Построение защищенной базы данных предприятия. Курсовая работа: Проблемы безопасности баз данных

Под безопасностью подразумевается, что некоторому пользователю разрешается выполнять некоторые действия.
СУБД должны соблюдать 3 основных аспекта информационной безопасности:
1. Конфиденциальность
2. Целостность
3. Доступность

В этом посте мы поговорим о конфиденциальности
А) Управление безопасностью
В современных СУБД поддерживается как избирательный, так и обязательный подходы к обеспечению безопасности данных.

В случае избирательного управления, некий пользователь обладает различными правами, или привилегиями, и полномочиями при работе с различными объектами. Поскольку разные пользователи могут обладать различными правами доступа к одному и тому же объекту, такие системы очень гибкие.

В случае обязательного управления, каждому объекту присваивается некий квалификационный уровень, ну а каждому пользователю предоставляются права доступа к тому или иному уровню; и соответственно, если у вас есть права доступа на какой-то уровень — все, что на этот уровень записано, ко всему у вас имеется доступ. Считается, что такие системы жесткие, статичные, но они проще в управлении: легко всем объектам дать какой-либо номер (1,2,3,4…) и пользователю потом присвоить доступ кому до 5-го, кому до 6-го, кому до 7-го уровня и т.д. в порядке повышения приоритета.

В обычных СУБД для идентификации и проверки подлинности пользователя применяется либо соответствующий механизм операционной системы, либо то, что имеется в SQL-операторе connect (там есть специальные параметры для доступа при подключении). В момент начала сеанса работы с сервером базы данных пользователь идентифицирует контакт, или логин, своим именем, а средством аутентификации служит пароль.

Идентификатор – это краткое имя, однозначно определяющее пользователя для СУБД. Является основой систем безопасности. Для пользователей создаются соответствующие учетные записи.

Идентификация позволяет субъекту (т.е. пользователю или процессу, действующему от имени пользователя) назвать себя, т.е. сообщить свое имя (логин).

По средствам аутентификации (т.е. проверки подлинности) вторая сторона (операционная система или собственно СУБД) убеждается, что субъект действительно тот, за кого он себя выдает.

Для особо уязвимых систем (например, банковским и т.п.) используются более сложные системы защиты. Так, например, известны системы с последовательным созданием нескольких вопросов личного характера, с ограничением времени на их ответ и количества попыток (как в любом мобильнике).

В стандарте ANSI ISO вместо термина «идентификатор пользователя» (user ID) используется термин «идентификатор прав доступа» (authorization ID).

Система безопасности на сервере может быть организована 3-мя способами:
1. стандартная безопасность: когда на сервер требуется отдельный доступ (т.е. в операционную систему вы входите с одним паролем, а на сервер базы данных с другим);
2. интегрированная безопасность (достаточно часто используют): входите в операционную систему с каким-то пользовательским паролем, и это же имя с этим же паролем зарегистрировано в СУБД. Второй раз входить не надо. Раз попал человек на сервер, ну да ладно, пусть пользуется всем, что есть.
3. смешанная система, которая позволяет входить и первым, и вторым способом.

Б) Управление доступом
Обычно в СУБД применяется произвольное управление доступом: когда владелец объекта (в крайнем случае, администратор базы данных, но чаще владелец) передает права доступа (permissions) кому-нибудь. При этом права могут передаваться отдельным пользователям, группам пользователей, или ролям.

1. Учетная запись создается для отдельных пользователей с логином и паролем. Как правило, это делает администратор базы данных.

2. Группа – именованная совокупность пользователей, чаще всего в группы объединяют на основе какой-либо организации (по отделам, по комнатам, по бригадам и т.п.). Формально говоря, пользователь может входить в разные группы и входить в систему с разной возможностью (должен указать от имени какой группы он входит).

3. Роль – некий, часто служебный, перечень возможностей. Например, бухгалтер, кладовщик и т.п. Приходит человек на работу, ему присваивают такие права доступа, и он с ними может входить. Такой вариант сейчас довольно хорошо используется, т.к. это достаточно удобно оговорить на предприятии. При желании можно пересмотреть эту роль, и она сразу всех потом поменяет. Как правило, считается, что привилегии роли имеют приоритет перед привилегиями групп.

Более высокие требования по безопасности в настоящее время мы рассматривать не будем. Такие многоуровневые системы безопасности были разработаны еще в 70х годах ХХ века. Известные фамилии: Bella, Lapadula.

B) Основные категории пользователей
В общем случае пользователи СУБД могут быть разбиты на 3 основные большие группы:
1. администратор сервера базы данных (и его помощники): ведают установкой, конфигурированием сервера, регистрацией пользователей, групп, ролей, и т.д. Обладает всеми правами базы данных.
2. администратор отдельной базы данных (сервер может обслуживать тысячи баз данных).
3. прочие конечные пользователи: программисты (создают программы для управления теми или иными процессами: бухгалтерскими, кадровыми…), работники фирм и т.д.

Как правило, для администраторов баз данных сделана первоначальная учетная запись, чтоб сделать первоначальный вход в систему. Например, в InterBase: SISDBA с masterkey. В SQL-server: SA и пустой пароль. В Oracle есть 3 изначальных учетных записи: SIS, SYSTEM и MANAGER.

Г) Виды привилегий
Фактически их две:
. привилегии безопасности: выделяются конкретному пользователю, создаются, как правило, команды типа create user. Но создать пользователя в базе данных – это не значит предоставить ему права на все. Просто он может войти в базу данных, но там ничего не увидеть. После создания ему еще надо дать права.
. привилегии доступа или права доступа (permissions): предоставляют созданному пользователю те или иные привилегии. Здесь используются другие 2 команды: Grant – предоставить право на что-то (чтение, добавление, удаление, изменение записи…), Revolce.

Каким образом реализуются или ограничиваются права доступа:
. есть операционные ограничения – право на выполнение тех или иных операторов. Чаше всего это select, insert, delete и update. Во многих СУБД (в том числе Oracle) порядка 25 разных операционных прав можно предоставлять.
. Ограничения по значениям, реализуемые с помощью механизма представлений (View).
. Ограничения на ресурсы, реализуемые за счет привилегий доступа к базам данных.
. Привилегии системного уровня (для Oracle). Когда пользователю разрешается выполнять до 80 различных операторов.

Совокупность всех привилегий, которыми можно обладать называется PUBLIC. Администратор базы данных по умолчанию имеет PUBLIC-права – права на все объекты и действия.

Д) Контрольные исследования
Поскольку абсолютно неуязвимых систем не бывает, или, по крайней мере, в определенном смысле неуязвимых, то при работе с очень важными данными или при выполнении очень серьезных критических операций используют регистрацию каких-то действий (т.е. при выполнении какого-то действия автоматически записывается lok-файл, обычно это текстовый файл, его легко сделать через триггеры). Таким образом, если в этом файле более подробно все написать, то можно следить, кто когда что делал.

Е) Протоколирование и аудит
Под протоколированием понимается сбор и накопление информации о событиях, происходящих в информационной системе. В том числе с помощью lok-файлов.

Под аудитом понимается анализ накопленной информации, проводимый либо оперативно (почти в реальном времени), либо периодически (раз в сутки, раз в неделю…).

Для чего используется протоколирование и аудит?
Тут есть несколько основных целей:
. Обеспечение подотчетности пользователей и администратора. За счет этого можно определить, кто куда обращался, и не появились ли у кого-нибудь непонятные права, не подглядел ли кто-нибудь пароль и т.д.
. Для того, чтоб иметь возможность реконструировать последовательность событий. Какие-то нежелательные изменения – можно вернуть назад.
. Обнаружение попыток нарушения информационной безопасности (взлома).
. Выявление различных проблем в работе информационной системы (например, кому-то мало дали данных для работы, кому-то много)

Если говорить о СУБД Oracle, как о флагмане базостроения, там ведется 3 контрольных журнала:
. Журнал привилегий (происходит отслеживание использования привилегий)
. Журнал операторов (отслеживает, какие операторы используются часто для объектов, потом можно что-то превращать в процедуры, улучшать быстродействие, важный журнал)
. Журнал объектного уровня (контролирует доступ к объектам)

С увеличением использования баз данных, частота нападения на базы данных также возросла. В наши дни атаки на базы данных являются растущей тенденцией. В чём причина нападения на БД? Одна из причин — это увеличение доступа к данным, хранящимся в базе данных. Когда данные использовались многими людьми, шансы кражи данных увеличиваются. Отсюда следует, что безопасность баз данных — это диапазон методов, которые используют для защиты информации, хранящейся в базе данных. Так как попытки взлома БД являются наиболее частыми, вам необходимо будет подумать о безопасности информационной базы, так как существует множество и других опасностей.

Физическое повреждение компьютера, неправильная кодировка или коррупция, и перезагрузка данных, вот практически все потенциальные угрозы для базы данных. А это означает, что есть много мер безопасности - от брандмауэров до аудита и резервного копирования дисков - свести любой возможный ущерб к минимуму и предотвратить потерю всей базы данных. Большинство предприятий имеют собственные протоколы безопасности данных для защиты от определенных атак и возможного ущерба.

Установка межсетевого экрана для базы данных , своеобразный защитный барьер, который запрещает все неизвестные соединения, это является самой основной формой защиты баз данных. Межсетевые экраны установлены на большинстве компьютеров и сделаны таким образом, что хакеры будут иметь трудности с подключением к компьютеру жертвы. Брандмауэры работают путем фильтрации подключений к сети и только доверенные компьютеры или пользователи могут получить доступ к базе данных. В то время как опытные хакеры могут обойти это, брандмауэр обеспечивает высокий уровень безопасности.

Шифрование — это другая мера безопасности для базы данных, в которой данные шифруются, или были сделаны неразборчивыми для всех, кто обращается к базе данных. При использовании шифрования, алгоритм кодирует символы в бред, поэтому он не может быть прочитан. Это означает, что если хакер имеет определенные знания о ключах шифрования, информацию, которая вам нужна для изменения зашифрованных данных из неразборчивых символов обратно в понятную форму, нет никакого способа, чтобы он или она могли прочитать базу данных.

Аудит — это, когда руководитель или менеджер, проверяет базу данных, чтобы убедиться, что в ней ничего не изменилось. Этот тип защиты БД обычно выполняют физически, кем-то, кто может читать базу данных, или для больших баз данных с помощью программы, чтобы увидеть, что целостность БД осталась такая же. Кроме того, аудит может включать проверку доступа к базе данных и, увидеть, что человек сделал, когда он получил доступ к базе данных. Это предотвращает кражи данных или, по крайней мере, позволяет администраторам, чтобы выяснить, кто совершил кражу данных.

Регулярное резервное копирование БД — это мера безопасности баз данных, которая может защищать БД от различных угроз. Когда резервное копирование базы данных выполняется регулярно, то это означает, что данные будут храниться на другом жёстком диске или сервере. Если база данных теряет любую или всю информацию, она может быть быстро перезапущена с минимальными потерями, используя резервную копию. Делая резервное копирование базы данных, администраторы могут предотвратить физическое повреждение компьютера, например от пожара, повреждения базы данных или базы данных выключением от перегрузки.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Информация является ресурсом, который как и любой иной бизнес-ресурс (финансы, оборудование, персонал) имеет для каждого предприятия определенную стоимость и подлежит защите. Обеспечение информационной безопасности заключается в защите информации от различных видов угроз с целью обеспечения нормального режима работы, успешного развития бизнеса, минимизации деловых рисков, обеспечения личной безопасности сотрудников предприятия.

Информация может быть представлена в различных формах. Она может быть напечатана или написана на бумаге, хранится в электронном виде, передаваться по почте или электронным способом, демонстрироваться в фильмах, видеозаписях, фотографиях, слайдах, а также быть высказана в разговорах. Вне зависимости от формы представления информации, в которой она хранится, обрабатывается или передается, информация должна быть должным образом защищена.

Комплексное обеспечение информационной безопасности заключается в сочетании:

- конфиденциальности: предоставлении доступа к информации только авторизованным сотрудникам;

- целостности: защиты от модификации или подмены информации;

- доступности: гарантировании доступа к информации и информационным ресурсам, средствам информатизации авторизованным пользователям.

Информация, информационные ресурсы и средства информатизации подвергаются широкому спектру угроз, включая мошенничество, промышленный шпионаж, саботаж, вандализм, пожары, затопления и пр. Случаи ущерба в результате заражения компьютерными вирусами, внедрения программ-закладок, несанкционированного доступа и/или модификации конфиденциальной информации, атак типа «отказ в обслуживании» становятся все более частыми в деятельности предприятий.

Реализация угроз может нанести значительный ущерб и стать причиной существенных убытков, причиной снижения деловой активности, временного или полного прекращения деятельности. Для предотвращения реализации угроз предпринимаются меры, включая безусловное выполнения определенных политикой безопасности предприятия правил и процедур работы с информационной системой, использование средств защиты информации, контроль со стороны уполномоченных сотрудников за выполнением сотрудниками своих обязанностей по обеспечению информационной безопасности.

Новосибирское авиационное производственное объединение (НАПО), для нужд которого был разработан дипломный проект, сегодня является одним из крупнейших авиастроительных предприятий России и предлагает своим клиентам высококачественную продукцию и большой комплекс услуг. Объединение обеспечивает техническое сопровождение самолетов в течение всего жизненного цикла, в том числе поставку запасных частей, ремонт и модернизацию, обучение летного и технического персоналов. На предприятии выпускается большая номенклатура товаров народного потребления, инструментов и предлагается большой комплекс услуг. Также объединение включает авиакомпанию, которая занимается чартерной перевозкой пассажиров и грузов весом до 20т, в том числе скоропортящихся грузов, а также предоставляет любые услуги на вертолетах «Ми-8». Основная продукция НАПО - самолеты военного и гражданского назначения. Конструкторские разработки и вся информация НАПО обо всем жизненном цикле самолетов является государственной тайной и обсуждению в данной работе не подлежит.

С развитием информатизации и автоматизации деятельности ОАО «НАПО им. В.П.Чкалова», с увеличением объемов информации, обрабатываемой в информационной системе предприятия, одновременно, с увеличением степени важности информации и критичности выполнения информационно-вычислительных процессов требуется особое внимание к вопросам обеспечения информационной безопасности.

В соответствии с принятой на предприятии «Политикой информационной безопасности» и СТП 525.588-2004 «Система менеджмента качества» кроме информации, защите подлежат также средства информатизации -- средства вычислительной техники, коммуникационное оборудование, программное обеспечение, автоматизированные системы ведения баз данных, а также информационно-вычислительные процессы -- процессы передачи, обработки и хранения информации. Целью предпринимаемых мер по защите информации является обеспечение корректного и безопасного функционирования средств информатизации и установление ответственности за выполнение необходимых процедур.

Актуальность проблемы защиты баз данных в настоящее время не вызывает сомнения, так как информация в них хранимая и обрабатываемая может иметь исключительное значение для предприятия: это могут быть персональные данные сотрудников компании, информация о конструкторских разработках или информация о финансовой деятельности. А разглашение информации подобного рода будет не желательным для предприятия, так как это может подорвать его конкурентоспособность и репутацию.

Целью дипломного проекта является реализация эффективной защиты производственной базы данных ОАО «НАПО им. В.П.Чкалова».

Необходимость проведения настоящей работы вызвана отсутствием универсальных методических основ обеспечения защиты информации в современных условиях и отсутствием необходимых средств и методов защиты баз данных на предприятии.

В дипломном проекте рассмотрены следующие задачи:

выявление информационных потребностей, недостатков, проблем и угроз безопасности, специфичных для работы с базами данных;

выбор и обоснование проектных решений по устранению недостатков, проблем, нейтрализации угроз безопасности и удовлетворения потребностей;

внедрение средств защиты на уровне системы управления базами данных (далее СУБД);

разработка и введение в эксплуатацию защищенного клиент-серверного приложения;

рассмотрение применяемой на предприятии политики использования сетевых ресурсов;

раздел охраны труда;

организационно - экономическая часть проекта.

В данном дипломном проекте рассматриваемой СУБД является Microsoft SQL Server. Разработка приложения осуществляется с использованием технологий Microsoft (dot)NET, которая предполагает трехуровневую организацию: сервер данных (Microsoft SQL Server), сервер приложений (IIS 5.0 & .NET Framework 2.0) и web-клиент (IE 6.0). Кроме того, для формирования отчетов используется инструментальное программное обеспечение Crystal Reports 8.0.

Ориентируясь при рассмотрении вопросов информационной безопасности в основном на специфику конкретного предприятия, автор данного дипломного проекта, тем не менее, старался достичь максимального уровня общности приводимых результатов анализа и решений везде, где это было возможно.

1. Анализ вопроса защиты баз данных

1.1 Постановка задачи и ц елесообразность защиты баз данных

Защита баз данных является одной из самых сложных задач, стоящих перед подразделениями, отвечающими за обеспечение информационной безопасности. С одной стороны, для работы с базой необходимо предоставлять доступ к данным всем сотрудникам, кто по долгу службы должен осуществлять сбор, обработку, хранение и передачу данных. С другой стороны, укрупнение баз данных далеко не всегда имеет централизованную архитектуру (наблюдается ярко выраженная тенденция к территориально распределенной системе), в связи с чем, действия нарушителей становятся все более изощренными. При этом четкой и ясной методики комплексного решения задачи защиты баз данных, которую можно было бы применять во всех случаях, не существует, в каждой конкретной ситуации приходится находить индивидуальный подход.

Сама по себе база данных - это структурированный набор постоянно хранимых данных, где постоянность означает, что данные не уничтожаются по завершении программы или пользовательского сеанса, в котором они были созданы. Но данные, которые она хранит и обрабатывает могут составлять сведения, как общедоступного характера, так и конфиденциальную информацию, коммерческую тайну предприятия или сведения, относящиеся к государственной тайне. Поэтому защита баз данных представляет собой необходимое звено обеспечения информационной безопасности.

Долгое время защита баз данных ассоциировалась с защитой локальной сети предприятия от внешних атак на компьютерную сеть и борьбой с вирусами. Последние аналитические отчеты консалтинговых компаний выявили другие, более важные направления защиты информационных ресурсов компаний. Исследования показали, что от утечки информации со стороны персонала и злонамеренных действий привилегированных пользователей не спасают ни межсетевые экраны, ни виртуальные частные сети (VPN), ни даже системы обнаружения вторжений (IDS), ни системы анализа защищенности. Неавторизованный доступ к данным и утечка конфиденциальной информации являются главными составляющими потерь предприятий вместе с вирусными атаками и кражей портативного оборудования (по данным аналитических отчетов компании InfoWatch).

Предпосылками к утечке информации, содержащейся в базе данных являются:

· многие даже не догадываются о том, что их базы данных крадут;

· кража и причиненный ущерб имеют латентный характер;

· если факт кражи данных установлен, большинство компаний замалчивают причиненный ущерб.

Причины такого положения следующие:

· Высокая латентность подобных преступлений (понесенные потери обнаруживаются спустя некоторое время) и достаточно редко раскрываются. Эксперты называют следующие цифры по сокрытию: США - 80%, Великобритания - до 85%, Германия - 75%, Россия - более 90%. Стремление руководства умолчать, с целью не дискредитировать свою организацию, усугубляет ситуацию.

· Низкий интерес к разработке средств, ликвидирующих или уменьшающих риски, связанные с внутренними угрозами; недостаточная распространенность и популярность таких решений. В результате о средствах и методах защиты от кражи информации легальными сотрудниками знают немногие.

· Недостаточное предложение на рынке комплексных систем для борьбы с внутренними угрозами, особенно в отношении краж информации из баз данных.

Однако эффективные способы защиты данных существуют даже в таких неблагоприятных условиях. Комплекс организационных, регламентирующих и административных и технических мер при правильном подходе позволяет существенно снизить риски утечки информации.

Задачами, которые в результате дипломного проектирования необходимо проработать будут: обеспечение защиты базы данных от кражи, взлома, уничтожения, распространения, что будет решено с помощью таких средств как обеспечения защищенного взаимодействия пользователей с базой данных, разработкой прозрачного для пользователей приложения. Защита должна включать в себя комплекс административных, процедурных, программно-технических способов и средств защиты.

Производственная база данных средств вычислительной техники выбрана не случайно, на это есть ряд объективных причин: значительное увеличение и динамично продолжающийся рост средств вычислительной техники на предприятии (тысячи единиц в год), дороговизна оборудования, большие затраты на приобретение (десятки миллионов рублей в год), их территориальное распределение по подразделениям предприятия, в том числе за пределы, разнородность применения (от средств и программного обеспечения конструкторских разработок до станков с числовым программным управлением). Поэтому потребность в детализации технических характеристик, техническом сопровождении и защите выбранной производственной базы данных обоснована.

1. 2 Р оссийское законодательство в области защиты баз данных

Стремительное развитие информационных и коммуникационных технологий привело к тому, что повсюду в мире исключительное внимание стало уделяться правовому режиму защиты данных. Существующие механизмы защиты авторских прав, товарных знаков, патентов, программного обеспечения, баз данных на сегодняшний день, по-видимому, не в состоянии справиться с теми проблемами, с которыми сталкиваются повсюду в мире. Это становится особенно трудной задачей в условиях, когда сделать электронную копию файлов не представляет особого труда, нововведения и изобретения внедряются со скоростью света, а информация распространяется мгновенно и бесплатно. Каждая страна неизбежно сталкивается с весьма запутанными проблемами, и дело доходит до проведения международных, региональных или национальных реформ. При этом каждый раз необходимо формировать внутренние законы, регулирующие отношения в сфере защиты информации.

Законодательная база Российской Федерации в этой области строится на нескольких документах. Во-первых, сама базы данных является результатом творческой деятельности и защищается законами об авторском праве (закон 09.07.93 N 5351-1 "Об авторском праве и смежных правах"). Во-вторых, использование компьютерных базы данных и их распространение регламентируется законами о защите баз данных (закон от 23.09.92 N 3523-1 "О правовой охране программ для ЭВМ и баз данных"). В-третьих, федеральный закон от 27 июля 2006 г. № 149-ФЗ «Об информации, информационных технологиях и защите информации» ставит вне закона торговлю приватными базами данных, обеспечивает контроль над оборотом личных сведений граждан и требует от организаций обеспечить защиту персональных данных служащих и клиентов. И последнее, закон "О персональных данных» регулирует порядок обработки персональных данных и направлен на защиту баз данных. Отсюда следует вывод, что на государственном уровне вопрос защиты баз данных должным образом не проработан, не существует четкой методики защиты, поэтому только организация комплексной защиты на административном, процедурном, программно-техническом и законодательном уровнях смогут обеспечить необходимый уровень защищенности.

1. 3 Структурные уровни и этапы построения защищенной баз ы данных

Классический взгляд на решение данной задачи включает обследование предприятия с целью выявления таких угроз, как хищения, утрата, уничтожение, модификация, дублирование, несанкционированный доступ. На втором этапе следует составление математических моделей основных информационных потоков и возможных нарушений, моделирование типовых действий злоумышленников; на третьем - выработка комплексных мер по пресечению и предупреждению возможных угроз с помощью правовых, организационно-административных и технических мер защиты. Однако разнообразие деятельности предприятий, структуры бизнеса, информационных сетей и потоков информации, прикладных систем и способов организации доступа к ним не позволяет создать универсальную методику решения и поставленного в ряде случаев на промышленные рельсы сбыта баз данных, содержащих персональные данные абонентов, клиентов или сотрудников и коммерческие тайны компаний.

Решения защиты данных не должны быть ограничены только рамками СУБД. Абсолютная защита данных практически не реализуема, поэтому обычно довольствуются относительной защитой информации - гарантированно защищают ее на тот период времени, пока несанкционированный доступ к ней влечет какие-либо последствия. Иногда дополнительная информация может быть запрошена из операционных систем, в окружении которых работают сервер баз данных и клиент, обращающийся к серверу баз данных.

Так как необходимо организовать защиту производственной базы данных, то при разработке проекта необходимо соблюсти принципы корпоративной работы предприятия: использование корпоративного сервисного программного обеспечения (далее ПО), единое информационное пространство, интеграция решаемых задач в разных подразделениях, автоматизация формализованных процессов, повышенные требования к информационной безопасности, ролевой доступ к данным.

Процесс построения защиты базы данных можно разделить на этапы

· анализ предметной области и проектирование базы данных;

· составление пользователей и разделение их обязанностей;

· ввод данных;

· анализ существующих угроз;

· выработка модели нарушителя;

· выработка подхода к построению защиты;

· организация защиты средствами СУБД;

· разработка защищенного приложения, работающего с базой данных;

· защита сетевых ресурсов предприятия;

В следующих главах будут подробно описано построение защищенной базы данных, следуя выделенным этапам. При этом все этапы защиты принято подразделять на структурные уровни. Защита базы данных должна быть обеспечена на трех уровнях взаимодействия пользователя с базой данных, приведенных на рисунке 1.1. Обычно выделяют:

· первый уровень - уровень СУБД;

· второй уровень - уровень приложения, с помощью которого происходит удаленное взаимодействие пользователя с базой данных;

· третий уровень - уровень сетевых ресурсов.

Основная особенность СУБД - это наличие процедур для ввода и хранения данных и описания их структуры. СУБД должна предоставлять доступ к данным любым пользователям, включая и тех, которые практически не имеют и (или) не хотят иметь представления.

Рисунок 1.1 - Уровни взаимодействия пользователей с базой данных

· физическом размещении в памяти данных и их описаний;

· механизмах поиска запрашиваемых данных;

· проблемах, возникающих при одновременном запросе одних и тех же данных многими пользователями (прикладными программами);

· способах обеспечения защиты данных от некорректных обновлений и (или) несанкционированного доступа;

· поддержании баз данных в актуальном состоянии.

Уровень приложения обеспечивает непосредственное взаимодействие пользователей, наделенных правами на первом уровне, с базой данных. При этом действия пользователя должны быть максимально автоматизированы и по возможности исключен некорректный ввод данных, должен быть разработан интуитивно понятный интерфейс.

Уровень сетевого взаимодействия обеспечивает повышение эффективности работы предприятия в целом, выполняет параллельную обработку данных, дает высокую отказоустойчивость, свойственную распределенному характеру сети, возможность совместного использования данных (в том числе и баз данных) и устройств.

Только защита всех трех выделенных уровней может гарантировать обеспечение необходимого уровня защищенности информации, соответствующего требованиям предприятия.

Выводы

2. Угрозы безопасности баз данных

Одним из важнейших аспектов проблемы обеспечения безопасности компьютерных систем является определение, анализ и классификация возможных угроз безопасности. Перечень угроз, вероятность их реализации, а также модель нарушителя служат основой для проведения анализа риска и формулирования требований к системе защиты.

2. 1 Особенности современных автоматизированных систем как объекта защ и ты

Как показывает анализ, большинство современных автоматизированных систем обработки информации в общем случае представляет собой территориально распределенные системы интенсивно взаимодействующих (синхронизирующихся) между собой по данным (ресурсам) и управлению (событиям) локальных вычислительных сетей (ЛВС) и отдельных ЭВМ.

В распределенных АС возможны все "традиционные" для локально расположенных (централизованных) вычислительных систем способы несанкционированного вмешательства в их работу и доступа к информации. Кроме того, для них характерны и новые специфические каналы проникновения в систему и несанкционированного доступа к информации, наличие которых объясняется целым рядом их особенностей.

Перечислим основные из особенностей распределенных АС:

территориальная разнесенность компонентов системы и наличие интенсивного обмена информацией между ними;

широкий спектр используемых способов представления, хранения и передачи информации;

интеграция данных различного назначения, принадлежащих различным субъектам, в рамках единых баз данных и, наоборот, размещение необходимых некоторым субъектам данных в различных удаленных узлах сети;

абстрагирование владельцев данных от физических структур и места размещения данных;

использование режимов распределенной обработки данных;

участие в процессе автоматизированной обработки информации большого количества пользователей и персонала различных категорий;

непосредственный и одновременный доступ к ресурсам (в том числе и информационным) большого числа пользователей (субъектов) различных категорий;

высокая степень разнородности используемых средств вычислительной техники и связи, а также их программного обеспечения;

отсутствие специальной аппаратной поддержки средств защиты в большинстве типов технических средств, широко используемых в автоматизированных системах.

2. 2 Уязвимость основных структурно-функциональных элементов

В общем случае АС состоят из следующих основных структурно-функциональных элементов:

рабочих станций - отдельных ЭВМ или удаленных терминалов сети, на которых реализуются автоматизированные рабочие места пользователей;

серверов (служб файлов, баз данных) высокопроизводительных ЭВМ, предназначенных для реализации функций хранения, печати данных, обслуживания рабочих станций сети действий;

межсетевых мостов (шлюзов, центров коммутации пакетов, коммуникационных ЭВМ) - элементов, обеспечивающих соединение нескольких сетей передачи данных, либо нескольких сегментов одной и той же сети, имеющих различные протоколы взаимодействия;

каналов связи (локальных, телефонных, с узлами коммутации и т.д.).

Рабочие станции являются наиболее доступными компонентами сетей и именно с них могут быть предприняты наиболее многочисленные попытки совершения несанкционированных действий. С рабочих станций осуществляется управление процессами обработки информации, запуск программ, ввод и корректировка данных, на дисках рабочих станций могут размещаться важные данные и программы обработки. На мониторы и печатающие устройства рабочих станций выводится информация при работе пользователей (операторов), выполняющих различные функции и имеющих разные полномочия по доступу к данным и другим ресурсам системы. Именно поэтому рабочие станции должны быть надежно защищены от доступа посторонних лиц и содержать средства разграничения доступа к ресурсам со стороны законных пользователей, имеющих разные полномочия. Кроме того, средства защиты должны предотвращать нарушения нормальной настройки рабочих станций и режимов их функционирования, вызванные неумышленным вмешательством неопытных (невнимательных) пользователей.

Каналы и средства связи также нуждаются в защите. В силу большой пространственной протяженности линий связи (через неконтролируемую или слабо контролируемую территорию) практически всегда существует возможность подключения к ним, либо вмешательства в процесс передачи данных. Возможные при этом угрозы подробно изложены в главе 2.3.

2. 3 Угрозы безопасности БД и субъектов информационных отнош е ний

Угроза - это потенциальная возможность определенным образом нарушить информационную безопасность. Представление о возможных угрозах и об уязвимых местах, которые эти угрозы используют, дает возможность выбрать наиболее экономичные средства обеспечения безопасности, чтобы не допустить перерасхода средств, не допустить концентрации ресурсов там, где они не особенно нужны, за счет ослабления действительно уязвимых мест.

Угрозой интересам субъектов информационных отношений будем называть потенциально возможное событие, процесс или явление, которое посредством воздействия на информацию или другие компоненты АС может прямо или косвенно привести к нанесению ущерба интересам данных субъектов.

В силу особенностей современных АС, перечисленных выше, существует значительное число различных видов угроз безопасности субъектов информационных отношений.

В настоящей работе предпринята попытка возможно более полного охвата угроз безопасности, специфичных для баз данных. Однако следует иметь ввиду, что научно-технический прогресс может привести к появлению принципиально новых видов угроз и что изощренный ум злоумышленника способен придумать новые способы преодоления систем безопасности, НСД к данным и дезорганизации работы АС.

Главный источник угроз, специфичных для СУБД, лежит в самой природе баз данных. Основным средством взаимодействия с СУБД является язык SQL - мощный непроцедурный инструмент определения и манипулирования данными. Хранимые процедуры добавляют к этому репертуару управляющие конструкции. Механизм правил дает возможность выстраивать сложные, трудные для анализа цепочки действий, позволяя попутно неявным образом передавать право на выполнение процедур, даже не имея, строго говоря, полномочий на это. В результате потенциальный злоумышленник получает в свои руки мощный и удобный инструментарий, а все развитие СУБД направлено на то, чтобы сделать этот инструментарий еще мощнее и удобнее.

За последнее время самым опасным местом сети, откуда постоянно может действовать потенциальный злоумышленник, стала всемирная глобальная сеть Internet, и для баз данных атаки подобного рода не явились исключением. Но в рамках дипломного проекта это рассмотрено не будет, так как решение защиты базы данных разрабатывалось под конкретное предприятие, на котором политика безопасности предприятия предусматривает отказ от использования ресурсов Internet в рамках локальной сети предприятия. Internet предусмотрен только на выделенных персональных локальных машинах, доступ которых к сетевым ресурсам не обеспечен (автономно работают, без подключения к локальной сети).

Проведем анализ мест утечки информации (уязвимые места или потенциальные угрозы):

1. человеческий фактор (пользователь);

2. тиражирование данных;

3. хищение базы данных, уничтожение базы данных;

4. перехват сетевого трафика;

5. съем информации с ленты принтера, плохо стертых дискет, устройствах, предназначенных для содержания резервных данных;

6. хищение носителей информации, предназначенных для содержания резервных данных;

7. программно-аппаратные закладки в ПЭВМ;

8. компьютерные вирусы, логические бомбы;

9. нарушение работоспособности сети предприятия;

10. производственные и технологические отходы;

11. обслуживающий персонал;

12. съем информации с использованием видео-закладок, фотографирующих средств, дистанционный съем видео информации;

13. стихийные бедствия;

14. форс-мажорные обстоятельства.

По сути дела, уязвимое место - это, буквально, любое место сети, начиная от сетевого кабеля, который могут прогрызть мыши, заканчивая базой данных или файлами, которые могут быть разрушены действиями пользователя.

Следует не забывать, что новые уязвимые места и средства их использования появляются постоянно; то есть, во-первых, почти всегда существует опасность, во-вторых, отслеживание таких опасностей должно проводиться постоянно. То есть необходимо постоянно отслеживать появление новых уязвимых мест и пытаться их устранить. Также не стоит упускать из вида и то, что уязвимые места притягивают к себе не только злоумышленников, но и сравнительно честных людей. Не всякий устоит перед искушением увеличить зарплату, имея уверенность, что он останется безнаказанным.

Теперь рассмотрим угрозы, учитывая базовые задачи обеспечения защиты.

Распределим угрозы на угрозу конфиденциальности, целостности и доступности.

1. Угроза раскрытия конфиденциальности:

· перехват данных;

· хранение данных на резервных носителях;

· методы морально-психологического воздействия;

· злоупотребление полномочиями;

· выставки или ярмарки, выставляющие на всеобщее обозрение передовые разработки или производственные образцы, на которых могут остаться данные о системе;

· утечка и преднамеренный сбор информации:

· об объекте и предприятии, к которому он принадлежит;

· о лицах, работающих или присутствующих на объекте;

· о хранимых ценностях и имуществе;

· о прочих предметах, являющихся потенциальными целями преступного посягательства.

· иные угрозы

2. Угроза нарушения целостности:

· нарушение статической целостности

· ввод неверных данных, программ;

· изменение данных, программ;

· нарушение целостности кабельного хозяйства;

· нарушение динамической целостности

· дублирование данных;

· переупорядочивание данных;

· нарушение последовательности операций.

Немаловажной является угроза дублирования, то есть избыточности данных, обеспеченной мерами резервного копирования, хранением копий в нескольких местах, представлением информации в разных видах (на бумаге и в файлах).

3. Угроза отказа в доступности:

· непреднамеренные ошибки пользователей, операторов, системных администраторов заключаются в безграмотности и небрежности в работе (неправильно введенные данные, ошибка в программе, вызвавшая сбой системы)

· внутренний отказ информационной системы:

· разрушение данных;

· разрушение или повреждение аппаратных средств;

· отказы программного обеспечения;

· отступление (случайное или умышленное) от установленных правил эксплуатации;

· выход системы из штатного режима эксплуатации в силу случайных или преднамеренных действий пользователей или обслуживающего персонала (превышение расчетного числа запросов, чрезмерный объем обрабатываемой информации);

· ошибки при (пере) конфигурировании системы;

· технические неисправности/отказ аппаратуры.

Отказ любого элемента инженерной инфраструктуры может привести к частичному или полному прекращению работы объекта в целом. Кроме того, неправильная работа или отказ одних устройств может вызвать повреждение других. Например, если в зимних условиях отключается электропитание насосов, перекачивающих воду в системе отопления, то через некоторое время вода, застоявшаяся в трубах, охладится до точки замерзания и разорвет их.

· отказ пользователей:

· нежелание работать с информационной системой(чаще всего проявляется при необходимости осваивать новые возможности и при расхождении между запросами пользователей и фактическими возможностями и техническими характеристиками);

· невозможность работать с системой в силу отсутствия соответствующей подготовки (недостаток «компьютерной грамотности», неумение работать с документацией);

· невозможность работать с системой в силу отсутствия технической поддержки (неполнота документации, недостаток справочной информации).

· отказ поддерживающей инфраструктуры:

· нарушение работы (случайное или умышленное) систем связи, электропитания, водо- и/или теплоснабжения, кондиционирования;

· разрушение или повреждение помещений;

· невозможность или нежелание обслуживающего персонала и/или пользователей выполнять свои обязанности (гражданские беспорядки, аварии на транспорте, террористический акт или его угроза, забастовка);

· "обиженные" сотрудники - нынешние и бывшие;

· сюда же можно отнести и стихийные бедствия или события, воспринимаемые как стихийные бедствия (пожары, наводнения, землетрясения, ураганы), так как они ведут за собой отказ поддерживающей инфраструктуры.

Любое устройство, питающееся электроэнергией или использующее топливо, может при неправильном функционировании самовозгореться. Также следует учитывать возможности аварии трубопроводов газа, воды (в том числе теплоцентрали -- горячая вода под высоким давлением может нанести ущерб не меньший, чем огонь) и конструкций здания (редко, но бывает).

Не стоит исключать из числа угроз и несчастные случаи, как специфически связанные с работой на объекте, так и общего характера. Все объекты подвержены влиянию стихийных сил. Для любого места расположения объекта обычно доступны усредненные данные о погодных условиях и максимальных значениях скорости ветра, уровня паводка. Учет природных факторов должен проводиться двояко: как угроз объекту защиты в целом и как условий, даже в случае крайних значений которых должно быть обеспечено функционирование.

Следующим этапом будет выработка неформальной модели нарушителя, которая

позволит выявить круг лиц, потенциально способных нарушить нормальное функционирование системы.

2. 4 Неформальная модель нарушителя

Нарушитель - это лицо, предпринявшее попытку выполнения запрещенных операций (действий) по ошибке, незнанию или осознанно со злым умыслом (из корыстных интересов) или без такового (ради игры или удовольствия, с целью самоутверждения) и использующее для этого различные возможности, методы и средства.

Злоумышленником будем называть нарушителя, намеренно идущего на нарушение из корыстных побуждений.

Неформальная модель нарушителя отражает его практические и теоретические возможности, априорные знания, время и место действия. Для достижения своих целей нарушитель должен приложить некоторые усилия, затратить определенные ресурсы. Исследовав причины нарушений, можно либо повлиять на сами эти причины (конечно если это возможно), либо точнее определить требования к системе защиты от данного вида нарушений или преступлений.

При разработке модели нарушителя определяются:

· предположения о мотивах действий нарушителя (преследуемых нарушителем целях);

· предположения о квалификации нарушителя и его технической оснащенности (об используемых для совершения нарушения методах и средствах);

· ограничения и предположения о характере возможных действий нарушителей.

Выделим возможные попытки нарушения работы системы путем как нелегального проникновения в систему под видом пользователя, так и проникновения путем физического контакта, например, подсоединение к кабелю, то есть, опираясь на возможные нарушения режима безопасности, выделим модели самих нарушителей. Для чего проведем классификации возможных нарушителей:

1) по принадлежности к системе:

· зарегистрированный пользователь, т.е. сотрудник фирмы

· незарегистрированный пользователь, т.е. лицо, не причастное к работе фирмы;

· обиженные" сотрудники - нынешние и бывшие знакомы с порядками в организации и способны нанести немалый ущерб;

· совместно, состоя в сговоре;

2) по степени случайности или наличию умысла:

· без умысла (халатность, неосторожность, небрежность или незнание);

· со злым умыслом, то есть продуманно;

3) по мотиву:

· безответственность: пользователь целенаправленно или случайно производит какие-либо разрушающие действия, не связанные со злым умыслом, в большинстве случаев это следствие некомпетентности или небрежности;

· самоутверждение: некоторые пользователи считают получение доступа к системным наборам данных крупным успехом, затевая своего рода игру "пользователь - против системы" ради самоутверждения либо в собственных глазах, либо в глазах коллег;

· корыстный интерес: в этом случае нарушитель будет целенаправленно пытаться преодолеть систему защиты для доступа к хранимой, передаваемой и обрабатываемой информации, даже если АС имеет средства, делающие такое проникновение чрезвычайно сложным, полностью защитить ее от проникновения практически невозможно.

4) по задаче внедрения:

· изменение или разрушение программ, данных;

· внедрение другого вредоносного ПО;

· получение контроля над системой;

· агрессивное потребление ресурсов;

5) по уровню знаний:

· знает функциональные особенности, основные закономерности формирования в ней массивов данных и потоков запросов к ним, умеет пользоваться штатными средствами;

· обладает высоким уровнем знаний и опытом работы с техническими средствами системы и их обслуживания;

· обладает высоким уровнем знаний в области программирования и вычислительной техники, проектирования и эксплуатации автоматизированных информационных систем;

· знает структуру, функции и механизм действия средств защиты, их сильные и слабые стороны.

6) по виду доступа:

· программный (н-р, закладки);

· физический (н-р, подсоединение к кабелю, подключение внешних устройств);

· совместный;

7) по уровню возможностей (используемым методам и средствам):

· применяющий чисто агентурные методы получения сведений;

· применяющий пассивные средства (технические средства перехвата без модификации компонентов системы);

· использующий только штатные средства и недостатки систем защиты для ее преодоления (несанкционированные действия с использованием разрешенных средств), а также компактные магнитные носители информации, которые могут быть скрытно пронесены через посты охраны;

· применяющий методы и средства активного воздействия (модификация и подключение дополнительных технических средств, подключение к каналам передачи данных, внедрение программных закладок и использование специальных инструментальных и технологических программ).

8) по месту действия:

· без доступа на контролируемую территорию организации;

· с контролируемой территории без доступа в здания и сооружения;

· внутри помещений, но без доступа к техническим средствам АС;

· с рабочих мест конечных пользователей (операторов) АС;

· с доступом в зону данных (баз данных, архивов);

· с доступом в зону управления средствами обеспечения безопасности АС;

9) по последствиям:

· не серьезные, которые просто показали уязвимость;

· средние;

· серьезные;

· сверхсерьезные;

9). по компонентам информационной системы, на которые нацелены:

· информация

· программы и данные

· аппаратура;

· документация;

· поддерживающая инфраструктура;

10) . по времени действия:

· в процессе функционирования АС (во время работы компонентов системы);

· в период неактивности компонентов системы (в нерабочее время, во время плановых перерывов в ее работе, перерывов для обслуживания и ремонта);

· как в процессе функционирования АС, так и в период неактивности компонентов системы;

11). по характеру действий нарушителей:

· работа по подбору кадров и специальные мероприятия затрудняют возможность создания коалиций нарушителей, т.е. объединения (сговора) и целенаправленных действий по преодолению подсистемы защиты двух и более нарушителей;

· нарушитель, планируя попытки НСД, скрывает свои несанкционированные действия от других сотрудников;

· НСД может быть следствием ошибок пользователей, администраторов, эксплуатирующего и обслуживающего персонала, а также недостатков принятой технологии обработки информации и т.д.

Определение конкретных значений характеристик возможных нарушителей в значительной степени субъективно.

Модель нарушителя, построенная с учетом особенностей конкретной предметной области и технологии обработки информации, может быть представлена перечислением нескольких вариантов его облика. Каждый вид нарушителя должен быть охарактеризован значениями характеристик, приведенных выше.

2. 5 Политика безопасности предприятия

Политика безопасности - совокупность документированных управленческих решений, направленных на защиту информации и ассоциированных с ней ресурсов. Представляет собой официальную линию руководства, направленную на реализацию комплекса мероприятий по основным направлениям обеспечения информационной безопасности предприятия.

Главной целью ее является четкое описание технологии обеспечения информационной безопасности на предприятии и реализация функций должностных лиц.

Политика безопасности предприятия ОАО «НАПО им. В.П.Чкалова» прописана в одноименном документе «Политика информационной безопасности предприятия» и является обязательной для исполнения сотрудниками предприятия. Политика информационной безопасности разработана на основе требований законодательства Российской Федерации в области информационной безопасности и защиты информации, а также рекомендаций стандарта ISO/IEC 17799-2000.В документе определяется ответственность сотрудников за реализацию соответствующих положений и разделов политики.

Выводы

Специфика баз данных, с точки зрения их уязвимости, связана в основном с наличием интенсивного взаимодействия между самой базой данных и элементом системы, находящимся с ней в структурно-функциональной взаимосвязи.

Уязвимыми являются все основные элементы, сопровождающие полноценную работу базы данных: файлы базы данных, СУБД, клиент-серверное приложение, сервер базы данных, сервер приложения, локальная сеть предприятия.

Защищать эти компоненты необходимо от всех видов воздействий: стихийных бедствий и аварий, сбоев и отказов технических средств, ошибок персонала и пользователей, ошибок в программах и от преднамеренных действий злоумышленников.

Имеется широчайший спектр вариантов путей преднамеренного или случайного несанкционированного доступа к данным и вмешательства в процессы обработки и обмена информацией (в том числе, управляющей согласованным функционированием различных компонентов сети и разграничением ответственности за преобразование и дальнейшую передачу информации).

Правильно построенная (адекватная реальности) модель нарушителя, в которой отражаются его практические и теоретические возможности, априорные знания, время и место действия и т.п. характеристики - важная составляющая успешного проведения анализа риска и определения требований к составу и характеристикам системы защиты.

3. Защита со стороны СУБД

Одним из необходимых уровней реализации защиты базы данных является защита базы данных со стороны СУБД (рисунок 2), с помощью которого она организована. В данном дипломном проекте рассматриваемой СУБД является Microsoft SQL Server (сокращенно и далее MS SQL Server).

Рисунок 3.1 - Уровни защиты базы данных

3. 1 Проектирование базы данных

Естественно, что защита база данных должна быть продумана еще на этапе проектирования. Но на практике пришлось реализовать защиту уже рабочей базы, поэтому этап проектирования не будет рассматриваться подробно автором.

Современные крупные проекты информационных систем характеризуются, как правило, следующими особенностями :

· сложность описания (достаточно большое количество функций, процессов, элементов данных и сложные взаимосвязи между ними), требующая тщательного моделирования и анализа данных и процессов;

· наличие совокупности тесно взаимодействующих компонентов (подсистем), имеющих свои локальные задачи и цели функционирования (например, традиционных приложений, связанных с обработкой транзакций и решением регламентных задач, и приложений аналитической обработки (поддержки принятия решений), использующих нерегламентированные запросы к данным большого объема);

· отсутствие прямых аналогов, ограничивающее возможность использования каких-либо типовых проектных решений и прикладных систем;

· функционирование в неоднородной среде на нескольких аппаратных платформах;

· разобщенность и разнородность отдельных групп разработчиков по уровню квалификации и сложившиеся традиции использования тех или иных инструментальных средств;

· существенная временная протяженность проекта, обусловленная, с одной стороны, ограниченными возможностями коллектива разработчиков организации-заказчика к внедрению ИС.

Разработка таких крупных, многоцелевых, дорогостоящих баз данных невозможна без их тщательного проектирования: слишком велико влияние этого основополагающего шага на последующие этапы жизненного цикла информационной системы. Есть много примеров нежизнеспособных информационных систем, когда слишком много инвестиций выброшено на ветер в результате реализаций бездарных проектов.

При проектировании информационной системы необходимо провести анализ целей этой системы и выявить требования к ней отдельных пользователей. Основная цель преследуемая при проектировании любой, в том числе из защищенной, базы данных - это сокращение избыточности хранимых данных, а следовательно, экономия объема используемой памяти, уменьшение затрат на многократные операции обновления избыточных копий и устранение возможности возникновения противоречий из-за хранения в разных местах сведений об одном и том же объекте.

При проектировании базы данных выделяется три этапа: инфологический, логический и физический. При этом на каждом из этапов должен быть решен свой круг задач. Первый этап решает задачи получения семантических моделей, отражающих информационное содержание базы данных, исходя из информативных потребностей пользователей. Второй - задачу эффективной организации данных, выделенных на первом этапе, в форму принятую в выбранной системе управления базой данных. И, наконец, на третьем, завершающем этапе, необходимо решить задачу выбора рациональной структуры хранения данных и методов доступа к ним.

Основная цель логического проектирования базы данных - сокращение избыточности хранимых данных и устранение возможных потенциальных аномалий работы с базами данных. При этом необходимо решить проблемы избыточности, аномалии модификации и удаления вследствие избыточности и аномалии включения. Логическая структура базы данных является отображением информационно-логической модели данных предметной области в модель, поддерживаемую СУБД. Соответственно, концептуальная модель определяется в терминах модели данных выбранной СУБД. Логическая структура БД может передавать не только связи между соответствующими сущностями в предметной области, но и связей возникших в процессе обработки информации в БД, что может являться препятствием для проектирования.

Физическая структура базы данных описывает особенности хранения данных на устройствах внешней памяти, например, распределение данных по файлам, необходимые индексные структуры для ускорения поиска. Файлы базы данных предоставляют действительную физическую память для информации базы данных .

Предметная область.

Под данными понимается конкретное устройство ВТ и его характеристики. Для учета средств ВТ необходимо знать прежде всего единицу ВТ, которая в последствии будет подлежать учету. Единицей ВТ может быть: монитор, системный блок, клавиатура, принтер, сканер, копир и т.д.. В свою очередь системный блок может включать в себя материнскую плату, оперативную память, CD-ROM, DVD-ROM, ZIP, и т.д. Каждая из перечисленных единиц ВТ имеет уникальные атрибуты-характеристики, определяемые спецификой техники. Помимо единицы ВТ, в проекте должно быть использовано такое понятие как АРМ (автоматизированное рабочее место), к которому должно быть прикреплено СВТ (средство ВТ), если устройство находится в обращении. Устройство имеет свою модель, тип, характеристику и значение этой характеристики.

Рассмотрим на примере. Допустим, на крупном предприятие было принято решение о подключении одного из его подразделений к ЛВС. Прежде чем заниматься прокладкой кабелей, настройкой сети, и непосредственным подключением, нужно произвести учет СВТ. Так как часть оборудования пришлось модернизировать, часть оставить для использования, а часть списать, то это все необходимо отобразить в учете. 25 мая 2005 было закуплено 25 принтеров Color HP Laser Jet 2600n(A4,8 с/мин,ч/б/цв, USB,лоток на 250 листов, встроенный сервер печати Fast Ethernet, Win 2000/XP,Server 2003, до 35000 стр/мес.). В этом случае: тип оборудования - принтеров, модель-Color HP Laser Jet 2600n, характеристики и значения - формат(A4), скорость(8 с/мин), печать(ч/б/цв), разъем(USB), ОС(Win 2000/XP,Server 2003), дополнительная информация (все остальное).

В разработанной базе данных предполагается, что о совместимости типов, моделей и их характеристик должен позаботиться тот, кто этим занимается (например, сопровождающий или администратор базы данных). С помощью базы данных он может получить информацию о том, с каким типом устройства совместимо та или иная модель и характеристика, а случае необходимости добавить параметр. Для исключения ошибочного удаления СВТ создан такой параметр, как фиксированный идентификатор, если мы зафиксировали определенную, то просто до выполнения удаления ее это не произойдет, так как ранее СВТ выбрана как не удаляемая (зафиксированная). В случае если СВТ перешла в пользование от одного ответственного лица другому, это вместо удаления у одного и причислению к другому, это можно осуществить при помощи возможности перемещения СВТ. Также должно быть предусмотрена компоновка как АРМа, так и системного блока как с использованием актов модернизации, так и без них. Для отслеживания истории необходимо выполнить журналы для сохранения информации по перемещению, изменению атрибутов и укомплектованности АРМов, модернизации системных блоков и актов списания.

Анализ описанной предметной области и решаемых задач позволяет выделить сущности: устройство, модель устройства, тип устройства, характеристики типов устройств ВТ, фирма-производитель, фирма-поставщик, тип оборудования, шифр оборудование, списание, комплектующие системного блока, модернизация системных блоков по актам, АРМ, домен, шифр подразделений, изменение атрибутов АРМов, перемещение ВТ между АРМами.

Выделим необходимую информацию об объектах ВТ. Для учета средств ВТ, организации поиска по требуемым критериям и организации статистики в базе должны храниться необходимые для этого сведения. На анализе сведений укомплектованности АРМ и необходимых средств ВТ, находящихся в использовании выведены характеристики (таблица 1).

Таблица 3.1 - Характеристики средств ВТ

Информация об устройстве ВТ

модель оборудования

фирма-поставщик

шифр оборудования

фирма-производитель

тип оборудования

№ счет-фактуры

серийный номер

бухгалтерский шифр

гарантия поставщика в месяцах

балансовый счет

гарантия производителя в месяцах

дополнительная информация

сумма приобретения

задействовано или списано

инвентарный номер

подключение к сети

дата приобретения

Акты модернизации

номер акта

подразделение исполнителя

ФИО исполнителя

устройство, которое подлежит записи в акт

подразделение принимающего

дата проведения операции

ФИО принимающего

Журнал учета перемещения выч.техники между АРМ и история АРМа

перемещаемое устройство

дата проведения операции

ФИО исполнителя

конкретное действие: изъятие или добавление

подразделение исполнителя

ФИО принимающего

специализация

подразделение принимающего

Фирма - производитель

название производителя

адрес в Интернете

эл. почта

Фирма-поставщик

название фирмы-поставщика

адрес в Интернете

эл. почта

Автоматизированное рабочее место

ФИО ответственного лица

Окончание табл. 3.1

наименование подразделения

телефон(ы) отв. лица

местоположение, объект

местоположение, офис

Подразделение

шифр подразделения

название подразделения

ФИО начальника подразделения

Подобные документы

    Проектирование модели базы данных в соответствии с предметной областью "Торговля". Разработка архитектуры системы безопасности приложения по ведению базы данных. Реализация приложения, обеспечивающего учет продаж и закупок предприятия. Способы его защиты.

    дипломная работа , добавлен 05.02.2017

    Проектирование и создание информационной базы данных для управления предприятием "Завод металлоизделий". Данные для базы, предметная область, атрибуты объектов базы данных. Объектные отношения, их ключи, связи объектов и отношений базы данных предприятия.

    реферат , добавлен 04.12.2009

    Предпосылки создания системы безопасности персональных данных. Угрозы информационной безопасности. Источники несанкционированного доступа в ИСПДн. Устройство информационных систем персональных данных. Средства защиты информации. Политика безопасности.

    курсовая работа , добавлен 07.10.2016

    Законодательные основы защиты персональных данных. Классификация угроз информационной безопасности. База персональных данных. Устройство и угрозы ЛВС предприятия. Основные программные и аппаратные средства защиты ПЭВМ. Базовая политика безопасности.

    дипломная работа , добавлен 10.06.2011

    Разработка базы данных для информационной поддержки деятельности аптеки с целью автоматизированного ведения данных о лекарствах аптеки. Проектирование схемы базы данных с помощью средства разработки структуры базы данных Microsoft SQL Server 2008.

    курсовая работа , добавлен 18.06.2012

    Разработка приложения, позволяющего автоматизировать документооборот предприятия по списанию основных средств. Мероприятия по защите и обеспечению целостности базы данных. Разработка клиентского приложения. Запросы к базе данных, руководство пользователя.

    курсовая работа , добавлен 14.01.2015

    Определение понятия и общее описание базы данных как упорядоченной информационной системы на носителе информации. Описание предметной области и разработка приложения базы данных, содержащей информацию о расписании занятий, для преподавателей кафедры.

    курсовая работа , добавлен 08.08.2012

    Создание базы данных для небольшого предприятия, занимающегося ремонтом бытовой техники. Анализ и характеристика предметной области, входных и выходных данных. Разработка конфигурации в системе "1С:Предприятие 8.2" и функциональной части приложения.

    контрольная работа , добавлен 26.05.2014

    Описание предметной области разрабатываемой базы данных для теннисного клуба. Обоснование выбора CASE-средства Erwin 8 и MS Access для проектирования базы данных. Построение инфологической модели и логической структуры базы данных, разработка интерфейса.

    курсовая работа , добавлен 02.02.2014

    Выделение основных сущностей проектируемой системы, описание их взаимосвязи. Построение базы данных и приложений: разработка таблиц и связей между ними, локальных представлений данных, форм, запросов, меню. Инструкция для работы пользователя с программой.

Тема: Проблемы безопасности баз данных. Обеспечение безопасности в СУБ

Тип: Курсовая работа | Размер: 46.53K | Скачано: 76 | Добавлен 15.10.16 в 05:44 | Рейтинг: 0 | Еще Курсовые работы


ВВЕДЕНИЕ... 3

Глава 1.Определение защиты информации.... 7

1.1.Основные определения и понятия .. 7

1.2. Защита информации в базах данных .. 10

Глава 2.Ключевые подходы защиты базы данных 15

2.1.Политика прав доступа к данным ... 15

2.2. Система защиты СУБД Access . 16

2.3. Организация системы защиты СУБД MS SQL Server .. 21

ЗАКЛЮЧЕНИЕ... 33

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ..... 37

ВВЕДЕНИЕ

Доступ к ресурсам информационной системы - это, фактически, доступ к данным, находящимся в хранилище под управлением СУБД. В таком контексте нарушением безопасности является несанкционированный доступ, который тем или иным способом может получить потенциальный злоумышленник. Поэтому обеспечение надёжной и безопасной аутентификации - важнейшая задача как для разработчиков, так и для администраторов систем. Существует несколько основных методов аутентификации, которые обеспечивают разную степень безопасности. Выбор метода должен основываться на следующих факторах:

Надёжность, достоверность и неотказуемость;

Стоимость решения, стоимость администрирования;

Соответствие общепринятым стандартам;

Простота интеграции в готовые решения и в новые разработки.

Как правило, более надёжные методы являются более дорогостоящими как для разработки, так и для администрирования. Наиболее надёжным методом аутентификации на сегодняшний день является двухфакторная аутентификация с использованием цифровых сертификатов X.509, которые хранятся в защищённой памяти смарт-карт или USB-ключей. Оба этих устройства обеспечивают одинаковую степень надёжности аутентификации, но смарт-карты требуют дополнительного оборудования, что, естественно, увеличивает стоимость решения.

Также необходимо обратить внимание на следующие аспекты:

Интеграцию с внешними системами аутентификации;

Безопасность соединений;

Защиту данных на любом уровне;

Выборочное шифрование данных;

Подробный аудит действий пользователей;

Централизованное управление аутентификацией и авторизацией пользователей.

Обычно разработчики программного обеспечения не уделяют должного внимания вопросам защиты данных, стараясь по максимуму удовлетворить пожелания заказчиков по функциональности системы. В результате подобные проблемы решаются зачастую в процессе внедрения системы, и это приводит к ситуациям, когда «защищённое» приложение содержит «секретные» коды, прошитые в исходных текстах программ или в файлах настройки.

Определённые трудности для разработчиков представляют ситуации, когда заказчик системы сам толком не представляет, от кого и что собственно следует защищать.

Интеграторы при внедрении систем на предприятии заказчика уделяют большое внимание защите, но здесь акценты смещены в сторону внешних атак - троянов, вирусов, хакеров.

Вопросы «внутренней» безопасности и в этом случае остаются открытыми. В такой ситуации усилия системных администраторов, неосведомлённых в полной мере о бизнес-процессах предприятия, направлены на «урезание» прав пользователей, что существенно осложняет работу системы в целом, а иногда приводит к её полной остановке.

Мероприятия по защите информации должны включать решение следующих вопросов:

Определение угроз безопасности и групп потенциальных нарушителей;

Определение групп приложений, обеспечивающих бизнес-процессы предприятия;

Определение групп пользователей системы;

Определение объектов, хранящих данные и подлежащих защите;

Определение политик безопасности;

Определение методов хранения связей пользователь - права доступа - данные;

Выбор метода аутентификации и способов её реализации;

Подготовка методики по обеспечению безопасности инфраструктуры сети, СУБД, серверов приложений, клиентских приложений.

Также весьма популярным способом получения несанкционированного доступа к содержимому базы данных является попытка прочитать файлы БД на уровне ОС (как обычные файлы). Если администратором БД не были предприняты дополнительные меры по шифрованию содержащейся в ней информации (а чаще всего это именно так), то простое копирование файлов БД по сети и последующий прямой просмотр их содержимого позволят злоумышленнику получить доступ к хранящейся в БД информации.

Именно поэтому защищённая система должна быть спроектирована и построена так, чтобы:

Файлы программного обеспечения СУБД не были доступны по сети;

К файлам БД на сервере не было доступа по сети — пользователи получают доступ

к информации, хранящейся в БД, только посредством СУБД;

Сами файлы БД были зашифрованы. Шифрование файлов БД используется как

простой и эффективный способ защиты данных от несанкционированного доступа

в случае физического обращения злоумышленника к носителю информации;

Сервер БД не выполнял функции файлового сервера. Актуальность данной темы обусловлена тем, что на сегодняшний день использование баз данных встречается практически в любой сфере деятельности, начиная от библиотеки и заканчивая организацией занимающейся транспортировкой.

Целью данной работы является рассмотрение основных задач и проблем, при разработке оптимальной системы защиты и безопасности, поставленных перед управляющим баз данных. В данной работе будут рассмотрены в основе своей, проблемы, связанные с обеспечением безопасности, а так же сохранением целостности базы данных.

Объект исследования в данной работе это база данных. Мы будем рассматривать как понятие базы данных в целом, так и будем рассматривать конкретные примеры некоторых основных баз данных, таких как MS SQL Server, Oracle, Microsoft Access.

Большая часть терминов и основных понятий была взята из книги авторов Голицына О.Л., Максимов Н.В. и др. «Базы данных», это позволило дать вначале своего рода введение в основную часть курсовой работы.

Таким образом, в данной работе мы рассмотрим как обобщённые понятия и задачи базы данных, так и конкретные примеры и проблемы встречающиеся в частных случаях.

Основная часть данной работы будет направлена на рассмотрение основных аспектов защиты баз данных, а так же их реализация на нескольких примерах существующих СУБД.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

  1. Артёмов.Д.К., «Microsoft SQL Server 2000: профессионалы для профессионалов» - Ростов на Дону: Русская Редакция, 2005, С. 88-112
  2. Голицына О.Л., Максимов Н.В. и др. «Базы данных» - Москва: ИНФРА-М,2007,С. 10-135.
  3. Гольев Ю.И., Ларин Д.А., Тришин А.Е., Шанкин Г.П. Криптографическая деятельность в США XVIII-XIX веков. // Защита информации. Конфидент. №6, 2004, С. 68-74
  4. Гринвальд Р., Стаковьяк Р., Стерн Дж.« Oraclee 11g. Основы. 4-е изд.» - Москва: Символ, 2009 - С. 65-97
  5. ГашковС. Б. У., Э. А. Применко, М. А. Черепнев «Криптографические методы защиты информации» - Москва: Академия, 2010, С 40-45
  6. Дунаев В. И. «Базы данных. Язык SQL для студента» - Санкт Петербург: СПб:Питер, 2007, С. 91-95
  7. Ищейнов В. Я., М. В. Мецатунян «Защита конфиденциальной информации» - Челябинск:Форум, 2009,С.114-145
  8. Корнеев И. К., Е. А. «Защита информации в офисе» - Казань: ТК Велби, 2008, С.38-56
  9. Кошелев В.Е., «Базы данных в Access 2007» - Москва: Бином, 2009, С. 47 - 98
  10. Кригель А. К., Борис Трухнов «SQL. Библия пользователя»- Москва: Вильям, 2010, С. 68 - 71
  11. Кумскова И. А. «Базы Данных».-Москва:КноРус, 2011, С. 140-142
  12. Партыка Т.Л., Попов И.И. «Информационная безопасность» - Москва: Форум: инфра, 2004, С. 45-87
  13. Северин В. А. «Комплексная защита информации на предприятии» - Москва:Городец,2008, С 92
  14. Сергеева Ю. С. «Защита информации. Конспект лекций» - Санкт Петербург: А-Приор, 2011, С. 150-176
  15. Смирнов.С. Н. «Безопасность систем баз данных» - Москва: Гелиос АРВ,2007, 224 с.
  16. Безопасность баз данных на примере Oraclee [Электронный ресурс].URL: http://www.flenov.info/favorite.php?artid=32

5.1. Методы обеспечения безопасности

В современных СУБД поддерживается один из двух широко распространенных подходов к вопросу обеспечения безопасности данных, а именно избирательный подход или обязательный подход. В обоих подходах единицей данных или "объектом данных", для которых должна быть создана система безопасности, может быть как вся база данных целиком или какой-либо набор отношений, так и некоторое значение данных для заданного атрибута внутри некоторого кортежа в определенном отношении. Эти подходы отличаются следующими свойствами:

1. В случае избирательного управления некий пользователь обладает различными правами (привилегиями или полномочиями) при работе с разными объектами. Более того, разные пользователи обычно обладают и разными правами доступа к одному и тому же объекту. Поэтому избирательные схемы характеризуются значительной гибкостью.

2. В случае обязательного управления, наоборот, каждому объекту данных присваивается некоторый классификационный уровень, а каждый пользователь обладает некоторым уровнем допуска. Следовательно, при таком подходе доступом к опре­деленному объекту данных обладают только пользователи с соответствующим уровнем допуска. Поэтому обязательные схемы достаточно жестки и статичны.

Независимо от того, какие схемы используются – избирательные или обязательные, все решения относительно допуска пользователей к выполнению тех или иных операций принимаются на стратегическом, а не техническом уровне. Поэтому они находятся за пределами досягаемости самой СУБД, и все, что может в такой ситуации сделать СУБД, – это только привести в действие уже принятые ранее решения. Исходя из этого, можно отметить следующее:

Во-первых. Результаты стратегических решений должны быть известны системе (т.е. выполнены на основе утверждений, заданных с помощью некоторого подходящего языка) и сохраняться в ней (путем сохранения их в каталоге в виде правил безопасности, которые также называются полномочиями).

Во-вторых. Очевидно, должны быть некоторые средства регулирования запросов доступа по отношению к соответствующим правилам безопасности. (Здесь под "запросом, доступа" подразумевается комбинация запрашиваемой операции, запрашиваемого, объекта и запрашивающего пользователя.) Такая проверка выполняется подсистемой безопасности СУБД, которая также называется подсистемой полномочий.

В-третьих. Для того чтобы разобраться, какие правила безопасности к каким запросам доступа применяются, в системе должны быть предусмотрены способы опознания источника этого запроса, т.е. опознания запрашивающего пользователя. Поэтому в момент входа в систему от пользователя обычно требуется ввести не только его идентификатор (например, имя или должность), но также и пароль (чтобы подтвердить свои права на заявленные ранее идентификационные данные). Обычно предполагается, что пароль известен только системе и некоторым лицам с особыми правами.



В отношении последнего пункта стоит заметить, что разные пользователи могут обладать одним и тем же идентификатором некоторой группы. Таким образом, в системе могут поддерживаться группы пользователей и обеспечиваться одинаковые права доступа для пользователей одной группы, например для всех лиц из расчетного отдела. Кроме того, операции добавления отдельных пользователей в группу или их удаления из нее могут выполняться независимо от операции задания привилегий для этой группы. Обратите внимание, однако, что местом хранения информации о принадлежности к группе также является системный каталог (или, возможно, база данных).

Перечисленные выше методы управления доступом на самом деле являются частью более общей классификации уровней безопасности. Прежде всего в этих документах определяется четыре класса безопасности (security classes) – D, С, В и А. Среди них класс D наименее безопасный, класс С – более безопасный, чем класс D, и т.д. Класс D обеспечивает минимальную защиту, класс С – избирательную, класс В – обязательную, а класс А – проверенную защиту.

Избирательная защита. Класс С делится на два подкласса – С1 и С2 (где подкласс С1 менее безопасен, чем подкласс С2), которые поддерживают избирательное управление доступом в том смысле, что управление доступом осуществляется по усмотрению владельца данных.

Согласно требованиям класса С1 необходимо разделение данных и пользователя, т.е. наряду с поддержкой концепции взаимного доступа к данным здесь возможно также организовать раздельное использование данных пользователями.

Согласно требованиям класса С2 необходимо дополнительно организовать учет на основе процедур входа в систему, аудита и изоляции ресурсов.

Обязательная защита. Класс В содержит требования к методам обязательного управления доступом и делится на три подкласса – В1, В2 и В3 (где В1 является наименее, а В3 – наиболее безопасным подклассом).

Согласно требованиям класса В1 необходимо обеспечить "отмеченную защиту" (это значит, что каждый объект данных должен содержать отметку о его уровне классификации, например: секретно, для служебного пользования и т.д.), а также неформальное сообщение о действующей стратегии безопасности.

Согласно требованиям класса В2 необходимо дополнительно обеспечить формальное утверждение о действующей стратегии безопасности, а также обнаружить и исключить плохо защищенные каналы передачи информации.

Согласно требованиям класса В3 необходимо дополнительно обеспечить поддержку аудита и восстановления данных, а также назначение администратора режима безопасности.

Проверенная защита. Класс А является наиболее безопасным и согласно его требованиям необходимо математическое доказательство того, что данный метод обеспечения безопасности совместимый и адекватен заданной стратегии безопасности.

Хотя некоторые коммерческие СУБД обеспечивают обязательную защиту на уровне класса В1, обычно они обеспечивают избирательное управление на уровне класса С2.

5.2. Избирательное управление доступом

Избирательное управление доступом поддерживается многими СУБД. Избирательное управление доступом поддерживается в языке SQL.

В общем случае система безопасности таких СУБД базируется на трех компонентах:

1. Пользователи. СУБД выполняет любое действия с БД от имени какого-то пользователя. Каждому пользователю присваивается идентификатор – короткое имя, однозначно определяющее пользователя в СУБД. Для подтверждения того, что пользователь может работать с введенным идентификатором используется пароль. Таким образом, с помощью идентификатора и пароля производится идентификация и аутентификация пользователя. Большинство коммерческих СУБД позволяет объединять пользователей с одинаковыми привилегиями в группы – это позволяет упростить процесс администрирования.

2. Объекты БД. По стандарту SQL2 защищаемыми объектами в БД являются таблицы, представления, домены и определенные пользователем наборы символов. Большинство коммерческих СУБД расширяет список объектов, добавляя в него хранимые процедуры и др. объекты.

3. Привилегии. Привилегии показывают набор действий, которые возможно производить над тем или иным объектом. Например пользователь имеет привилегию для просмотра таблицы.

5.3. Обязательное управление доступом

Методы обязательного управления доступом применяются к базам данных, в которых данные имеют достаточно статичную или жесткую структуру, свойственную, например, правительственным или военным организациям. Как уже отмечалось, основная идея заключается в том, что каждый объект данных имеет некоторый уровень классификации, например: секретно, совершенно секретно, для служебного пользования и т.д., а каждый пользователь имеет уровень допуска с такими же градациями, что и в уровне классификации. Предполагается, что эти уровни образуют строгий иерархический порядок, например: совершенно секретно ® секретно ® для служебного пользования и т.д. Тогда на основе этих сведений можно сформулировать два очень простых правила безопасности:

1. пользователь имеет доступ к объекту, только если его уровень допуска больше или равен уровню классификации объекта.

2. пользователь может модифицировать объекту, только если его уровень допуска равен уровню классификации объекта.

Правило 1 достаточно очевидно, а правило 2 требует дополнительных разъяснений. Прежде всего следует отметить, что по-другому второе правило можно сформулировать так: любая информация, записанная некоторым пользователем, автоматически приобретает уровень, равный уровню классификации этого пользователя. Такое правило необходимо, например, для того, чтобы предотвратить запись секретных данных, выполняемую пользователем с уровнем допуска "секретно", в файл с меньшим уровнем классификации, что нарушает всю систему секретности.

В последнее время методы обязательного управления доступом получили широкое распространение. Требования к такому управлению доступом изложены в двух документах, которые неформально называются "оранжевой" книгой (Orange Book) и "розовой" книгой (Lavender Book). В "оранжевой" книге перечислен набор требований к безопасности для некой "надежной вычислительной базы" (Trusted Computing Base), а в "розовой" книге дается интерпретация этих требований для систем управления базами данных.

5.4. Шифрование данных

До сих пор в этой главе подразумевалось, что предполагаемый нелегальный пользователь пытается незаконно проникнуть в базу данных с помощью обычных средств доступа, имеющихся в системе. Теперь следует рассмотреть случай, когда такой пользователь пытается проникнуть в базу данных, минуя систему, т.е. физически перемещая часть базы данных или подключаясь к коммуникационному каналу. Наиболее эффективным методом борьбы с такими угрозами является шифрование данных, т.е. хранение и передача особо важных данных в зашифрованном виде.

Для обсуждения основных концепций кодирования данных следует ввести некоторые новые понятия. Исходные (незакодированные) данные называются открытым текстом. Открытый текст шифруется с помощью специального алгоритма шифрования. В качестве входных данных для такого алгоритма выступают открытый текст и ключ шифрования, а в качестве выходных – зашифрованная форма открытого текста, которая называется зашифрованным текстом. Если детали алгоритма шифрования могут быть опубликованы или, по крайней мере, могут не утаиваться, то ключ шифрования обязательно хранится в секрете. Именно зашифрованный текст, который непонятен тем, кто не обладает ключом шифрования, хранится в базе данных и передается по коммуникационному каналу.

5.5. Контрольный след выполняемых операций

Важно понимать, что не бывает неуязвимых систем безопасности, поскольку настойчивый потенциальный нарушитель всегда сможет найти способ преодоления всех систем контроля, особенно если за это будет предложено достаточно высокое вознаграждение. Поэтому при работе с очень важными данными или при выполнении критических операций возникает необходимость регистрации контрольного следа выполняемых операций. Если, например, противоречивость данных приводит к подозрению, что совершено несанкционированное вмешательство в базу данных, то контрольный след должен быть использован для прояснения ситуации и подтверждения того, что все процессы находятся под контролем. Если это не так, то контрольный след поможет, по крайней мере, обнаружить нарушителя.

Для сохранения контрольного следа обычно используется особый файл, в котором система автоматически записывает все выполненные пользователями операции при работе с обычной базой данных. Типичная запись в файле контрольного следа может содержать такую информацию:

2. терминал, с которого была вызвана операция;

3. пользователь, задавший операцию;

4. дата и время запуска операции;

5. вовлеченные в процесс исполнения операции базовые отношения, кортежи и атрибуты;

6. старые значения;

7. новые значения.

Как уже упоминалось ранее, даже констатация факта, что в данной системе поддерживается контрольное слежение, в некоторых случаях весьма существенна для предотвращения несанкционированного проникновения в систему.

5.6. Поддержка мер обеспечения безопасности в языке SQL

В действующем стандарте языка SQL предусматривается поддержка только избирательного управления доступом. Она основана на двух более или менее независимых частях SQL. Одна из них называется механизмом представлений, который (как говорилось выше) может быть использован для скрытия очень важных данных от несанкционированных пользователей. Другая называется подсистемой полномочий и наделяет одних пользователей правом избирательно и динамично задавать различные полномочия другим пользователям, а также отбирать такие полномочия в случае необходимости.

5.7. Директивы GRANT и REVOKE

Механизм представлений языка SQL позволяет различными способами разделить базу данных на части таким образом, чтобы некоторая информация была скрыта от пользователей, которые не имеют прав для доступа к ней. Однако этот режим задается не с помощью параметров операций, на основе которых санкционированные пользователи выполняют те или иные действия с заданной частью данных. Эта функция (как было показано выше) выполняется с помощью директивы GRANT.

Обратите внимание, что создателю любого объекта автоматически предоставляются все привилегии в отношении этого объекта.

Стандарт SQL1 определяет следующие привилегии для таблиц:

1. SELECT – позволяет считывать данные из таблицы или представления;

INSERT – позволяет вставлять новые записи в таблицу или представление;

UPDATE – позволяет модифицировать записи из таблицы или представления;

DELETE – позволяет удалять записи из таблицы или представления.

Стандарт SQL2 расширил список привилегий для таблиц и представлений:

1. INSERT для отдельных столбцов, подобно привилегии UPDATE;

2. REFERENCES – для поддержки внешнего ключа.

Помимо перечисленных выше добавлена привилегия USAGE – для других объектов базы данных.

Кроме того, большинство коммерческих СУБД поддерживает дополнительные привилегии, например:

1. ALTER – позволяет модифицировать структуру таблиц (DB2, Oracle);

2. EXECUTE – позволяет выполнять хранимые процедуры.

Создатель объекта также получает право предоставить привилегии доступа какому-нибудь другому пользователю с помощью оператора GRANT. Ниже приводится синтаксис утверждения GRANT:

GRANT {SELECT|INSERT|DELETE|(UPDATE столбец, …)}, …

ON таблица ТО {пользователь | PUBLIC}

Привилегии вставки (INSERT) и обновления (UPDATE) (но не привилегии выбора SELECT, что весьма странно) могут задаваться для специально заданных столбцов.

Если задана директива WITH GRANT OPTION, это значит, что указанные пользователи наделены особыми полномочиями для заданного объекта – правом предоставления полномочий. Это, в свою очередь, означает, что для работы с данным объектом они могут наделять полномочиями других пользователей

Например: предоставить пользователю Ivanov полномочия для осуществления выборки и модификации фамилий в таблице Students с правом предоставления полномочий.

GRANT SELECT, UPDATE StName

ON Students ТО Ivanov WITH GRANT OPTION

Если пользователь А наделяет некоторыми полномочиями другого пользователя В, то впоследствии он может отменить эти полномочия для пользователя В. Отмена полномочий выполняется с помощью директивы REVOKE с приведенным ниже синтаксисом.

REVOKE {{SELECT | INSERT | DELETE | UPDATE},…|ALL PRIVILEGES}

ON таблица,… FROM {пользователь | PUBLIC},… {CASCADE | RESTRICT}

Поскольку пользователь, с которого снимается привилегия, мог предоставить ее другому пользователю (если обладал правом предоставления полномочий), возможно возникновение ситуации покинутых привилегий. Основное предназначение параметров RESTRICT и CASCADE заключается в предотвращении ситуаций с возникновением покинутых привилегий. Благодаря заданию параметра RESTRICT не разрешается выполнять операцию отмены привилегии, если она приводит к появлению покинутой привилегии. Параметр CASCADE указывает на последовательную отмену всех привилегий, производных от данной.

Например: снять с пользователя Ivanov полномочия для осуществления модификации фамилий в таблице Students. Также снять эту привилегию со всех пользователей, которым она была предоставлена Ивановым.

ON Students FROM Ivanov CASCADE

При удалении домена, таблицы, столбца или представления автоматически будут удалены также и все привилегии в отношении этих объектов со стороны всех пользователей.

5.8. Представления и безопасность

Создавая представления, и давая пользователям разрешение на доступ к нему, а не к исходной таблице, можно тем самым ограничить доступ пользователя, разрешив его только к заданным столбцам или записям. Таким образом, представления позволяют осуществить полный контроль над тем, какие данные доступны тому или иному пользователю.

Заключение

Для минимизации риска потерь необходима реализация комплекса нормативных, организационных и технических защитных мер, в первую очередь: введение ролевого управления доступом, организация доступа пользователей по предъявлению цифрового сертификата, а в ближайшей перспективе – промышленное решение по выборочному шифрованию и применение алгоритмов ГОСТ для шифрования выбранных сегментов базы.

Для полного решения проблемы защиты данных администратор безопасности должен иметь возможность проводить мониторинг действий пользователей, в том числе с правами администратора. Поскольку штатная система аудита не имеет достаточных средств защиты, необходима независимая система, защищающая корпоративную сеть не только снаружи, но и изнутри. В будущем должны также появиться типовые методики комплексного решения задачи защиты баз данных для предприятий разного масштаба – от мелких до территориально распределенных.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: