс, что запускает генератор, создающий пачку коротких импульсов на передатчике (8 шт). Далее, приемник получает отраженный сигнал и на ножке Echo генерируется прямоугольный сигнал, длина которого пропорциональна времени между излучением импульсов и детектированием их приемником.

Реальное время, за которое звук дойдет до приемника, конечно же, составит копейки. Что бы по нему определить расстояние, можно воспользоваться нехитрой формулой:

s=vt/2 , s - расстояние, v - скорость звука, t - время получения сигнала на приемнике.

Ну почему пополам делим, думаю всем понятно. Только в данном случае эта формула не нужна. Привожу ее здесь исключительно для понимания физики процесса.
С выхода Echo идет уже сформированный сигнал, с достаточно большой длительностью. Заглянув в даташит, мы увидим формулу пересчета: s = t/58 , s - расстояние, t - длительность импульса Echo, s - расстояние в сантиметрах.

Ок, вроде все основы разобрали. Перейдем к коду под Arduino:

Const int Trig = 3; // обозначим к какой ножке и что подключаем const int Echo = 2;
void setup()
{
pinMode(Trig, OUTPUT);
pinMode(Echo, INPUT);
Serial.begin(9600); // Инициализируем сериал порт, дабы вывести результат на монитор
}

Unsigned int time_us=0; // Переменная для хранения временного интервала
unsigned int distance_sm=0; // Переменная для хранения расстояния в сантиметрах

Void loop()
{
digitalWrite(Trig, HIGH); // Подаем сигнал на выход микроконтроллера
delayMicroseconds(10); // Удерживаем 10 микросекунд
digitalWrite(Trig, LOW); // Затем убираем
time_us=pulseIn(Echo, HIGH); // Замеряем длину импульса
distance_sm=time_us/58; // Пересчитываем в сантиметры
Serial.print(distance_sm); // Выводим на порт
Serial.print(" ");
delay(500);
}

Драйвер
Ну что же, с сонаром вроде разобрались. Продолжим.
Платформа содержит 2 мотора. Ими надо как-то управлять. Казалось бы - подключил их напрямую, подавай то HIGH то LOW и радуйся. Тут одно существенное «НО» - с атмеги не получишь ток выше ~40мА, а мотору надо где-то на порядок больше.

Как быть? Первое что приходит в голову это - поставить на выход микроконтроллера транзистор и с него уже питать моторы. Это конечно хорошо, но не прокатит, если мы захотим мотор в другую сторону пустить… Зато с этой задачей хорошо справится H - мост, который представляем собой немного более сложную схему, чем пара транзисторов. Но в данном случае их полно в виде готовых интегральных схем, так что думаю велосипед изобретать незачем - купим готовый. К тому же цена располагает - 2-3 доллара…

Двинемся дальше. Для этих целей я себе купил микросхему L293D , собственно о которой речь дальше и пойдет. Она проста в использовании, повсеместно доступна и имеет удобный корпус Dip16.
Её максимальный ток сравнительно небольшой (600 мА), что для конкретной задачи более чем достаточно. Если нужно больше, то есть, например, L293B (1А) и т.д…
Чуть не забыл, сей мост позволяет подключить к нему 2 мотора, по одному с каждой стороны.
Что бы понять, как взаимодействовать с ним, я нашел , ею и воспользуемся:

Все просто и наглядно. Внимательно изучив первую часть статьи, остановим взор на рисунке:

Схема включения данной микросхемы, собственно, взятая из даташита.

Кратко пробежимся по её ножкам:

1) Инициализация мотора1. Пока вы не подадите на эту ножку HIGH, что бы вы не делали с остальными, моторчик не заработает. Хоть и написано 1,2E - мотор там один. Не путайте. Дело в том, что для управления одним мотором вам понадобится 2 ножки микроконтроллера, а соответственно и H - моста. Подадим на одну ножку HIGH, другую LOW - мотор закрутился в одну сторону. Подадим на первую LOW, вторую HIGH - закрутится в противоположную. подадим на обе LOW - остановится.
2) 1A . На эту ножку вы будите посылать сигнал с микроконтроллера(слаботочный) для управления 1 входом мотора.
3) 1Y . А это уже сигнал(большой ток), который идет непосредственно на мотор. По своему виду он полностью повторяет сигнал, подаваемый на вход 1A .
4) - 5) Земля
6) 2Y Сюда подключаем вторую ножку мотора.
7) 2A Сигнал с микроконтроллера для управления втором входом мотора.
8) Сюда мы подаем напряжение, которым будут питаться моторы. По-сути, что подадим на этот вход, то и будет отпираться на ножках 1Y , 2Y .
9) - 16) Полная аналогия с первыми восемью, но для второго мотора.

Дабы убрать скачки напряжения при включении мотора, используем конденсатор, как показано ниже:

Ну и напоследок, приводится исходный код, с моей небольшой редакцией, который резюмирует все вышесказанное:

Const int motor1Pin = 3; // H-bridge leg 1 (pin 2, 1A)
const int motor2Pin = 4; // H-bridge leg 2 (pin 7, 2A)
const int enablePin = 9; // H-bridge enable pin
void setup()
{ // set all the other pins you"re using as outputs:
pinMode(motor1Pin, OUTPUT);
pinMode(motor2Pin, OUTPUT);
pinMode(enablePin, OUTPUT); // set enablePin high so that motor can turn on:
digitalWrite(enablePin, HIGH);
}

Void loop()
{ // Вращаем мотор в одну сторону
digitalWrite(motor1Pin, LOW); // set leg 1 of the H-bridge low
digitalWrite(motor2Pin, HIGH); // set leg 2 of the H-bridge high delay(1000); // А через секунду в другую digitalWrite(motor1Pin, HIGH); // set leg 1 of the H-bridge high
digitalWrite(motor2Pin, LOW); // set leg 2 of the H-bridge low delay(1000);
// А теперь всё сначала
}

Сервомашинка
Итак, с работой дальномера мы разобрались. Двинемся дальше. Дальномер у нас один, смотреть надо как вперед, так и по сторонам, что бы знать куда поворачивать в случае чего. Для этих целей воспользуемся серво (сервомашинка, сервопривод, servo).

Эти игрушки используются в основном в авиамоделизме, но для роботов тоже очень даже ничего.
Данное устройство может поворачиваться на углы от 0 до 180 градусов. От корпуса идет трехжильный кабель:

Черный - GND
Красный - 5V
Белый - Сигнал

Мотор управляется контроллером (не пугайтесь - ничего покупать не надо, он уже есть внутри серво), который, получая внешний сигнал - контролирует, что бы мотор повернулся на заданный угол. Для этих целей с мотора заведена обратная связь на контроллер, которая представляет собой переменный резистор, меняющий своё сопротивление в зависимости от угла поворота. Сам контроллер управляется длиной входного импульса. Как правило: 380 - 400 мкс - 0 градусов, 2200мкс - 180 градусов. Приведем простой алгоритм управления серво для Arduino:

#define ServoPin 2 // На эту ножку мы подключим наше серво (его белый провод)
void setup()
{
pinMode(2,OUTPUT);
}

Void Servo_motion(int angle) // функция управления серво
{
int time=390+10*angle; // Пересчитываем заданный угол поворота в длину импульса, который подадим на //серво
digitalWrite(ServoPin, HIGH); // Сигнал пошел
delayMicroseconds(time); // Удерживаем его заданное время
digitalWrite(ServoPin, LOW); // Выключаем его
delayMicroseconds(20000-time); // Даем серво время, что бы повернуться (20000 мкс - 50 гц)
}

Void loop()
{

For(int i=0;i<=180;i++)
{
Servo_motion(i); // Прокрутим серво в одну сторону
delay(10); // C задержкой 10 миллисекунд на каждом градусе
}

For(int i=180; i>=0; i--)
{
Servo_motion(i); // Затем в другую сторону
delay(10);
}

Но в дальнейшем, мы будем использовать специальную библиотеку для управления серво, вот её описание:

Данный пример (2 ссылка) проделывает ровным счётом тоже самое что и программа, описанная выше. Там приведено красочное описание кода с рисунками, картинками, комментариями, так что думаю - особых затруднений не возникнет. Ограничусь лишь небольшими комментариями - при проверки данного кода не забудьте переставить серво на на цифровой порт 9, либо поправить в том коде вот эту строчку:

Myservo.attach(9); // attaches the servo on pin 9 to the servo object

А то ничего не заработает. И последнее что хотелось бы добавить - данный пример доступен как по вышеуказанной ссылке, так и в среде разработки Arduino во вкладке «Examples».

Сборка
Перейдем к сборке нашего творения. Поскольку плату я не делал, то и принципиальной схемы, у меня нету, к сожалению. Но я думаю, это не сильно нам помешает - схема простая, все понятно. Фотографий и небольших комментариев вполне хватит. На данном этапе возникает Arduino nano, как вы уже могли догадаться, поскольку весь предыдущий код был сделан с расчетом на него. Описывать сей прибор занятие довольно трудоемкое и утомительное, поэтому для тех, кто не знает - ссылки:

Я все же, как и ранее, буду предполагать, что вы имеете хоть небольшой, но все же опыт знакомства с этой штуковиной, ну или хотя бы просто представляете что это это такое. В данном случае этого вполне достаточно. Так, поднабравшись не много знаний, поедим дальше.
Начнем с соединений. Перечислю, к какому входу и что у меня подключено:

4 ножки - входы H моста, по 2 на каждый мотор:
1A - 11
2A - 6
3A - 10
4A - 5

EnablePin - 12

1 Ножка под 1,2EN и 3,4EN - посадил их вместе, так как оба мотора все равно по отдельности нам не нужны. В принципе вообще, можно эти 2 ножки моста к Arduino не подключать, а просто подать на них 5V.

2 ножки для сонара:
Trig - 3
Echo - 2

Ножка для подключения серво:
Servo - 8

На этом вроде бы и всё. Далее, в процессе сборки робота, я столкнулся с одной проблемой - периодически робот останавливался, Arduino перезагружалось. Немного подумав, я понял что Arduino nano неспособен питать всю эту систему (H-мост, серво, сонар) от своего штатного стабилизатора. Потому на помощь мне пришел стабилизатор напряжения 7805 (L7805, LM7805). Прибор прост в применении, имеет 3 ножки: вход(6 - 35 В), земля, выход(~5В). Даташит к нему можно повсеместно найти в интернете. Объединив его землю, с землёй Arduino и, соответственно с минусом аккумулятора тоже. Я сделал так - от Arduino я питаю только H - мост, а всё остальное (серво, сонар) от стабилизатора. После этого робот стал отлично работать без сбоев. Да, не забывайте важное правило - земля в любой схеме должна быть общей для всех элементов! Ну, по поводу самих моторов, я думаю понятно - подаем напряжение с аккумулятора на вход моста - Vcc2. Ну вроде с подключением разобрались, проиллюстрирую вышесказанное фотографиями:

Вся схема:

Стабилизатор напряжения (конденсаторы можно не ставить):

Шлейф от сонара:

H – мост:

Немного о самой конструкции: обошлось без излишеств). Вырезал из пластика крышку на платформу, в ней было проделано отверстие для крепления серво. Из того же пластика выгнута (предварительно нагрев промышленным феном) Г - образная скобка. К ней приклеен четырехжильный шлейф (под PLS вилку, с шагом 2.54мм), в который уже и вставляется сам сонар.

Программирование
Итак, робот собран. Переходим к заключительному этапу - прошивка. Здесь я опишу мой вариант реализации данного алгоритма. Заранее отмечу, что все можно было существенно упростить, например, вращать сонар не постоянно, а остановиться, когда на пути встречается преграда, «осмотреться» и повернуть в наилучшее направление. Либо вообще не вращать головой.

Ну, тут мы не будем искать легких путей, к тому же первый вариант наиболее интересный и зрелищный. Представленный ниже код конечно же сыроват, местами, возможно, не оптимален. Так что все ваши замечания и предложения приветствуются. Но тем не менее данная версия отлично зарекомендовала себя в полевых условиях. Ну что же, приступим. Буду излагать основные моменты кода, в последовательности, наиболее удобной для понимания:

Объявление переменных:
Переменная, для реализации алгоритма работы сонара - unsigned int time_us=0;
Расстояние, определяемое сонаром - unsigned int distance_sm=0;
Данная переменная используется в цикле loop для того, что бы при включении робот «осмотрелся» на месте, а потом уже поехал -
unsigned int circle=0;
Расстояние до ближайшего объекта спереди - unsigned int dist_f=0;
Расстояние до ближайшего объекта слева - unsigned int dist_l=0;
Расстояние до ближайшего объекта справа - unsigned int dist_r=0;
Расстояние до ближайшего объекта под углом 45 градусов - unsigned int dist_45=0;
Расстояние до ближайшего объекта под углом 135 градусов - unsigned int dist_135=0;

Константа времени(мс), определяющая минимальный шаг движения робота. Подобрана экспериментально. В зависимости от скорости движения и скорости вращения серво вашего робота, возможно придется её изменить. Позже станет более понятно для чего она нужна -
unsigned int t=15;

Функции:
sonar() - реализует алгоритм работы сонара, возвращает расстояние [см].
forward (), back (), right (), left () - наши базовые функции движения.
Основная функция, реализующая движение -

Void motion (char dimention, int prev_angle, int next_angle, int time)
{
/*Данная функция одновременно управляет как и вращением моторов, так и серво.
char dimention - направление движения
int prev_angle - предыдущее положение серво
int next_angle - положение, на которое хотим установить серво
int time - временной шаг одного движения робота*/

// Величина, на которую изменяется угол в процессе движения -
int a;
if(next_angle>=prev_angle)
a=15;
else
a=-15;
if (dimention=="f")
{
// Если сказано двигаться вперед, то
int i=prev_angle;
while(i!=next_angle)
{
/*Пока не достигли заданного значения угла, будем в цикле постепенно изменять текущее положение серво на величину a*/
i+=a; myservo.write(i); // И передавать это значение на серво
forward(); // После чего делаем движение вперед
delay(time); // В течении временного интервала time
}
}

/* Аналогичный алгоритм для движения влево, вправо, назад и стоянии на месте*/

Void front_motion(int time)
{
/* Функция, которая осуществляет небольшой «доворот» робота в одну из сторон, если объект расположен под углами 45 и 135 градусов*/
if(dist_45<=9)
{ // Если расстояние до объекта под углом 45 градусов меньше 9см, поворачиваем налево
left();
delay(3*time); // В течении трех минимальных интервалов движения
}
/* Аналогичный алгоритм для «доворота» вправо */

}
void motion_back(int time)
{
/* Движение робота назад в течении времени 2*time, с поворотом серво от угла 180 градусов, на угол 180 градусов*/
motion("b",180,90,2*time);
}
void loop()
{
// Наша главная функция, реализующая итоговый алгоритм работы
if (circle==0)
{
//Если робота только что включили, установим серво в начальное положение.
myservo.write(0); //И «осмотримся» по сторонам
dist_r=sonar();
motion("w",0,45,t);
dist_45=sonar();
motion("w",45,90,t);
dist_f=sonar();
motion("w",90,135,t);
dist_135=sonar();
motion("w",135,180,t);
dist_l=sonar(); } // Больше мы данное действие производить не будем
circle++; i
f(dist_f>=25)
{ // Если до ближайшего объекта спереди более 25 сантиметров
a: //Двигаемся вперед, при этом осуществляем поворот серво от 180 до 135 градусов
motion("f",180,135,t); //Сделаем замер расстояния до объектов под углом 135 градусов
dist_135=sonar(); //Если необходимо, сделаем доворот
front_motion(t); //Далее аналогично, но с другими значениями
motion("f",135,90,t);
dist_f=sonar();
front_motion(t);
motion("f",90,45,t);
dist_45=sonar();
front_motion(t);
motion("f",45,0,t);
dist_r=sonar();
front_motion(t);
motion("f",0,45,t);
dist_45=sonar();
front_motion(t);
motion("f",45,90,t);
dist_f=sonar();
front_motion(t);
motion("f",90,135,t);
dist_135=sonar();
front_motion(t);
motion("f",135,180,t);
dist_l=sonar(); front_motion(t); // Если расстояние спереди все еще больше 25 сантиметров, то вернемся в точку "a"
if (dist_f>=25)
goto a;
}
else
{ //Если нет
if(dist_f<5)
{ // Если робот уже слишком близко к ближайшему объекту, то делаем движение назад
motion_back(t);
// Производим новый замер расстояния
dist_f=sonar();
} //При этом поворачиваем в ту сторону, где больше свободного места
if(dist_l>=dist_r || dist_135>dist_r)
{
motion("l",180,90,t);
dist_f=sonar();
}
if(dist_l {
motion("r",180,90,t);
dist_f=sonar();
}
} // Далее новый круг
}

Полную версию данной программы можно скачать вот тут.

Всем привет. Эта статья небольшой рассказ о том, как сделать робота своими руками . Почему именно рассказ, спросите вы? Всё из-за того, что для изготовления подобной поделки необходимо использовать значительный багаж знаний, который очень трудно изложить в одной статье. Мы пройдёмся по процессу сборки, заглянем одним глазом в программный код и в конечном счете оживим детище «силиконовой долины». Советую посмотреть видео, чтобы иметь представление о том, что в итоге должно получится.

Перед тем, как двигаться дальше прошу отметить следующее, что при изготовлении поделки использовался лазерный резак. От лазерного резака можно отказаться, обладая достаточным опытом работы руками. Точность выступает тем ключом, что поможет завершить проект успешно!

Шаг 1: Как это работает?

Робот имеет 4 ноги, с 3 сервоприводами на каждой из них, что позволяют ему перемещать конечности в 3-х степенях свободы. Он передвигается «ползучей походкой». Пусть она медленная, зато одна из самых плавных.

Для начала нужно научить робота двигаться вперед, назад, влево и вправо, затем добавить ультразвуковой датчик, что поможет обнаруживать препятствия/преграды, а после этого Bluetooth модуль, благодаря которому управление роботом выйдет на новый уровень.

Шаг 2: Необходимые детали

Скелет изготавливается из оргстекла толщиной 2 мм.

Электронная часть самоделки будет состоять из:

  • 12 сервоприводов;
  • arduino nano (можно заменить любой другой платой arduino);

  • Шилда для управления сервоприводами;
  • блока питания (в проекте использовался БП 5В 4А);

  • ультразвукового датчика;
  • hc 05 bluetooth модуля;

Для того, чтобы изготовить шилд понадобится:

  • монтажная плата (предпочтительно с общими линиями (шинами) питания и земли);
  • межплатные штыревые соединители — 30 шт;
  • гнезда на плату – 36 шт;

  • провода.

Инструменты :

  • Лазерный резак (или умелые руки);
  • Суперклей;
  • Термоклей.

Шаг 3: Скелет

Воспользуемся графической программой, чтобы начертить составные части скелета.

После этого в любой доступный способ вырезаем 30 деталей будущего робота.

Шаг 4: Сборка

После резки снимаем защитное бумажное покрытие с оргстекла.

Далее приступаем к сборке ног. Крепежные элементы встроенные в части скелета. Всё, что остаётся сделать — это соединить детали воедино. Соединение довольно плотное, но для большей надежности можно нанести по капле суперклея на элементы крепежа.

Затем нужно доработать сервоприводы (приклеить по винту напротив валов сервоприводов).

Этой доработкой мы сделаем робота более устойчивым. Доработку нужно выполнить только для 8 сервоприводов, остальные 4 будут крепиться непосредственно на тело.

Прикрепляем ноги к связующему элементу (изогнутая деталь), а его в свою очередь к сервоприводу на теле.

Шаг 5: Изготавливаем шилд

Изготовление платы довольно простое, если следовать представленным в шаге фотографиям.

Шаг 6: Электроника

Закрепим выводы сервоприводов на плате arduino. Выводы следует соединять в правильной последовательности, иначе ничего не будет работать!

Шаг 7: Программирование

Пришло время оживить Франкенштейна. Сначала загрузим программу legs_init и убедимся в том, что робот находится в таком положении, как на картинке. Далее загрузим quattro_test, чтобы проверить реагирует ли робот на базовые движения, такие как движение вперед, назад, влево и вправо.

ВАЖНО: Вам необходимо добавить дополнительную библиотеку в программную среду arduino IDE. Ссылка на библиотеку представлена ниже:

Робот должен сделать 5 шагов вперед, 5 шагов назад, повернутся влево на 90 градусов, повернутся вправо на 90 градусов. Если Франкенштейн делает всё правильно, мы двигаемся в верном направлении.

P . S : установите робота на чашку, как на стенд, чтобы каждый раз не выставлять его на первоначальную точку. Как только тесты показали нормальную работу робота, можем продолжать испытания, поставив его на землю/пол.

Шаг 8: Инверсная кинематика

Инверсная (обратная) кинематика – именно она в действительности и управляет роботом (если вам не интересна математическая сторона этого проекта и вы торопитесь закончить проект можете пропустить данный шаг, но знание того, что движет роботом всегда будут полезны).

Простыми словами инверсная кинематика или сокращенно ик – «часть» тригонометрических уравнений, что определяют положение острого конца ноги, угла каждого сервоприводи и т.д., что в итоге определяют пару предварительных установочных параметров. Для примера, длина каждого шага робота или высота на которой будет располагаться тело во время движения/покоя. Используя эти предопределенные параметры, система будет извлекать величину, на которую следует сдвинуть каждый сервопривод, для того чтобы управлять роботом при помощи задаваемых команд.

В этой статье показано изготовление простого робота, избегающего препятствия на плате Xboard v2.0 . Данная плата хорошо подходит для небольших умных роботов, потому что она компактна, имеет четыре контроллера двигателей постоянного тока, может быть прошита по USB и имеет ещё много других функций. Также она очень проста в освоении и использовании. xAPI представляет собой набор функций на С, предназначенные для решения сложных программных задач, таких как работа с ШИМ, ЖК-дисплеем, дистанционным управление и т.д. Очень хорошо и легко для новичков. Её конструкция является открытой, поэтому если вы не хотите покупать Xboard v2.0 , вы можете изготовить её самостоятельно.

Цель нашего робота проста: необходимо двигаться в любом месте, избегая препятствий. Задача проста, и робот выполняет её полностью самостоятельно. У него есть мозг, который считывает информацию с датчиков, принимает решение и управляет двигателями.

Во время создания робота вы узнаете различные базовые методы, которые пригодятся вам в будущем.

Механическая часть робота

Робот собран в качественном металлическом корпусе, который можно приобрести в магазине робототехники. Робот приводится в движение двумя моторами-редукторами постоянного тока 200 RPM. Он использует систему дифференциальной передачи и имеет одно касторовое колесо спереди. Колеса связаны непосредственно с валом двигателя.

Двигатели крепятся к шасси при помощи гайки, накручиваемой на резьбу возле вала.

Xboard v2.0 монтируется с помощью монтажного комплекта, который идет в комплекте и включает в себя болты, гайки и стойки. Xboard v2.0 сделана так, что её крепежные отверстия совпадают с отверстиями в корпусе.

Дифференциальная передача

Дифференциальная передача позволяет осуществить движение и управление при помощи двух колес. Нет необходимости в рулевых колесах, как на велосипеде или автомобиле. Для поворота транспортного средства (или робота) левое и правое колесо вращаются при разных скоростях. Вот почему это называется дифференциальной передачей. Например, если правое колесо вращается быстрее левого, то робот поворачивает налево.

На картинке это показано более наглядно.

Таким образом, перемещение и управление роботом осуществляется путем управления двумя двигателями, что легко делается при помощи xAPI. Подробнее об этом написано по ссылкам:

http://xboard.extremeelectronics.co.in/Motor1.htm

http://xboard.extremeelectronics.co.in/Motor2.htm

В статьях рассказано, как запустить двигатель по часовой стрелке или против неё. MotorA – правый двигатель, MotorB – левый двигатель. Фрагменты кода, показывающие работу с двигателями.

Движение робота вперед:

Движение робота назад:

Поворот на лево:

MotorA(MOTOR_CW,255); // правый мотор вращается по часовой стрелке (CW) с макс. скоростью (255)

MotorB(MOTOR_CW,255); // левый мотор вращается по часовой стрелке (CW) с макс. скоростью (255)

Поворот на право:

MotorA(MOTOR_CCW,255); // правый мотор вращается против часовой стрелки (CCW) с макс. скоростью

MotorB(MOTOR_CCW,255); // левый мотор вращается против часовой стрелки (CCW) с макс. скоростью (255)

О MotorA и MotorB можно узнать подробнее, перейдя по ссылке

Датчики

Бесконтактные датчики помогают роботу обнаруживать препятствия на своем пути. Датчики включают в себя ИК-передатчики и ИК-приемники. В качестве ИК-передатчика используется ИК-светодиод, который излучает свет в ИК-спектре, невидимом для человеческого глаза. ИК-приемник принимает эти лучи.

ИК-датчик

ИК-датчик состоит из ИК-приемника, Ик-передатчика и нескольких резисторов. Схема приведена ниже. Нам необходимо три таких датчика, установленных на переднюю часть робота.

Как вы можете видеть, датчик имеет два контакта: питание и выход. На выходе датчика может быть напряжение от 0 до 5В в зависимости от расстояния до препятствия и его типа. Напряжение приближается к 5В, когда препятствие рядом.

Номинал R1 150Ом, R2 22кОм. Цветовой код показан на схеме выше. Номиналы резисторов очень важны, поэтому используйте только резисторы указанного номинала. Короткий вывод ИК-приемника черного (полупрозрачного) цвета является положительным выводом. Это не ошибка, поэтому подключайте его именно так.

ИК-приемник и ИК-передатчик должны быть установлены так, чтобы ИК лучи от ИК-передатчика падали на препятствия и отражались в ИК-приемник. Их правильное расположение показано на картинке.

Выход датчика подключается к АЦП AVR микроконтроллера. АЦП превращает напряжение в 10 битное цифровое значение от 0 до 1024. То есть, ориентируясь на значение с АЦП, вы можете узнавать о наличии препятствий перед датчиком. Работа с АЦП Xboard v2.0 проста и описана по ссылке.

Если мы подключили датчик к ADC0, то получить информацию с него можно при помощи следующей функции:

int sensor_value;

sensor_value=ReadADC(0);//Read Channel number 0

При использовании резисторов указанных на схеме выше, значение sensor_value составляет около 660 когда перед датчиком нет препятствия, и 745 когда до препятствия около 15 см. Если препятствие находится на расстоянии ближе чем 6 см, то значение 1023. Это максимальное значение, и даже если препятствие еще ближе, то значение не повышается.

Обратите внимание, что эти значения могут варьироваться в зависимости от типа препятствия. Некоторые объекты отражают ИК лучи лучше или хуже, чем другие. Некоторые объекты отражают ИК-лучи очень плохо, и не могут быть обнаружены. Эти результаты были получены при использовании ладони в качестве препятствия. Например, ИК-лучи плохо отражает дерево, покрашенное в темные цвета, например двери.

Объединение и подключение ИК-датчиков

Три ИК-датчика крепятся на макетную плату, которая крепится на переднюю часть робота. Один датчик установлен в центре плату, а два других справа и слева соответственно.

Для начала макетная плата обрезается до нужных размеров. Это можно сделать при помощи небольшой ножовки по металлу.

Теперь нужно просверлить два отверстия для монтажа. Тогда мы можем использовать винты, гайки и стойки для установки платы на шасси. Я использовал электрическую дрель, чтобы сделать отверстия за несколько секунд, но если её у вас нет, вы можете использовать ручную дрель.

На другой стороне платы мы одеваем распорки на винты, чтобы иметь расстояние между макетной платой и шасси.

Теперь макетную плату можно устанавливать на шасси

Обратите внимание, что я использую подстроечные резисторы вместо постоянных на 22кОм. Но вы должны использовать постоянные резисторы на 22кОм. Макетная плата подключается к Xboard v2.0 с использованием стандартного 8 выводного коннектора. Xboard v2.0 имеет 8 выводной разъем для датчиков. Также в этом разъеме есть выводы +5В и GND для датчиков. Его распиновка показана ниже.

Подключите правый датчик к ADC0, центральный датчик к ADC 1 и левый датчик к ADC 2. Датчики готовы, и теперь можно перейти к их тестированию.

Тестирование ИК-датчиков

Ниже приведена небольшая тестовая программа, которая считывает значение с трех датчиков и отображает его на ЖК-дисплее. Для понимания работы программы прочитайте статью Взаимодействие с ЖК-дисплеем при помощи xAPI.

#include “avr/io.h” #include “util/delay.h” #include “lcd.h” void InitADC() { ADMUX=(1<

Скомпилируйте и прошейте программу в Xboard v2.0. После этого подключите ЖК-дисплей и плату с датчиками. На экране должны быть значения с трех датчиков как показано ниже.

Когда вы подносите препятствие к одному из датчиков, значение с него должно увеличиваться, а когда препятствие совсем близко, то увеличиться до 1023. Запишите значения датчиков когда препятствия перед ними нет и когда препятствие на расстоянии около 15 см от него. Эти значения понадобятся вам для настройки программы робота.

Также я предоставил HEX файл, готовый для прошивки микроконтроллера ATmega32 (или ATmega16) и запуска в кратчайшие сроки.

Если на дисплее нет никакого текста, настройте контрастность потенциометром.

Если датчики работают не как ожидалось, проверьте соединения. Для проверки работы ИК-светодиодов используйте любую цифровую камеру, например Handicam или камеру мобильного телефона. Невидимые для человеческого глаза ИК-лучи хорошо видны камере. Если светодиоды не излучают ИК-лучи, проверьте соединения.

Программная часть

Задача программы состоит в том, чтобы считывать значения с датчиков, принимать решения и управлять двумя двигателями. Таким образом, робот будет ездить по комнате, объезжая всё на своем пути.

Мы определили три константы, а именно RTHRES, CTHRES и LTHRES:

//Threshold Values For Sensor Triggering

#define RTHRES 195

#define CTHRES 275

#define LTHRES 195

Их постоянными величинами являются внесенные значение. Они должны быть уже записаны. Как их получить описано выше. Когда значение с датчика приближается к этому пороговому значению, программа воспринимает это как препятствие. Обратите внимание, что значения указанные выше могут не соответствовать вашим. Это нормально.

Программа начинается с инициализации подсистемы двигателя и подсистемы АЦП:

Потом мы начинаем двигать робота вперед. Это делается при помощи обращения к функциям MotorA и MotorB. Первым аргументом является необходимое направление:

Вторым аргументом является необходимая скорость. Ее значение может от 0 до 255. Мы используем 25,5 чтобы двигаться на полной скорости.

Более подробную информацию о работе с двигателем при помощи xAPI можно найти в документации Xboard v2.0 .

После того как наш робот начинает двигаться вперед, мы переходим в бесконечный цикл, проверяя, если какое-то препятствие перед роботом. Если да, то робот поворачивает.

Оригинал статьи на английском языке (перевод: Александр Касьянов для сайта cxem.net)



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: