Реляционная модель данных. Основные классы субд

План-конспект урока

Тема: Базы данных. Основные объекты БД. СУБД.

Цель урока:

  • 1. Познавательная - познакомить учащихся с:
    • определением базы данных и СУБД,
    • их основными типами (моделями),
    • интерфейсом программы Ms ACCESS,
    • основными объектами БД,
    • разными способами создания таблиц.
  • 2. Развивающая
    • Учить строить аналогии, выделять главное, ставить и решать проблемы.
  • 3. Воспитательная
    • Воспитывать аккуратность, внимательность, вежливость и дисциплинированность.

План урока:

  • 1. Актуализация опорных знаний.
  • 2. Запуск программ на выполнение;
  • 3. Ввод данных в таблицу.
  • 2. Определение БД И СУБД.
  • 3. Типы СУБД.
  • 4. Реляционная СУБД. Таблица, запись, поле.
  • 5. Самостоятельная работа на компьютере.
  • 6. Закрепление нового материала.
  • 7. Итоги урока.
  • 1 Определение БД И СУБД

    База данных (БД) – это совокупность взаимосвязанных данных, которые хранятся во внешней памяти компьютера, и организованы по определенным правилам, которые предполагают общие принципы описания, хранения и обработки данных. Информация, которая хранится в БД, как правило, относится к некоторой конкретной предметной области. Например, базы данных:

    • книжного фонда библиотеки,
    • кадрового состава предприятия,
    • законодательных актов уголовного права,
    • современной музыки.

    БД делятся на фактографические и документальные. Фактографические БД содержат короткие сведения об объектах, поданные в точно определенном формате (1-3), например, Автор, название, год издания … В документальных БД содержится информация разного типа: текстовая, звуковая, графическая, мультимедийная (4, 5). Например, БД современной музыки может содержать тексты и ноты песен, фотографии авторов, звуковые записи, видеоклипы. Сама по себе БД содержит только информацию – «Информационный склад» –и не может обслуживать запросы пользователя на поиск и обработку информации. Обслуживание пользователя осуществляет СИСТЕМА УПРАВЛЕНИЯ БАЗОЙ ДАННЫХ. СУБД – Это ПО, которое позволяет создавать БД, обновлять и дополнять информацию, обеспечивать гибкий доступ к информации. СУБД создает на экране компьютера определенную среду для работы пользователя (интерфейс), и имеет определенные режимы работы и систему команд. Именно на основе СУБД создаются и функционируют информационно-поисковые системы(WWW).

    3. Типы СУБД

    Известны 3 способа организации информации в БД и связей между ними:

    • Иерархические (в виде дерева),
    • Сетевые,
    • Реляционные.

    Иерархические. Существует строгая подчиненность элементов: один главный, остальные подчиненные. Например, система каталогов на диске. Сетевая БД более гибкая: нет явно выраженного главного элемента и существует возможность установления горизонтальных связей. Например, организация информации в Интернете (WWW). Наиболее распространенными являются реляционные БД.

    4. Реляционная СУБД. Таблица, запись, поле.

    Реляционной (от английского “ relation” - отношение) называется БД, которая содержит информацию, организованную в виде прямоугольной таблицы. Каждая строка таблицы содержит информацию об одном конкретном объекте БД (книге, сотруднике, товаре), а каждый столбец – конкретную характеристику этого объекта (фамилия, название, цена). Строки такой таблицы называются записями, столбцы – полями. Каждая запись должна отличаться от другой значением хотя бы одного поля, которое называется ключом. Ключевое поле – это поле или группа полей, которые однозначно определяют запись. Например, табельный номер сотрудника, код изделия, номер автомобиля. Таб_№ ФИО Дата_рожд Дата_приема Должность Оклад 001 < Иванов И.И. 12.05.65 1.02.80 директор 1000 002 Петров П.П. 30.10.75 2.03.95 бугалтер 500 003 Сидоров С.С 4.01.81 4.06.00 исполнитель 100 Каждое поле имеет свой формат и тип. Реальные БД состоят, как правило, из нескольких таблиц, связанных между собой каким-нибудь полем и, при запросе к такой БД можно использовать информацию из разных таблиц. Основные объекты БД:

    • Таблицы - основные объекты БД, где хранится информация,
    • Запросы – предназначенные для выбора нужных данных из одной или нескольких взаимосвязанных таблиц.
    • Формы – предназначенные для ввода, просмотра и редактирования взаимосвязанных данных в удобном виде.
    • Отчёты – формирование данных в удобном для просмотра виде и при необходимости их печати.

    5. Самостоятельная работа на компьютере

    На сетевом диске, в папке «ЗАДАНИЯ ДЛЯ БД» открыть презентацию «Базы данных и СУБД», прочитать ее и ответить письменно на вопросы:

    • 1. Какое основное назначение БД?
    • 2. По каким критериям классифицируются БД? Укажите критерий и виды, соответственно этого критерия.
    • 3. Что такое ключевое поле в БД?
    • 4. Какой основной элемент БД?
    • 5. Какие операции можно производить с помощью СУБД с БД?
    • 6. Основные типы данных в таблицах СУБД.

    6. Итоги урока

    На этом уроке вы познакомились с базами данных, их назначением, областями применения, типами, моделями СУБД.

    Практическая часть

    Создание базы данных. Ввод и форматирование данных

    • 1. Включите компьютер. Загрузите СУБД ACCESS. Сначала нужно создать новую базу данных.
    • 2. Выполним следующую последовательность действий: в меню Файл выберем команду Создать. Имя файла: skaz.mdb. OK. Перед вами появилось диалоговое окно «База данных».
    • 3. Внимательно прочитайте назначение кнопок на панели инструментов, медленно перемещая курсор мыши по кнопкам.
    • 4. После этого создайте таблицу, выполнив следующую последовательность действий: Таблица/Создать/Новая таблица.

    Создание таблицы, то есть определение входящих в таблицу полей, производится заполнением специальной таблицы: Поле Тип данных Описание

    • 5. Заполните такую таблицу, внеся в нее следующие данные:

    Поле Тип данных Описание № Счетчик Персонаж Текстовый Профессия Текстовый Особые приметы Текстовый Герой Логический Положительный или отрицательный герой

    • 6. Поле № не обязательное, мы его вводим для того, чтобы определить ключевое поле, так как любая таблица должна иметь ключ.
    • 7. Созданную таблицу нужно сохранить, дав ей имя с помощью команд: Файл/Сохранить как..., Имя таблицы: «Персонаж», OK.
    • 8. Введите информацию в таблицу Таблица/«Персонаж»/Открыть и обычным образом введите данные, например такие:

    № Персонаж Профессия особые приметы герой

    • 1 Буратино деревянный человечек длинный нос Да
    • 2 Папа Карло Шарманщик Да
    • 3 Карабас Барабас директор кукольного театра длинная борода, достающая до пола Нет
    • 4 Лиса Алиса Мошенница хромая на одну ногу Нет
    • 5 Кот Базилио Мошенник слепой на оба глаза Нет
    • 6 Мальвина артистка театра девочка с голубыми волосами Да
    • 7 Дуремар Фармацевт характерный запах тины Нет
    • 8 Тортилла хранительница золотого ключика черепаха Да
    • 9. При помощи мыши выделите:
      • а) запись 5,
      • б) запись 3,
      • в) с третьей по седьмую запись. Отмените выделение.
      • г) Выделите все записи. Отмените выделение.
      • д) Выделите поле «Персонаж».
      • е) Выделите одновременно поля: «Профессия», «Особые приметы» и «Герой», отмените выделение.
      • ж) Выделите все поля. Это можно сделать при помощи мыши или в меню Правка выбрать команду Выделить все записи.
    • 10. Отмените выделение.
    • 11. Выделите:
      • а) В поле «Особые приметы» отметьте шестую запись.
      • б) В поле «Персонаж» выделите с четвертой по шестую запись.
      • в) Не отпуская кнопку мыши, отметьте эти же записи в полях «Особые приметы» и «Герой».
    • 12. Отмените выделение.
    • 13. Выделите всю таблицу.
    • 14. Отмените выделение.
    • 15. Измените ширину каждого столбца, так чтобы ширина колонок была минимальной, но был виден весь текст.

    Это можно сделать при помощи мыши, раздвинув столбцы или следующим образом. Выделите нужный столбец и нажмите правую кнопку мыши, в контекстном меню выберете команду «Ширина столбца»; в открывшемся окне нажмите кнопку По ширине данных. Проделайте такую же работу со всеми полями. Высоту строки можно изменить аналогичным образом с помощью мыши или в меню Формат командой Высота строки. Причем достаточно отредактировать одну строку, высота остальных строк изменяется автоматически.

    • 16. Любым способом измените высоту строки и сделайте ее равной 30.
    • 17. Измените шрифт таблицы на Arial Cyr, размер шрифта 14, полужирный.

    Изменить шрифт можно так: вывести указатель мыши за пределы таблицы и нажать левую кнопку мыши, в контекстном меню выбрать Шрифт или в меню Правка на панели инструментов выбором команды Шрифт.

    • 18. Измените шрифт текста на Times New Roman Cyr, размер шрифта 10.
    • 19. Измените ширину полей.
      • а) Сделайте столбец «Персонаж» шириной 20.
      • б) Столбец «Особые приметы» шириной 25.

    Вы видите, что текст в этих полях напечатался в две строки.

    • 20. Подгоните ширину столбцов так, чтобы текст вмещался полностью.
    • 21. Выполните сортировку таблицы по полю «Персонаж» в порядке, обратном алфавитному.

    Это можно сделать так. Выделите поле «Персонаж» и нажмите кнопку Сортировка по убыванию на панели инструментов.

    • 22. Верните таблицу в исходное состояние.

    В последнее время слышны утверждения о возможной смене парадигмы – от реляционных к постреляционным СУБД. Однако по данным аналитиков, пока именно реляционные СУБД используются в абсолютном большинстве крупных проектов, связанных с внедрением систем управления базами данных. Рынок явно придерживается традиционных подходов в решении подобных задач.

    Системы управления базами данных (СУБД) – одна из фундаментальных составляющих компьютерного обеспечения информационных процессов, являющаяся основой для построения большинства современных информационных систем. Главной функцией СУБД является эффективное хранение и предоставление данных в интересах конкретных прикладных задач.

    Коммерческие СУБД ведут свою историю с середины 60-х годов, когда компанией IBM был выпущен первый продукт данного класса – иерархическая СУБД IMS. В начале 70-х годов Эдгаром Коддом были заложены основы реляционной модели данных, был разработан структурированный язык запросов SQL, а в 80-х годах были созданы промышленные СУБД, которые в скором времени заняли доминирующее положение. В настоящее время ведущая тройка игроков – Microsoft, Oracle и IBM – полностью контролируют рынок, а их флагманские продукты Microsoft SQL Server, Oracle Database и IBM DB2 вместе занимают долю рынка около 90%. Рынок СУБД активно растет и, по мнению аналитиков Forrester, к 2013 году его общий объем достигнет 32 млрд долл.

    Главным недостатком реляционных СУБД считается присущая этим системам ограниченность использования в областях, в которых требуются достаточно сложные структуры данных. Одним из основных аспектов традиционной реляционной модели данных является атомарность (единственность и неделимость) данных, которые хранятся на пересечении строк и столбцов таблицы. Такое правило было заложено в основу реляционной алгебры при ее разработке как математической модели данных. Кроме того, специфика реализации реляционной модели не позволяет адекватно отражать реальные связи между объектами в описываемой предметной области. Данные ограничения существенно мешают эффективной реализации современных приложений, которые требуют уже несколько иных подходов к организации данных.

    Основной принцип реляционной модели – устранять повторяющиеся поля и группы с помощью процесса, который называется нормализацией. Плоские нормализованные таблицы универсальны, просты в понимании и теоретически достаточны для представления данных любой предметной области. Они хорошо подходят для приложений, связанных с хранением и отображением данных в традиционных отраслях, таких как банковские или учетные системы, но их применение в системах, основанных на более сложных структурах данных, часто является затруднительным. В основном, это связано с примитивностью механизмов хранения данных, лежащих в основе реляционной модели.

    Опыт разработки прикладных информационных систем показал, что отказ от атомарности значений ведет к качественно полезному расширению модели данных. Введение в реляционную модель возможности использовать многозначные поля как самостоятельные вложенные таблицы, при условии, что вложенная таблица удовлетворяет общим критериям, позволяет естественным образом расширить возможности реляционной алгебры. В классическом понимании именно такая модель данных называется постреляционной.

    Поскольку постреляционная модель использует многомерные структуры, позволяющие хранить в полях таблицы другие таблицы, ее еще называют "не первой нормальной формой" или "многомерной базой данных". В качестве языка в данной модели запросов используется расширенный SQL, позволяющий извлекать сложные объекты из одной таблицы без операций соединения. Можно сказать, что реляционные и постреляционные СУБД различаются способами хранения и индексирования данных, во всем остальном они схожи. Первыми постреляционными СУБД, получившими достаточно большую известность, стали Universe компании Ardent (впоследствии купленной Informix, которую, в свою очередь, приобрела IBM) и ADABAS компании Software AG.

    Объектно-реляционные СУБД

    Кроме отказа от нормализации, постреляционные СУБД позволяют хранить в полях отношений данные абстрактных, определяемых пользователями типов. Это дает возможность решать задачи нового уровня, хранить объекты и массивы данных, ориентированные на конкретные предметные области, а также роднит постреляционные СУБД с еще одним классом – объектно-ориентированными СУБД. Внедрение объектного подхода в традиционную реляционную модель дало повод к появлению еще одного направления – объектно-реляционных СУБД. Первым представителем данного класса систем принято считать систему Informix Universal Server одноименной компании.

    Как известно, в основе объектно-ориентированного подхода к моделированию предметных областей лежат такие понятия, как объект и свойства инкапсуляции, наследования и полиморфизма. В отличие от реляционных СУБД при проектировании объектно-ориентированных БД не требуется декомпозиция и нормализация объектов, выделенных на этапе концептуального проектирования. Объекты представляются в том же виде, в каком они существуют в реальности, что наделяет объектно-ориентированные структуры наглядностью и позволяет значительно сократить время на их проектирование и разработку.

    Одной из наиболее известных постреляционных СУБД является система Postgres, созданная в середине 80-х годов прошлого века под руководством одного из ведущих разработчиков СУБД Майкла Стоунбрейкера. Стоунбрейкер оказал (и продолжает оказывать) огромное влияние на индустрию СУБД, приложив руку практически ко всем перспективным разработкам в данной сфере. В Postgres традиционная реляционная модель была расширена за счет внедрения механизмов управления объектами, которые позволяли хранить и эффективно управлять нетрадиционными типами данных. Также в Postgres поддерживалась многомерная темпоральная модель хранения и доступа к данным. Все основные идеи и разработки Postgers были продолжены и развиты в свободно распространяемой СУБД PostgreSQL, которая в настоящее время является наиболее развитой открытой СУБД.

    Зачастую постреляционными называют также СУБД, которые позволяют представлять данные как в виде реляционных таблиц, так и классов объектов. Типичным представителем данного вида СУБД является система Cache компании InterSystems. По словам ее разработчиков, в данной системе наиболее эффективно совмещены реляционный и объектный подходы, основанные, соответственно, на стандартах SQL-92 и ODMG 2.0. Механизмы работы с объектами и реляционными таблицами находятся на одном логическом уровне, что обеспечивает более высокую скорость доступа и работы с данными и функциональную полноту. Также Cache использует многомерную модель хранения данных и оптимизирована для обработки транзакций в системах с большими и сверхбольшими БД (сотни гигабайт, терабайты) и большим количеством (тысячи, десятки тысяч) одновременно работающих пользователей, при этом позволяя получать очень высокую производительность.

    Перспективы развития

    Современные промышленные СУБД представляют собой сложные комплексы, состоящие из различных элементов, технологий и подходов. Данные составляющие объединяются и совершенствуются, исходя из потребностей обеспечения идеальных условий для решения проблем управления большими объемами данных в различных условиях. При этом все разработчики проводят масштабные исследовательские работы. Многолетний опыт разработки СУБД показал, что для обеспечения эффективной, надежной и безошибочной работы нового функционала требуется достаточно много времени. Жесткая конкуренция на рынке СУБД заставляет производителей тщательно следить за продуктами конкурентов, выявлять новые тенденции, а появление важных новых возможностей у одного из вендоров вынуждает остальных реализовывать аналогичный функционал в своих разработках.

    В свою очередь, растут и потребности разработчиков современных баз данных. В первую очередь, это связано с бурным развитием интернета, активным использованием мультимедиа и необходимостью обрабатывать слабоструктурированные данные.

    По результатам исследований компании IDC, опубликованных в конце 2009 года, традиционные реляционные СУБД используются в абсолютном большинстве крупных проектов, связанных с внедрением систем управления базами данных. Всего около 7% составляют проекты, в которых используются СУБД нереляционного типа. Такая расстановка сил на рынке реальных внедрений отражает общее состояние: разработчики все еще активно придерживаются традиционных подходов в решении задач, связанных с применением СУБД.

    Все вышеперечисленное говорит о том, что стратегия развития, выбранная ведущими игроками рынка СУБД, позволит и в дальнейшем сохранять лидерские позиции. Их основные продукты будут совершенствоваться, будет реализовываться новый функционал, а разработчики и в дальнейшем будут выбирать универсальные и проверенные временем традиционные решения.

    Максим Никитин

    Реляционная СУБД – СУБД, управляющая реляционными базами данных.

    Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

      каждый элемент таблицы – один элемент данных.

      все ячейки в столбце таблицы однородные, то есть все элементы в столбце имеют одинаковый тип (числовой, символьный и т. д.)

      каждый столбец имеет уникальное имя

      одинаковые строки в таблице отсутствуют

      порядок следования строк и столбцов может быть произвольным

    Строка таблицы называется записью, колонка – полем.

    Первичный ключ (англ. primary key) – минимальное множество атрибутов, являющееся подмножеством заголовка данного отношения, составное значение которых уникально определяет кортеж отношения. На практике термин первичный ключ обозначает поле или группу полей таблицы базы данных, значение которого (или комбинация значений которых) используется в качестве уникального идентификатора записи этой таблицы. В реляционной теории таблица представляет собой неупорядоченный набор записей. Единственный способ идентифицировать определённую запись в этой таблице – это указать набор значений одного или нескольких полей, который был бы уникальным для этой записи. Отсюда и происходит понятие первичного ключа – набора полей таблицы, совокупность значений которых определена для любой записи (строки) этой таблицы и различна для любых двух записей.

    Внешний ключ (англ. foreign key) – поле таблицы, предназначенное для хранения значения первичного ключа другой таблицы с целью организации связи между этими таблицами.

    Пусть имеются таблицы A и B. Таблица A содержит поля a, b, c, d, из которых поле a – первичный ключ. Таблица B содержит поля x, y, z. В поле y содержится значение поля a одной из записей таблицы A. В таком случае поле y и называется внешним ключом таблицы A в таблице B.

    Вот такой SQL-запрос вернёт все связанные пары записей из таблиц A и B:

    select * from A, B where A.a = B.y;

    Внешний ключ в таблице может ссылаться и на саму эту таблицу. В таких случаях говорят о рекурсивном внешнем ключе. Необходимо для реализации древовидной структуры данных в реляционной таблице.

    СУБД поддерживают автоматический контроль ссылочной целостности на внешних ключах.

    Виды связей таблиц

    Существует три виды связей таблиц.

    Связь с отношением «один-ко-многим». Является наиболее часто используемым типом связи между таблицами. В такой связи каждой записи в таблице A могут соответствовать несколько записей в таблице B, а запись в таблице B не может иметь более одной соответствующей ей записи в таблице A. Например, в одном подразделение может работать несколько сотрудников, но ни один сотрудник не может работать сразу в нескольких подразделениях. Принятое обозначение (1 – ∞).

    Отношение «многие-ко-многим». При этом отношении одной записи в таблице A могут соответствовать несколько записей в таблице B, а одной записи в таблице B несколько записей в таблице A. Такая схема реализуется только с помощью третьей (связующей) таблицы, ключ которой состоит по крайней мере из двух полей, которые являются полями внешнего ключа в таблицах A и B. Например, между таблицами инспекторов и лиц, пересекающих границу, связь определяется отношением «многие-ко-многим». Один декларант может обсуживаться у нескольких инспекторов, в то же время инспектор может обслуживать несколько лиц. Такая связь определяется путем создания двух связей с отношением «один-ко-многим» для таблицы Инспектор_Декларант, в которой обязательно должны быть поля КлючИнспектора и КлючДекларанта.

    При отношении «один-к-одному» запись в таблице A может иметь не более одной связанной записи в таблице B и наоборот. Этот тип связи используют не очень часто, поскольку такие данные могут быть помещены в одну таблицу. Связь с отношением «один-к-одному» используют для разделения очень широких таблиц или для отделения части таблицы по соображениям защиты.

    Реляционные СУБД обладают рядом особенностей, влияющих на организацию внешней памяти. К наиболее важным особенностям можно отнести следующие.

    Наличие двух уровней системы:

    уровня непосредственного управления данными во внешней памяти (а также обычно управления буферами оперативной памяти, управления транзакциями и журнализацией изменений БД),

    языкового уровня (например уровня, реализующего язык SQL).

    При такой организации подсистема нижнего уровня должна поддерживать во внешней памяти набор базовых структур, конкретная интерпретация которых входит в число функций подсистемы верхнего уровня.

    Поддержка отношений-каталогов (справочников). Информация, связанная с именованием объектов базы данных и их конкретными свойствами (например, структура ключа индекса), поддерживается подсистемой языкового уровня. С точки зрения структур внешней памяти, отношение-каталог ничем не отличается от обычного отношения базы данных.

    Регулярность структур данных . Поскольку основным объектом реляционной модели данных является плоская (в 1НФ) таблица, главный набор объектов внешней памяти может иметь очень простую регулярную структуру. При этом необходимо обеспечить возможность эффективного выполнения операторов языкового уровня как над одним отношением (простые операции селекции и проекции), так и над несколькими отношениями (наиболее распространена и трудоемка операция соединения нескольких отношений). Для этого во внешней памяти должны поддерживаться дополнительные индексы.

    Для выполнения требования надежного хранения баз данных необходимо поддерживать избыточность хранения данных, что обычно реализуется в виде журнала изменений базы данных.



    Соответственно, возникают следующие разновидности объектов во внешней памяти базы данных:

    строки отношений - основная часть базы данных, большей частью непосредственно видимая пользователям;

    управляющие структуры - индексы, создаваемые по инициативе пользователя (администратора) или верхнего уровня системы из соображений повышения эффективности выполнения запросов и обычно автоматически поддерживаемые нижним уровнем системы;

    журнальная информация , поддерживаемая для удовлетворения потребности в надежном хранении данных;

    служебная информация , поддерживаемая для удовлетворения внутренних потребностей нижнего уровня системы; набор структур служебной информации зависит от общей организации системы, но обычно требуется поддержание следующих служебных данных:

    · внутренние каталоги (справочники), описывающие физические свойства объектов базы данных, например число атрибутов отношения, их размер и, возможно, типы данных;

    · описание индексов, определенных для данного отношения;

    · описатели свободной и занятой памяти в страницах внешней памяти, распределенных для хранения отношений; такая информация требуется для нахождения свободного места при занесении кортежей.

    Базовые структуры памяти

    Структура и типы страниц

    Основной единицей хранения и манипулирования данными при бесфайловой организации является страница памяти (или блок данных ) - часть пространства памяти среды хранения базы данных, организованного таким образом, что оно состоит из последовательности таких частей (страниц), имеющих одинаковую длину.

    Страницаявляется единицей обмена с внешней памятью. Размер страницы фиксирован для базы данных и устанавливается при ее (базы) создании. Страницы памяти имеют уникальные идентификаторы , в качестве которых обычно используются их последовательные номера. Содержимое страницы памяти может быть прочитано в буфер обмена или записано во внешнюю память из буфера за одно обращение к устройству внешней памяти. В некоторых системах страницы памяти могут иметь внутреннюю организацию, например, могут обладать индексом , обеспечивающим прямой доступ к содержащимся на странице хранимым записям. Страницы с простейшей организацией, предусматривающей последовательное размещение в них записей, в некоторых методах доступа называются блоками записей .

    Выделяют четыре типа страниц:

    · страницы данных,

    · страницы индексов,

    · страницы blob-объектов,

    · битовые страницы.

    Страница данных . Основная единица осуществления операций обмена. Структура страницы данных представлена на рис. 32.

    Рис. 32. Структура страницы данных

    Заголовок страницы включает внутрисистемную информацию, используемую СУБД в механизме управления страницами.

    Данные на странице представляются в виде строк . Каждая строка соответствует некоторому кортежу отображаемого отношения.

    Слоты характеризуют размещение строк данных на странице. В базе данных каждый кортеж имеет уникальный внутрисистемный идентификатор, включающий номер страницы и номер строки на странице, в которую отображается данный кортеж. Содержимое слота и составляет идентификатор соответствующей ему (по номеру на странице) строки. При упорядочивании кортежей отношения по значению какого-либо атрибута физического перемещения строк на соответствующих страницах не происходит. Вместо этого производится перестройка содержимого слотов.

    Страница индексов. Страницы индексов предназначены для хранения индексных структур, используемых СУБД в реализации методов доступа, и организованы в виде В-деревьев.

    Страница blob . Страницы blob (B inary L arge Ob ject) предназначены для хранения слабоструктурированной информации, содержащей тексты большого объема, графическую информацию, двоичные коды. Эти данные рассматриваются как потоки байтов произвольного размера, а в страницах данных формируются ссылки на эти страницы. Данные таких типов в ранних СУБД относились к типу MEMO.

    Битовая страница . Битовые страницы содержат описатели других типов страниц. Описатель страницы включает две составляющих – тип страницы и ее состояние (свободна /занята ).

    Табличные пространства

    Общим для СУБД является понятие пространства (для некоторых СУБД табличное пространство ). В табличных пространствах размещены различные логические структуры данных, такие как таблицы и индексы, временные таблицы и словарь данных. Группировка хранимых данных по пространствам производится по ряду признаков: частота изменения данных, характер работы с данными (преимущественно чтение или запись и т.п.), скорость роста объема данных, важность и т.п. Таким образом, например, только читаемые таблицы помещаются в одно пространство, для которого установлены одни параметры хранения, таблицы транзакций размещаются в пространстве с другими параметрами и т.д. (рис. 33).

    Рис.33. Физическое размещение данных по устройствам

    Одна логическая единица данных (таблица или индекс) размещается точно в одном пространстве, которое может быть отображено на несколько физических устройств или файлов. При этом физически разнесены (располагаться на разных дисках) могут не только логические единицы данных (таблицы отдельно от индексов), но и данные одной логической структуры (таблица на нескольких дисках). Такой способ хранения называется горизонтальной фрагментацией (или секционированием ): таблица делится на фрагменты по строкам. Фрагментация - один из способов повышения производительности.

    Могут применяться различные схемы записи данных во фрагментированные таблицы. Одна из них - круговая, когда некоторая часть вставляемых в таблицу строк записывается в первый фрагмент, другая часть - в следующий и так далее по кругу. В данном случае за счет распараллеливания может быть увеличена производительность операций модификации данных и запросов.

    Существует и другая схема, включающая логическое разделение строк таблицы по ключу (кластеризация ). Данная схема позволяет избежать перерасхода процессорного времени и уменьшить общий объем операций ввода/вывода. Ее суть в том, что при создании таблицы все пространство значений ключа таблицы разбивается на несколько интервалов, а строкам с ключами, принадлежащими разным интервалам, назначаются различные месторасположения. Впоследствии, при обработке запроса, данная информация учитывается оптимизатором. Если производится поиск по ключу, то оптимизатор может удалять из рассмотрения фрагменты таблицы, не удовлетворяющие условию выборки.

    Пусть, например, для таблицы Person создаются два раздела part1 и part2 , каждый из которых размещен в своем табличном пространстве (tblspace1 и tblspace2 ). Записи со значением поля Num от 1 до 499 будут располагаться в первом разделе, а записи с номерами от 500 до 1000 - во втором (рис. 34.).

    Тогда при запросе:

    SELECT FIO FROM person WHERE Num BETWEEN 10 AND 40

    оптимизатор будет производить поиск только в разделе part1, что может дать ощутимый выигрыш в производительности в таблице с десятками тысяч строк.

    Подобные механизмы фрагментации данных поддерживают практически все современные СУБД, что часто используется при создании систем высокой производительности.

    Рис. 34. Пример кластеризации записей

    База данных (БД) - структурированный организованный набор данных, описывающих характеристики какой-либо физической или виртуальной системы.

    База данных - это организованная структура, предназначенная для хранения информации.

    СУБД - инструментальное программное обеспечение, предназначенное для организации ведения БД.

    По виду модели БД разделяются:

      Иерархические БД

    В основе иерархических СУБД лежит довольно простая модель данных, которую можно представить себе в виде дерева ациклического ориентированного графа особого вида. Дерево состоит из вершин, каждая из которых, кроме одной, имеет единственную родительскую вершину и несколько (в том числе ни одной) дочерних.

      Сетевые СУБД

    Подобно иерархической, сетевую модель также можно представить себе в виде ориентированного графа. Но в этом случае граф может содержать циклы, т.е. вершина может иметь несколько родительских.

      Реляционные СУБД

    Реляционные СУБД являются в настоящий момент самыми распространенными. Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

    Каждый элемент таблицы - один элемент данных;

    Все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьной и т.д.) и длину;

    Каждый столбец имеет уникальное имя.

    Немалую роль в успехе реляционных СУБД играет также язык SQL (язык структурированных запросов), разработанный специально для запросов к реляционным БД. Это достаточно простой и в то же время выразительный язык, при помощи которого можно выполнять достаточно изощренные запросы к базе.

      Объектно-ориентированные

    базы данных, в которой данные оформлены в виде моделей объектов, включающих прикладные программы, которые управляются внешними событиями. В наиболее общей и классической постановке объектно-ориентированный подход базируется на концепциях: объекта и идентификатора объекта; атрибутов и методов; классов; иерархии и наследования классов.

      Многомерные

    Программное обеспечение OLAP используется при обработке данных из различных источников. Эти программные продукты позволяют реализовать множество различных представлений данных и характеризуются тремя основными чертами: многомерное представление данных; сложные вычисления над данными; вычисления, связанные с изменением данных во времени.

    9. Языки программирования. Машинный код. Трансляторы. Двоичное кодирование информации.

    Язык программирования - формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, компьютера). Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении компьютерной программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими данными при различных обстоятельствах.

    Машинный код процессора

    Процессор компьютера все команды и данные получает в виде электрических сигналов. Их можно представить как совокупности нулей и единиц, то есть числами. Разным командам соответствуют разные числа. Поэтому реально программа, с которой работает процессор, представляет собой последовательность чисел, называемую машинным кодом .

    Уровни языков программирования

    Если язык программирования ориентирован на конкретный тип процессора и учитывает его особенности, то он называется языком программирования низкого уровня . Имеется в виду, что операторы языка близки к машинному коду и ориентированы на конкретные команды процессора.

    Языком самого низкого уровня является язык ассемблера , который просто представляет каждую команду машинного кода, но не в виде чисел, а с помощью символьных условных обозначений, называемых мнемониками.

    Языки программирования высокого уровня значительно ближе и понятнее человеку, нежели компьютеру. Особенности конкретных компьютерных архитектур в них не учитываются, поэтому создаваемые программы на уровне исходных текстов легко переносимы на другие платформы, для которых создан транслятор этого языка.

    Популярными на сегодня являются языки программирования:

    Pascal (Паскаль), создан в конце 70-х годов основоположником множества идей современного программирования Никлаусом Виртом и имеет возможности, позволяющие успешно применять его при создании крупных проектов.

    Basic (Бейсик), д ля этого языка имеются и компиляторы, и интерпретаторы, а по популярности он занимает первое место в мире. Он создавался в 60-х годах в качестве учебного языка и очень прост в изучении. Его современная модификация Visual Basic, совместимая с Microsoft office, позволяет расширять возможности пакетов Excel и Access.

    С (Си), Данный язык был создан в лаборатории Bell и первоначально не рассматривался как массовый. Он планировался для замены ассемблера, чтобы иметь возможность создавать столь же эффективные и компактные программы, и в то же время не зависеть от конкретного типа процессора. На этом языке в 70-е годы написано множество прикладных и системных программ и ряд известных операционных систем (Unix).

    Некоторые языки, например, Java и C#, находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код. Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация, хотя отдельные его части для ускорения работы программы могут быть транслированы в машинный код непосредственно во время выполнения программы по технологии компиляции «на лету» (Just-in-time compilation, JIT). Для Java байт-код исполняется виртуальной машиной Java (Java Virtual Machine, JVM), для C# - Common Language Runtime.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: