Перевод в различные системы счисления с решением. Правила перевода чисел из одной системы счисления в другую

Замечание 1

Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

Правила перевода чисел из любой системы счисления в десятичную

В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

    При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена , каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + ... + A_2 \cdot 2^1 + A_1 \cdot 2^0$

Рисунок 1. Таблица 1

Пример 1

Число $11110101_2$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

$11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

    Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + ... + A_2 \cdot 8^1 + A_1 \cdot 8^0$

Рисунок 2. Таблица 2

Пример 2

Число $75013_8$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

$75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

    Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$

Рисунок 3. Таблица 3

Пример 3

Число $FFA2_{16}$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

$FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

    Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение . Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.

2.3. Перевод чисел из одной системы счисления в другую

2.3.1. Перевод целых чисел из одной системы счисления в другую

Можно сформулировать алгоритм перевода целых чисел из системы с основанием p в систему с основанием q :

1. Основание новой системы счислениявыразитьцифрамиисходной системы счисления ивсепоследующие действия производить в исходной системе счисления.

2. Последовательно выполнять деление данного числаиполучаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, меньшее делителя.

3. Полученныеостатки,являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.

4. Составить число в новой системе счисления, записывая его, начиная с последнего остатка.

Пример 2.12. Перевестидесятичное число 173 10 в восьмеричную систему счисления:

Получаем:173 10 =255 8

Пример 2.13. Перевести десятичное число 173 10 в шестнадцатеричную систему счисления:

Получаем: 173 10 =AD 16 .

Пример 2.14. Перевести десятичное число 11 10 в двоичную систему счисления. Рассмотреннуювыше последовательность действий (алгоритм перевода) удобнее изобразить так:

Получаем: 11 10 =1011 2 .

Пример 2.15. Иногда более удобно записать алгоритм перевода в форме таблицы. Переведем десятичное число 363 10 в двоичное число.

Делитель

Получаем: 363 10 =101101011 2

2.3.2. Перевод дробных чисел из одной системысчисленияв другую

Можно сформулировать алгоритм перевода правильнойдроби с основанием p в дробь с основанием q:

1. Основание новой системы счислениявыразитьцифрамиисходной системы счисленияивсепоследующие действия производить в исходной системе счисления.

2. Последовательноумножатьданноечислои получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведенияне станет равной нулю или будет достигнута требуемая точность представления числа.

3. Полученные целые части произведений,являющиеся цифрами числа в новой системе счисления,привести в соответствие с алфавитомновой системы счисления.

4. Составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 2.17. Перевести число 0,65625 10 в восьмеричную систему счисления.

Получаем: 0,65625 10 =0,52 8

Пример 2.17. Перевести число 0,65625 10 вшестнадцатеричнуюсистему счисления.

x 16

Получаем: 0,65625 10 =0,А8 1

Пример 2.18. Перевестидесятичнуюдробь 0,5625 10 в двоичную систему счисления.

x 2

x 2

x 2

x 2

Получаем: 0,5625 10 =0,1001 2

Пример 2.19. Перевести в двоичную систему счисления десятичную дробь 0.7 10 .

Очевидно, чтоэтот процесс может продолжаться бесконечно,давая все новые и новые знакивизображениидвоичногоэквивалентачисла 0,7 10 . Так,за четыре шага мы получаем число 0,1011 2 , а за семь шагов число 0,1011001 2 ,которое является более точным представлениемчисла 0,7 10 в двоичной системе счисления,и т.д.Такой бесконечный процесс обрывают на некотором шаге, когда считают, что получена требуемая точность представления числа.

2.3.3. Перевод произвольных чисел

Перевод произвольных чисел,т.е. чисел, содержащих целую и дробную части,осуществляется в два этапа.Отдельно переводится целая часть, отдельно - дробная. В итоговой записи полученного числа целая часть отделяется от дробной запятой (точкой).

Пример 2.20 . Перевести число 17,25 10 в двоичную систему счисления.

Получаем: 17,25 10 =1001,01 2

Пример 2.21. Перевести число 124,25 10 в восьмеричную систему.

Получаем: 124,25 10 =174,2 8

2.3.4. Перевод чисел из системы счисления с основанием 2 в систему счисления с основанием 2 n и обратно

Перевод целых чисел. Если основание q-ичной системы счисления является степеньючисла 2, топереводчисел из q-ичной системы счисления в 2-ичную и обратно можно проводить по более простым правилам. Для того, чтобы целое двоичное число записать в системе счисления с основанием q=2 n , нужно:

1. Двоичное число разбить справа налево на группы по nцифр в каждой.

2. Если в последней левой группе окажется меньше n разрядов, то ее надо дополнить слева нулями до нужного числа разрядов.

Пример 2.22. Число 101100001000110010 2 переведем в восьмеричную систему счисления.

Разбиваем число справа налево на триады и под каждой из них записываем соответствующую восьмеричную цифру:

Получаем восьмеричное представление исходного числа: 541062 8 .

Пример 2.23. Число 1000000000111110000111 2 переведем в шестнадцатеричную систему счисления.

Разбиваем числосправа налево на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:

Получаем шестнадцатеричноепредставлениеисходногочисла: 200F87 16 .

Перевод дробных чисел. Длятого,чтобыдробное двоичное число записать в системе счисления с основанием q=2 n , нужно:

1. Двоичное число разбить слева направо на группы по nцифр в каждой.

2. Еслив последней правой группе окажется меньше n разрядов,то ее надо дополнить справа нулями до нужного числа разрядов.

3. Рассмотреть каждую группу как n-разрядное двоичное число изаписать ее соответствующей цифрой в системе счисления с основанием q=2 n .

Пример 2.24. Число0,10110001 2 переведем в восьмеричную систему счисления.

Разбиваем число слева направо на триады и под каждой из них записываем соответствующую восьмеричную цифру:

Получаем восьмеричное представление исходного числа: 0,542 8 .

Пример 2.25. Число0,100000000011 2 переведем в шестнадцатеричную систему счисления. Разбиваем число слева направо на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:

Получаем шестнадцатеричноепредставлениеисходногочисла: 0,803 16

Перевод произвольных чисел. Для того, чтобы произвольное двоичное число записать в системе счисления с основанием q=2 n , нужно:

1. Целую часть данногодвоичногочисларазбитьсправа налево, а дробную - слева направо на группы по n цифр в каждой.

2. Если в последних левой и/или правой группах окажется меньше n разрядов, то их надо дополнить слева и/или справа нулямидо нужного числа разрядов;

3.Рассмотретькаждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2 n

Пример 2.26. Число 111100101,0111 2 переведем в восьмеричную систему счисления.

Разбиваем целую и дробную части числа на триады и под каждой из них записываем соответствующую восьмеричную цифру:

Получаем восьмеричное представление исходного числа: 745,34 8 .

Пример 2.27. Число11101001000,11010010 2 переведем в шестнадцатеричную систему счисления.

Разбиваем целую и дробную части числа на тетрадыи под каждой из них записываем соответствующую шестнадцатеричную цифру:

Получаем шестнадцатеричное представление исходного числа: 748,D2 16 .

Перевод чисел из систем счисления с основанием q=2 n в двоичную систему. Для того, чтобы произвольное число, записанное в системе счисления с основанием q=2 n , перевести в двоичную систему счисления, нужно каждую цифру этого числа заменить ее n-значным эквивалентом в двоичной системе счисления.

Пример 2.28 .Переведем шестнадцатеричное число 4АС35 16 вдвоичную систему счисления.

В соответствии с алгоритмом:

Получаем: 1001010110000110101 2 .

Задания для самостоятельного выполнения (Ответы )

2.38. Заполните таблицу, в каждой строке которой одно и то же целое число должно быть записано в различных системах счисления.

Двоичная

Восьмеричная

Десятичная

Шестнадцатеричная

2.39. Заполните таблицу, в каждой строке которой одно и то же дробное число должно быть записано в различных системах счисления.

Двоичная

Восьмеричная

Десятичная

Шестнадцатеричная

2.40. Заполните таблицу, в каждой строке которой одно и то же произвольное число (число может содержать как целую, так и дробную часть) должно быть записано в различных системах счисления.

Двоичная

Восьмеричная

Десятичная

Шестнадцатеричная

59,B

Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

епозиционные системы счисления.

Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

I 1 (один)
V 5 (пять)
X 10 (десять)
L 50 (пятьдесят)
C 100 (сто)
D 500 (пятьсот)
M 1000 (тысяча)

Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

IL 49 (50-1=49)
VI 6 (5+1=6)
XXI 21 (10+10+1=21)
MI 1001 (1000+1=1001)

озиционные системы счисления.

Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

    Например:
  • Двоичная - позиционная система счисления с основанием 2.
  • Четверичная - позиционная система счисления с основанием 4.
  • Пятиричная - позиционная система счисления с основанием 5.
  • Восьмеричная - позиционная система счисления с основанием 8.
  • Шестнадцатиричная - позиционная система счисления с основанием 16.

Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

10 с/с 2 с/с 8 с/с 16 с/с
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

равила перевода из одной системы счисления в другую.

1 Перевод целых десятичных чисел в любую другую систему счисления.

Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


Таким образом, 173 10 =255 8

2 Перевод правильных десятичных дробей в любую другую систему счисления.

Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.

При переводе чисел из десятичной системы счисления в любую другую, всегда отдельно (по разным правилам) переводится целая и дробная части.

Перевод целой части

Для того, чтобы перевести число из десятичной системы счисления, в любую другую, нужно выполнять целочисленное деление исходного числа на основание той системы счисления, в которую нужно перевести число. При этом важен остаток от деления и частное. Частное нужно делить на основание до тех пор, пока не останется 0. После этого все остатки нужно выписать в обратном порядке - это и будет число в новой системе счисления.

Например, перевод - числа 25 из десятичной системы счисления в двоичную будет выглядеть следующим образом:

Выписав остатки в обратном порядке, получим 25 10 =11001 2 .

Если Вы задумаетесь, то можете легко заметить, что при переводе абсолютно любого числа в двоичную систему счисления самый последний остаток (то есть, самая первая цифра в результате) всегда будет равен самому последнему частному, которое оказалось меньше основания той системы счисления, в которую мы переводим число. Поэтому, деление часто останавливают раньше, чем частное станет равным нулю - в тот момент, когда частное станет просто меньше основания. Например:

Перевод из десятичной системы счисления в любую другую систему счисления производится по абсолютно точно таким же правилам. Вот пример перевода 393 10 в шестнадцатеричную систему счисления:

Выписав остатки в обратном порядке, получим 393 10 =189 16 .

Нужно понимать, что остатки получаются в десятичной системе счисления. При делении на 16 могут появиться остатки не только от 0 до 9, но также и остатки от 10 до 15. Каждый остаток - это всегда ровно одна цифра в той системе счисления, в которую осуществляется перевод.

Например, если при переводе в шестнадцатеричную систему счисления Вы получили такие остатки (выписаны в порядке, как они должны быть записаны в числе): 10, 3, 15, 7, то в шестнадцатеричной системе счисления этой последовательности остатков будет соответствовать число A3F7 16 (некоторые по ошибке записывают число как 103157 16 - понято же, что это совсем другое число, и что если так делать, то получится, что ни в каком шестнадцатеричном числе не появится цифры от A до F).

Перевод дробной части

При переводе дробной части, в отличие от перевода целой части - нужно не делить, а умножать на основание той системы счисления, в которую мы переводим. При этом каждый раз отбрасываются целые части, а дробные части - снова умножаются. Собрав целые части в том порядке, как они были получены - получается дробная часть числа в нужной системе счисления.

Одна операция умножения даёт ровно один дополнительный знак в системе счисления, в которую осуществляется перевод.

При этом существует два условия завершения процесса:

1) в результате очередного умножения Вы получили ноль в дробной части. Понятно, что дальше этот ноль сколько ни умножай - он всё равно останется нулём. Это означает, что число перевелось из десятичной системы счисления в нужную точно.

2) не все числа возможно перевести точно. В таком случае обычно переводят с некоторой точностью. При этом сначала определяют, сколько знаков после запятой будет нужно - именно такое количество раз и нужно будет выполнить операцию умножения.

Вот пример перевода числа 0.39 10 в двоичную систему счисления. Точность - 8 разрядов (в данном случае точность перевода выбрана произвольно):

Если выписать целые части в прямом порядке, то получим 0.39 10 =0.01100011 2 .

Самый первый ноль (на рисунке перечёркнут синим) выписывать не нужно - так как он относится не к дробной части, а к целой. Некоторые по ошибке записывают этот ноль после запятой, когда выписывают результат.

Вот так будет выглядеть перевод числа 0.39 10 в шестнадцатеричную систему счисления. Точность - 8 разрядов в данном случае точность снова выбрана произвольно:

Если выписать целые части в прямом порядке, то получим 0.39 10 =0.63D700A3 16 .

При этом Вы, наверное, заметили, что целые части при умножении получаются в десятичной системе счисления. Эти целые части, полученные при переводе дробной части числа следует интерпретировать точно так же, как и остатки при переводе целой части числа. То есть, если при переводе в шестнадцатеричную систему счисления целые части получились в таком порядке: 3, 13, 7, 10, то соответствующее число будет равно 0.3D7A 16 (а не 0.313710 16 , как некоторые иногда ошибочно записывают).

Перевод числа с целой и дробной частью

Чтобы выполнить перевод числа с целой и дробной частью, нужно отдельно перевести целую часть, а отдельно - дробную, и поэтом эти две части записать вместе.

Например, 25.39 10 =11001.01100011 2 (переводы целой и дробной части - смотрите выше).

Перевод небольших целых чисел из десятичной системы счисления в двоичную в уме

Поскольку при работе с различными системами счисления, особенно при разработке программ, очень часто возникает необходимость перевода небольших целых чисел, то, вообще говоря, имеет смысл запомнить для первых 16 чисел (от 0 до 15).

Но если разобраться, как легко в уме переводить небольшие целые числа от 0 до 15 из десятичной системы счисления в двоичную, то значительную часть таблицы Вы сможете просто вычислять в уме каждый раз, когда это будет нужно. Проделывайте эту операцию много раз, и в какой-то момент Вы сами не сможете понять - Вы уже запомнили таблицу или всё ещё вычисляете.

Итак, чтобы перевести небольшое положительное целое число от 0 до 15 из десятичной системы счисления в двоичную, первое, что нужно понять - это что каждой позиции в двоичном числе соответствует степень двойки. При этом степени двойки для позиций от 0 до 3 запомнить очень просто - это числа 1, 2, 4 и 8:

А число 10 - это 2 плюс 8:

Ну а число 0 - грех не запомнить, так как, чтобы его получить, ничего не нужно складывать.

Теги: Система счисления, перевод системы счисления, родственные системы счисления

Изменение основания для позиционных систем счисления

В позиционной системе счисления с основанием q число может быть представлено в виде полинома

… + a 2 ∙q 2 + a 1 q 1 + a 0 ∙q 0 + a -1 ∙q -1 + a -2 ∙q -2 + …

где коэффициенты a i – это цифры системы счисления с основанием q.

Например, в десятичной системе счисления

124.733 = 1∙10 2 + 2∙10 1 + 4∙10 0 + 7∙10 -1 + 3∙10 -2 + 3∙10 -3

Число цифр в системе счисления с основанием q равно q, при этом максимальная цифра равна q - 1. Цифра не может стать равной q, потому что в этом случае произойдёт перенос единицы в новый разряд.

Например, нужно найти минимальное основание системы счисления, в которой записано число 7832. Так как максимальная цифра равна 8, то минимальное значение q = 8 + 1 = 9.

Основанием системы счисления может быть, в принципе, любой число: целое, отрицательное, рациональное, иррациональное, комплексное и т.д. Будем рассматривать только положительные целые основания.

Особый интерес для нас будут представлять основание 2 и основания, являющиеся степенью двойки – 8 и 16.

В случае, если основание с. с. больше десяти, то новые цифры берутся по порядку из алфавита. Например, для 16-ричной системы это будут цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Перевод целой части десятичной системы счисления

Первый способ перевода из десятичной системы счисления в n-ричную заключается в последовательном делении числа на новое основание.

123/12 = 10 (3) 10/12 = 0 (10=A)

Собираем в обратном порядке, сначала последнее значение (это 0), потом сверху вниз все остатки. Получаем 0A3 = A3

4563/8 = 570 (3) 570/8 = 71 (2) 71/8 = 8 (7) 8/8 = 1 (0)

Собираем обратно, получаем 10723

3349 10 → X 16

3349/16 = 209 (5) 209/16 = 13 (1) 13/16 = 0 (13 = D)

Собираем вместе: 0D15 = D15

545/2 = 272 (1) 272/2 = 136 (0) 136/2 = 68 (0) 68/2 = 34 (0) 34/2 = 17 (0) 17/2 = 8 (1) 8/2 = 4 (0) 4/2 = 2(0) 2/2 = 1 (0) 1/2 = 0(1)

Собираем 01000100001 = 1000100001

Перевод на бумаге обычно осуществляется делением в столбик. Пока деление не приведёт к нулю, каждый следующий ответ делится на основание с. с. В конце, из остатков от деления собирается ответ.

Также часто можно перевести число в другую с. с. , если в уме представить его как сумму степеней соответствующего основания, в которое мы хотим перевести число.

Например, 129 очевидно 128 + 1 = 2 7 + 1 = 10000001 2

80 = 81 - 1 = 3 4 - 1 = 10000 - 1 = 2222 3

Перевод в десятичную систему счисления целой части

Перевод осуществляется, используя представление числа в позиционной системе счисления. Пусть необходимо перевести A3 12 → X 10 Известно, что A3 – это 3∙q 0 + A∙q 1 , то есть 3*1 + A*12 = 3 + 120 = 123

10723 8 → X 10

1∙q 4 + 0∙q 3 + 7∙q 2 + 2∙q 1 + 3∙q 0 = 1∙8 4 + 0 + 7∙8 2 + 2∙8 + 3 = 1∙4096 + 7∙64 + 2∙8 + 3 = 4563

D∙16 2 + 1∙16 1 +5∙16 0 = 13∙256 + 16 + 5 = 3349

1000100001 2 → X 10

2 9 + 2 5 + 1 = 512 + 32 + 1 = 545.

Перевод на бумаге обычно осуществляется следующим образом. Над каждой цифрой по порядку пишут номер степени. Затем уже выписывают все слагаемые.

Перевод дробной части из десятичной системы

Во время перевода дробной части часто случается ситуация, когда конечная десятичная дробь превращается в бесконечную. Поэтому обычно при переводе указывается точность, с которой необходимо переводить. Перевод осуществляется путём последовательного умножения дробной части на основание системы счисления. Целая часть при этом откидывается и входит в состав дроби.

0.625 10 → X 2

0.625 * 2 = 1.250 (1) 0.25 * 2 = 0.5 (0) 0.5 * 2 = 1.0 (1)

0 – дальнейшее умножение будет давать только нули
Собираем сверху вниз, получаем 0.101

0.310 → X2 0.3 * 2 = 0.6 (0) 0.6 * 2 = 1.2 (1) 0.2 * 2 = 0.4 (0) 0.4 * 2 = 0.8 (0) 0.8 * 2 = 1.6 (1) 0.6 * 2 = 1.2 (1)

0.2 … получим периодическую дробь
Собираем, получаем 0.0100110011001… = 0.0(1001)

0.64510 → X5 0.645 * 5 = 3.225 (3) 0.255 * 5 = 1.275 (1) 0.275 * 5 = 1.375 (1) 0.375 * 5 = 1.875 (1) 0.875 * 5 = 4.375 (4) 0.375 * 5 = 1.875 (1) …

0.3111414… = 0.311(14)

Перевод дробной части в десятичную систему

Осуществляется аналогично переводу целой части, путём домножения цифры разряда на основание в степени, равной положению разряда в числе.

0.101 2 → X 10

1∙2 -1 + 0∙2 -2 + 1∙2 -3 = 0.5 + 0.125 = 0.625

0.134 5 → X 10

1∙5 -1 + 3∙5 -2 +4∙5 -3 = 0.2 + 3∙0.04 + 4∙0.008 = 0.2 + 0.12 + 0.032 = 0.352

Перевод из произвольной системы счисления в произвольную

Перевод из произвольной системы счисления в произвольную с. с. осуществляется с помощью десятичной с. с.

X N → X M ≡ X N → X 10 → X M

Например

1221201 3 → X 7

1221201 3 = 1∙3 6 + 2∙3 5 + 2∙3 4 + 1∙3 3 + 2∙3 2 + 1 = 729 + 2∙243 + 2∙81 + 27 + 9 + 1 = 1414 10

1414/7 = 202 (0) 202/7 = 28 (6) 28/7 = 4 (0) 4/7 = 0 (4)

1221201 3 → 4060 7

Родственные системы счисления

Системы счисления называют родственными, когда их основания являются степенями одного числа. Например, 2, 4, 8, 16. Перевод между родственными системами счисления можно осуществлять, воспользовавшись таблицей

Таблица для перевода между родственными системами счисления с базой 2
10 2 4 8 16
0 0000 000 00 0
1 0001 001 01 1
2 0010 002 02 2
3 0011 003 03 3
4 0100 010 04 4
5 0101 011 05 5
6 0110 012 06 6
7 0111 013 07 7
8 1000 020 10 8
9 1001 021 11 9
10 1010 022 12 A
11 1011 023 13 B
12 1100 030 14 C
13 1101 031 15 D
14 1110 032 16 E
15 1111 033 17 F

Для перевода из одной родственной системы счисления в другую, сначала нужно перевести число в двоичную систему. Для перевода в двоичную систему счисления каждая цифра числа подменяется на соответствующую двойку (для четверичной), тройку (для восьмеричной) или четвёрку (для шестнадцатеричной).

Для 123 4 единица подменяется на 01, двойка на 10, тройка нa 11, получаем 11011 2

Для 5721 8 соответственно 101, 111, 010, 001, итого 101111010001 2

Для E12 16 получим 111000010010 2

Для перевода из двоичной системы следует разбить число на двойки (4-я), тройки (8-я) или четвёрки чисел (16-я), а затем подменить на соответствующие значения.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: