Принцип функционирования импульсных источников питания. Импульсные источники питания

Для обычного человека, не вникающего в электронику, был незаметен переход всех питающих устройств с линейных на импульсные. Именно импульсные источники (ИИП) питания устанавливаются во всей современной аппаратуре. Основная причина перехода на такой тип преобразователей напряжения - это уменьшение габаритов. Так как всё время, с начала появления и изобретения, электронные приборы требуют постоянного уменьшения их размеров. На рисунке изображен для сравнения габариты обычного и импульсного источника постоянного тока. Не вооруженным глазом видны различия в размерах.

Принцип действия ИИП и его устройство

Импульсный источник питания - это устройство, которое работает по принципу инвертора, то есть сначала преобразует переменное напряжение в постоянное, а потом снова из постоянного делает переменное нужной частоты. В конечном итоге последний каскад преобразователя всё равно основан на выпрямлении напряжения, так как большинство приборов всё же работают на пониженном постоянном напряжении. Суть уменьшения габаритов этих питающих и преобразующих устройств построена на работе трансформатора. Дело в том, что трансформатор не может работать с постоянным напряжением. Просто-напросто на выходе вторичной обмотки при подаче на первичную постоянного тока не будет индуктироваться ЭДС (электродвижущая сила). Для того чтобы на вторичной обмотке появилось напряжения оно должно меняться по направлению или же по величине. Переменное напряжение обладает этим свойством, ток в нём меняет своё направление и величину с частотой 50 Гц. Однако, чтобы уменьшить габариты самого блока питания и соответственно трансформатора, являющегося основой гальванической развязки, нужно увеличить частоту входного напряжения.

При этом импульсные трансформаторы, в отличие от обычных линейных, имеют ферритовый сердечник магнитопровода, а не стальной из пластин. И также современные блоки питания работающие по этому принципу состоят из:

  1. выпрямителя сетевого напряжения;
  2. генератора импульсов, работающего на основе ШИМ (широтно-импульсная модуляция) или же триггера Шмитта;
  3. преобразователя постоянного стабилизированного напряжения.

После выпрямителя сетевого напряжения генератор импульсов с помощью ШИМ генерирует его в переменное с частотой около 20–80 кГц. Именно это повышение с 50 Гц до десятков кГц и позволяет значительно уменьшить, и габариты, и массу источника питания. Верхний диапазон мог быть и больше, однако, тогда устройство будет создавать высокочастотные помехи, которые будет влиять на работу радиочастотной аппаратуры. При выборе ШИМ стабилизации обязательно нужно учитывать также и высшие гармоники токов.

Даже при работе на таких частотах эти импульсные устройства вырабатывают высокочастотные помехи. А чем больше их в одном помещении или в одном закрытом помещении тем больше их в радиочастотах. Для поглощения этих негативных влияний и помех устанавливаются специальные помехоподавляющие фильтры на входе устройства и на его выходе.

Это наглядный пример современного импульсного блока питания применяемого в персональных компьютерах.

A - входной выпрямитель. Могут применяться полумостовые и мостовые схемы. Ниже расположен входной фильтр, имеющий индуктивность;
B - входные с довольно большой емкостью сглаживающие конденсаторы. Правее установлен радиатор высоковольтных транзисторов;
C - импульсный трансформатор. Правее смонтирован радиатор низковольтных диодов;
D - катушка выходного фильтра, то есть дроссель групповой стабилизации;
E - конденсаторы выходного фильтра.
Катушка и большой жёлтый конденсатор, находящиеся ниже E, являются компонентами дополнительного входного фильтра, установленного непосредственно на разъёме питания, и не являющегося фрагментом основной печатной платы.

Если схему радиолюбитель изобретает сам то он обязательно заглядывает в справочник по радиодеталям. Именно справочник является основным источником информации в данном случае.

Обратноходовой импульсный источник питания

Это одна из разновидностей импульсных источников питания, имеющих гальваническую развязку как первичных, так и вторичных цепей. Сразу был изобретён именно этот вид преобразователей, который был запатентован ещё в далёком 1851 году, а его усовершенствованный вариант применялся в системах зажигания и в строчной развертке телевизоров и мониторов, для подачи высоковольтной энергии на вторичный анод кинескопа.

Основная часть этого блока питания тоже трансформатор или может быть дроссель. В его работе есть два этапа:

  1. Накопление электрической энергии от сети или от другого источника;
  2. Вывод накопленной энергии на вторичные цепи полумоста.

Во время размыкания и замыкания первичной цепи во вторичной появляется ток. Роль размыкающего ключа выполнял чаще всего транзистор. Узнать параметры которого нужно обязательно использовать справочник. управление же этим транзистором чаще всего полевым выполняется за счёт ШИМ-контроллера.

Управление ШИМ-контроллером

Преобразование сетевого напряжения, которое уже прошло этап выпрямления, в импульсы прямоугольной формы выполняется с какой-то периодичностью. Период выключения и включения этого транзистора выполняется с помощью микросхем. ШИМ-контроллеры этих ключей являются основным активным управляющим элементом схемы. В данном случае как прямоходовой, так и обратноходовой источник питания имеет трансформатор, после которого происходит повторное выпрямление.

Для того чтобы с увеличением нагрузки не падало выходное напряжение в ИИП была разработана обратная связь которая была заведена непосредственно в ШИМ-контроллеры. Такое подключение даёт возможность полной стабилизации управляемым выходным напряжения путём изменения скважности импульсов. Контроллеры, работающие на ШИМ модуляции, дают большой диапазон изменения выходного напряжения.

Микросхемы для импульсных источников питания могут быть отечественного или зарубежного производства. Например, NCP 1252 – ШИМ-контроллеры, которые имеют управление по току, и предназначены для создания обоих видов импульсных преобразователей. Задающие генераторы импульсных сигналов этой марки показали себя как надёжные устройства. Контроллеры NCP 1252 обладают всеми качественными характеристиками для создания экономически выгодных и надежных блоков питания. Импульсные источники питания на базе этой микросхемы применяются во многих марках компьютеров, телевизоров, усилителей, стереосистем и т. д. Заглянув в справочник можно найти всю нужную и подробную информацию обо всех её рабочих параметрах.

Преимущество импульсных источников питания перед линейными

В источниках питания на импульсной основе видны целый ряд преимуществ, которые качественно выделяют их от линейных. Вот основные из них:

  1. Значительное снижение габаритов и массы устройств;
  2. Уменьшение количества дорогостоящих цветных металлов, таких как медь, используемых в их изготовлении;
  3. Отсутствие проблем при возникновении короткого замыкания, в большей степени это касается обратноходовых устройств;
  4. Отличная плавная регулировка выходного напряжения, а также его стабилизация путём введения обратной связи в ШИМ-контроллеры;
  5. Высокие показатели КПД.

Однако, как и всё в этом мире, импульсные блоки имеют свои недостатки:

  1. Излучение помех, которые могут появляется при неисправных помехоподавляющих цепочек, чаще всего это высыхание электролитических конденсаторов;
  2. Нежелательная работа их без нагрузки;
  3. Более сложная схема с применением большего количества деталей для поиска аналогов которых необходим справочник.

Применение источников питания на основе высокочастотной модуляции (в импульсных) в современной электронике как в быту, так и на производстве, существенно повлияли на развитие всей электронной техники. Они давно вытеснили с рынка устаревшие источники, построенные на традиционной линейной схеме, и в дальнейшем будут только усовершенствоваться. ШИМ-контроллеры при этом являются сердцем этого аппарата и развитие их функциональности и технических характеристик постоянно улучшается.

Видео о работе импульсного источника питания

Виды импульсных источников электропитания

Импульсные или ключевые, источники электропитания в настоящее время получили распространение не меньше, чем линейные стабилизаторы напряжения. Их основными достоинствами являются: высокий коэффициент полезного действия, малые габариты и масса, высокая удельная мощность. Это стало возможным благодаря применению ключевого режима работы силовых элементов. В ключевом режиме рабочая точка большую часть времени находится в области насыщения или области отсечки ВАХ, а зону активного (линейного) режима проходит с высокой скоростью за очень малое время переключения. В состоянии насыщения напряжение на транзисторе близко к нулю, а в режиме отсечки отсутствует ток, благодаря чему потери в транзисторе оказываются достаточно малыми. Поэтому средняя за период коммутации мощность, рассеиваемая в ключевом транзисторе, оказывается намного меньше, чем в линейных регуляторах. Малые потери в силовых ключах приводят к уменьшению или полному исключению радиаторов.

Улучшение массогабаритных характеристик источников питания обусловлено, прежде всего, тем, что из схемы источника питания исключается силовой трансформатор, работающей на частоте 50 Гц. Вместо него в схему вводится высокочастотный трансформатор или дроссель, габариты и масса которого намного меньше низкочастотного силового трансформатора.

К недостаткам импульсных источников электропитания относятся: сложность схемы, наличие высокочастотных шумов и помех, увеличение пульсаций выходного напряжения, большое время выхода на рабочий режим. Сравнительные характеристики обычных (т.е. с низкочастотным силовым трансформатором) и импульсных источников питания приведены в таблице 2.1.

Сравнение этих характеристик показывает, что КПД импульсных источников питания увеличивается по сравнению с обычными (линейными) в отношении 1:2, а удельная мощность в отношении 1:4. При повышении частоты преобразования с 20 кГц до 200 кГц удельная мощность возрастает в соотношении 1:8, т.е. почти в два раза. Импульсные источники питания имеют также большее время удержания выходного напряжения при внезапном отключении сети.

Это обусловлено тем, что в сетевом выпрямителе импульсного источника используются конденсаторы большой емкости и с высоким рабочим напряжением (до 400 В). При этом размеры конденсаторы растут пропорционально произведению CU, а энергия конденсатора пропорционально CU 2 . Этой энергии конденсатора достаточно для поддержания в рабочем состоянии источника питания в течении примерно 30 мс, что очень важно для сохранения информации в компьютерах при внезапном отключении питания.

Таблица 2.1 – Сравнение импульсных и линейных источников

В то же время пульсации выходного напряжения в импульсных источниках питания больше, чем у линейных, что обусловлено сложностью подавления коротких импульсов при работе импульсного преобразователя. Другие характеристики у этих источников практически совпадают.

Структура построения ИВЭП . При всем разнообразии структурных схем рисунки 2.1…2.8 обязательным является наличие силового каскада,

осуществляющего преобразование постоянного напряжения в другое постоянное, условно будем считать, что импульсные преобразователи реализуют функцию электрической изоляции (гальванической развязки) входных и выходных цепей, а импульсные стабилизаторы нет. Функциональное назначение силовых каскадов преобразователей и стабилизаторов одинаково.

Широкое распространение получили ИВЭП компенсационного типа, выполненного с обратной связью рисунок 2.1, Силовой каскад 3,на управляющий вход которого подается последовательность импульсов с определенными временными параметрами, осуществляет импульсное преобразование напряжения постоянного тока от первичного источника Еп в выходное напряжение Uн (утолщенными линиями показаны силовые цепи ИВЭП).

В общем случае выходных цепей с напряжениями Uн у одного ИВЭП может быть несколько. Усилитель импульсов 2 может выполнять не только функцию усиления управляющих импульсов по мощности для транзисторов 3, но и функции формирования импульсов: осуществляет временное разделение импульсов, например, для двухтактных преобразователей напряжения формирует короткие управляющие импульсы для схем 3 с трансформаторами тока или специальными типами силовых транзисторов и др..

Рисунок 2.1 - Структурная схема импульсного компенсационного ИВЭП

Импульсы, синхронизирующие работу ИВЭП, вырабатываются модулятором 1. Выходное напряжение постоянного тока Uн подается на вход схемы сравнения 4, где сравнивается с опорным напряжением Uоп. Сигнал рассогласования (ошибки) поступает на вход модулятора, который задает временные параметры синхронизирующих импульсов. Увеличение или уменьшение напряжения Uн приводит к изменению сигнала рассогласования на выходе 4 и временных параметров синхронизирующих импульсов на входе 1, что вызывает восстановление прежнего значения напряжения Uн, т.е. его стабилизацию. Таким образом, ИВЭП, выполненный по схеме рисунка 2.1 является стабилизирующим импульсным преобразователем напряжения компенсационного типа, поддерживающим неизменность выходного напряжения при изменениях выходного тока Iн, входного напряжения Еп, температуры окружающей среды и воздействия других дестабилизирующих факторов.

Рассмотрим ИВЭП с инвариантной (называемой иногда параметрической) стабилизацией выходного напряжения на рисунке 2.2 .

Сущность такого способа стабилизации заключается в том, что при воздействии какого-либо фактора, который может вызвать отклонение значения напряжения Uн от заданного, происходит изменение временных параметров управляющих импульсов, приводящее к тому, что Uн останется неизменным. Однако, в отличие от компенсационных стабилизаторов, изменение временных характеристик управляющих импульсов в этом случае зависит от величины отклонения самого дестабилизирующего воздействия.

Рисунок 2.2 - Структурная схема импульсного параметрического ИВЭП

На рисунке 2.2 генератор, обеспечивающий подобную функциональную зависимость, обозначен 1. Здесь штриховой линией показана связь Еп с управляющим входом генератора для обеспечения закона инвариантности Uн от Еп.

Источники вторичного электропитания без стабилизации выходного напряжения выполняются по схеме, приведенной на рисунок 2.3. Генератор импульсов 1 вырабатывает импульсы с неизменными временными параметрами. Очевидно, что для неизменности напряжения Uн необходимо иметь стабильное напряжение Еп.

Рисунок 2.3 - Структурная схема нестабилизированного ИВЭП

ИВЭП представленный на рисунке 2.4, осуществляет двойное преобразование энергии постоянного тока. Первый силовой каскад 1, как правило, импульсный стабилизатор преобразует напряжение Еп в стабилизированное напряжение Еп1. Второй силовой каскад 2 осуществляет гальваническую развязку напряжения и при необходимости дополнительную стабилизацию Uн. В общем случае компенсация и инвариантная стабилизация может осуществляется не только в 1, но и в обоих каскадах, что показано штриховыми линиями цепей отрицательной обратной связи. Силовые каскады 1 и 2 могут представлять собой различные варианты силовых каскадов любого из ИВЭП.

Рисунок 2.4 - Структурная схема ИВЭП двойного преобразования

Структурная схема блочного ИВЭП со ступенчатым наращиванием мощности приведена на рисунке 2.5. Для увеличения выходной мощности применено параллельное включение каскадов 3…5.

Рисунок 2.5 - Структурная схема модульного ИВЭП

Так как параллельное включение традиционных ИВЭП без применения специальных мер выравнивания мощности каждого из них невозможно, то в данном случае использован принцип многофазного построения ИЭВП. Он заключается в том, что модулятор-формирователь МФ осуществляет не только преобразование сигнала рассогласования СС в соответствующую импульсную последовательность, но и выполняет функцию фазового распределения импульсных сигналов по нескольким силовым каскадам. В результате такой работы ИЭВП временные этапы открытого и закрытого состояния силовых ключей транзисторов различных силовых каскадов оказываются разнесенными во времени.

Все рассмотренные схемы ИВЭП можно сравнивать по различным параметрам – стабильности выходных напряжений, массогабаритным характеристикам, энергетическим показателям, технологичности и себестоимости, а также возможности унификации. При этом, одна и та же схема в зависимости от заданных требований может оказаться неоптимальной по комплексу показателей. Заранее невозможно выбрать конкретную схему как наиболее эффективную, поэтому целесообразно рассмотреть наиболее общие свойства приведенных схем. Будем считать, что надежностные, энергетические и массогабаритные показатели силовых каскадов одинаковы и в равной степени зависят от мощности, выходного напряжения и частоты преобразования.

Наибольшей стабильностью выходного напряжения обладает ИВЭП, реализованный по схеме рисунка 2.1, так как обратная связь, воздейстующая на временные параметры управляющих импульсов, берётся непосредственно с выхода ИЭВП. Высокой стабильностью выходного напряжения обладает и схема ИВЭП, приведенная на рисунке 2.4, если обратная связь на СС берётся с выхода - Uн. Несколько худшей стабильностью, но большей простой схемы управления обладает ИВЭП, выполненные по схеме рисунка 2.2. Однако, здесь не учитывается изменение падения напряжения на индуктивных и активных элементах 3 при изменении тока нагрузки Iн. Дестабилизирующие изменения напряжения Еп могут быть скомпенсированы введением дополнительной, прямой связи (штриховая линия). Бывают ИВЭП с инвариантной стабилизацией не только возмущающего воздействия по напряжению Еп, но и возмущающих воздействий по току нагрузки Iн, температуре окружающей среды и др., однако они не получили широкого применения. Наихудшей стабильностью обладают ИВЭП, выполненные по схеме рисунка 2.3, из-за отсутствия какой-либо обратной связи при воздействии дестабилизирующих факторов. Схема ИВЭП рисунок 2.4, как указывалось выше, принципиально может иметь высокую стабильность выходного напряжения, однако при отсутствии инвариантных или компенсационных каналов регулирования ее показатели идентичны схеме рисунка 2.3.

Применение схем ИВЭП рисунка 2.2 предпочтительно при относительно высоких напряжениях Uн, во много раз превышающих падение напряжения на силовых ключах 3, так как получение требуемой функции 1, учитывающей изменения падения напряжения на этих ключах при колебаниях тока нагрузки и температуры окружающей среды, затруднительно.

Таким образом, в тех случаях, когда выходное напряжение ИВЭП невелико (не превышает нескольких вольт) и имеются значительные изменения тока нагрузки, температуры окружающей среды и напряжения Еп, необходимо использовать ИВЭП, выполненные по структурным схемам (см. рисунки 2.2,2.4,2.5) с компенсационным принципом регулирования.

Схема рисунка 2.2 может применяться также при удовлетворении компромиссных требований по стабильности выходного напряжения и простоте схемы управления ИВЭП. Если первичное напряжение стабильно и изменения падения напряжения на внутренних элементах СК заметно не влияют на точность поддержания напряжения Uн, применяют более простые ИВЭП (рисунки 2.3 и 2.5).

Приведенные схемы ИВЭП могут использоваться в широком диапазоне первичных напряжений – от единицы до сотен вольт. Однако, для высоких первичных напряжений целесообразной может оказаться схема ИВЭП рисунка 2.4, в которой двойное преобразование электрической энергии дает возможность понизить импульсным стабилизатором СКI высокое первичное напряжение Еп постоянного тока до Еп1 и использовать его в качестве первичного для импульсного преобразователя СК2. В этом случае преобразователь СК2, как более сложное по сравнению с СКI устройство работает в облегченных электрических режимах, что может обеспечить уменьшение количества элементов, повышение надежности работы и улучшение энергетических показателей преобразователя.

Крупногабаритными, наиболее материалоемкими и трудно поддающимися микроминиатюризации элементами являются дроссели и трансформаторы. В схемах ИВЭП необходимо стремиться к минимизации их числа. В схеме ИВЭП рисунка 2.4 для двойного преобразования энергии требуются два силовых каскада с принципиально необходимыми индуктивными элементами.

Блочное наращивание выходной мощности требуется для построения различных систем электропитания, которые должны выполняться на базе однотипных, унифицированных ИВЭП. В этом случае разработка и изготовление ИВЭП, питающих электронную аппаратуру, целесообразно при использовании однотипных блоков с возможностью параллельного соединения для получения требуемой суммарной выходной мощности. В итоге возможно получение экономического эффекта. В этом случае одной из основных целей разработки ИВЭП является выбор дискретного значения мощности единичного блока, который должен удовлетворять всем технико-экономическим требованиям имеющихся систем электропитания. Другим преимуществом блочных (многофазных) преобразователей является уменьшение суммарной емкости конденсаторов выходных фильтров, что объясняется распределением во времени процессов переноса энергии на выход отдельных силовых каскадов. Кроме того, многофазные преобразователи позволяют реализовать различные варианты сложных систем электропитания, состоящие их одинаковых унифицированных блоков.

На рисунке 2.6 приведена схема ИВЭП, содержащего нерегулируемый сетевой выпрямитель 1 и конвертор выпрямленного напряжения сети. Конвертор состоит из регулируемого инвертора 2, работающего на повышенной частоте (обычно 20…100 кГц), трансформаторного выпрямительного узла 3 и высокочастотного фильтра 4. Для стабилизации выходного напряжения используется схема управления 5.

Рисунок 2.6 - Структурная схема импульсного ИВЭП с регулируемым инвертором

В схеме управления сравнивается выходное напряжение Uн и напряжение опорного источника 6. Разность этих напряжений, называется сигналом ошибки, используется для регулировки частоты регулируемого инвертора (f = var) или скважности импульсов при их неизменной частоте (g = var) . Конвертор, выполненный на базе однотактного трансформаторного инвертора, называют трансформаторным однотактным конвертором - ТОК. Конвертор, выполненный на базе двухтактного трансформаторного инвертора, называют трансформаторным двухтактным конвертором - ТДК.

На рисунке 2.7 приведена схема ИВЭП с регулируемым сетевым выпрямителем 1 и нерегулируемым инвертором 2. Остальные узлы этой схемы имеют то же назначение, что и предыдущих схемах. Отличительной особенностью этой структурной схемы является использование нерегулируемого инвертора (НИ). Стабилизация выходного напряжения в этой схеме обеспечивается за счет регулирования напряжения на входе конвертора с помощью 1, который обычно выполняется на тиристорах с фазовым управлением.


Рисунок 2.7 - Структурная схемы импульсного ИВЭП с регулируемым сетевым выпрямителем

Для схемы, приведенной на рисунке 2.6 характерным является то, что инвертор должен быть рассчитан на работу от выпрямленного напряжения сети, которое имеет максимальное значение около 311В для однофазной сети и около 530 В для трехфазной сети. Кроме того, изменение частоты или скважности импульсов инвертора 2 приводит к ухудшению фильтрации выходного напряжения. В результате ухудшаются массогабаритные показатели фильтра 4, так как его параметры рассчитываются исходя из минимального коэффициента заполнения импульсов g min при условии непрерывности тока в нагрузке.

Положительными свойствами схемы рисунка 2.7 является совмещение функции преобразования напряжения и стабилизации выходного напряжения Uн. Это позволяет упростить схему управления 5, так как уменьшается число управляемых ключей. Кроме того, наличие паузы позволяет устранить сквозные токи в ключах инвертора. Достоинством схемы является также возможность обеспечить работу инвертора при пониженном входном напряжении (обычно его снижают в 1,5…2 раза, то есть до 130…200В). Это существенно облегчает работу ключей транзисторного инвертора. Другим достоинством этой схемы является то, что инвертор работает с максимальным коэффициентом заполнения g max импульсов, что существенно упрощает фильтрацию выходного напряжения. Исследование кпд и удельной мощности обоих схем показало, что эти показатели у них отличаются незначительно.

Схемы многоканальных ИВЭП с нерегулируемым выпрямителем 1 приведены на рисунках 2.8 и 2.9. В схеме на рисунке 2.8, используется нерегулируемый инвертор 2 и индивидуальные стабилизаторы 5…7 , в отдельных каналах. Такая структурная схема может использоваться при небольшом количестве выходных каналов. При увеличении числа выходных каналов схема становится неэкономичной.

Рисунок 2.8 - Структурная схема многоканального ИВЭП с индивидуальной стабилизацией

Схема, изображенная на рисунке 2.9, работает на принципе групповой стабилизации выходного напряжения. Для этого в ней применяется регулируемый инвертор, который управляется напряжением наиболее мощного из каналов. Стабилизация выходных напряжений в других каналах в этом случае ухудшается, так они не охвачены отрицательной обратной связью. Для улучшения стабилизации напряжения в других каналах, можно использовать дополнительные индивидуальные стабилизаторы, так же, как в схеме рисунка 2.8.

Рисунок 2.9 - Структурная схема ИВЭП с групповой стабилизацией

ИМПУЛЬСНЫЕ ИСТОЧНИКИ ПИТАНИЯ

Известно, что источники электропитания являются неотъемлемой частью радиотехнических устройств, к которым предъявляется целый ряд требований; они представляют собой комплекс элементов, приборов и аппаратов, вырабатывающих электрическую энергию и преобразующих ее к виду, необходимому для обеспечения требуемых условий работы радиоустройств.

Источники питания подразделяются на две группы: источники первичного и вторичного питания: Первичные источники - это устройства, преобразующие различные виды энергии в электрическую (электромашинные генераторы, электрохимические источники тока, фотоэлектрические и термоэмиссионные преобразователи и др.).

Вторичные устройства питания - это преобразователи одного вида электрической энергии в другой. К ним относятся: преобразователи переменного напряжения в постоянное (выпрямитель); преобразователи величины переменного напряжения (трансформаторы); преобразователи постоянного напряжения в переменное (инверторы).

На долю источников электропитания в настоящее время приходится от 30 до 70% общей массы и объема аппаратуры РЭА. Поэтому проблема создания миниатюрного, легкого и надежного устройства электропитания с хорошими технико-экономическими показателями является важной и актуальной. Данная работа посвящена разработке вторичного источника электропитания (ИВЭ) с минимальными массогабаритными и высокими техническими характеристиками.

Обязательным условием проектирования источников вторичного электропитания является четкое знание предъявляемых к ним требований. Эти требования весьма разнообразны и определяются особенностями эксплуатации тех комплексов РЭА, которые питаются от заданного ИВЭ. Основными требованиями являются: к конструкции - надежность, ремонтопригодность, габаритно-массовые ограничения, тепловые режимы; к технико-экономическим характеристикам - стоимость и технологичность изготовления.

Основные направления улучшения массогабаритных и технико-экономических показателей ИП: использование новейших электротехнических материалов; применение элементной базы с использованием интегрально-гибридной технологии; повышение частоты преобразования электрической энергии; поиски новых эффективных схемотехнических решений. Для выбора схемы ИВЭ был произведен анализ эффективности использования импульсных источников питания (ИИП) по сравнению с силовыми ИП, выполненными по традиционной технологии.

Главные недостатки силовых ИП - это высокие массогабаритные характеристики, а также значительное влияние на другие устройства РЭА сильного магнитного поля силовых трансформаторов. Проблемой ИИП является создание ими высокочастотных помех, и, как следствие этого - электромагнитная несовместимость с некоторыми типами РЭА. Анализ показал, что наиболее полно предъявляемым требованиям отвечают ИИП, что подтверждается их широким использованием в РЭА.

В работе рассмотрен ИИП мощностью 800 Вт, который отличается от других ИИП применением в преобразователе полевых транзисторов и трансформатора с первичной обмоткой, имеющей средний вывод. Полевые транзисторы обеспечивают более высокий КПД и пониженный уровень высокочастотных помех, а трансформатор со средним выводом - вдвое меньший ток через ключевые транзисторы и исключает необходимость в развязывающем трансформаторе в цепях их затворов.

На базе выбранной принципиальной электрической схемы была разработана конструкция и был изготовлен опытный образец ИИП. Вся конструкция представлена в виде модуля, установленного в алюминиевый корпус. После первичных испытаний был выявлен ряд недостатков: ощутимый нагрев радиаторов ключевых транзисторов, сложность отвода тепла от мощных отечественных резисторов и большие габариты.

Конструкция была доработана: изменена конструкция платы управления с использованием компонентов поверхностного монтажа на двухсторонней плате, её перпендикулярная установка на основной плате; применение радиатора со встроенным вентилятором от компьютера; все теплонапряженные элементы схемы были специально расположены с одной стороны корпуса вдоль направления продувки основного вентилятора для наибольшего эффективного охлаждения. В результате доработки габариты ИПП уменьшились в три раза и выявленные в ходе первичных испытаний недостатки были исключены. Доработанный образец имеет следующие характеристики: напряжение питания Uпит=~180-240 В, частота fраб=90 кГц, отдаваемая мощность Pп=800 Вт, кпд=85%, масса =2,1 кг, габаритные размеры 145Х145Х80 мм.

Данная работа посвящена конструкции импульсного источника питания, предназначенного для питания усилителя мощности звуковой частоты, входящего в состав домашней звуковоспроизводящей системы высокой мощности. Создание домашней звуковоспроизводящей системы было начато с выбора схемного решения УМЗЧ. Для этого был произведен анализ схемного решения звуковоспроизводящих устройств. Выбор был остановлен на схеме УМЗЧ высокой верности.

Данный усилитель имеет очень высокие характеристики, содержит в своем составе устройства защиты от перегрузки и коротких замыканий, устройства поддержания нулевого потенциала постоянного напряжения на выходе и устройство компенсации сопротивления проводов, соединяющих усилитель с акустикой. Несмотря на то, что схема УМЗЧ опубликована уже давно, радиолюбители и по сей день повторяют его конструкцию, ссылки на которую есть практически в любой литературе, касающейся сборки устройств для высококачественного воспроизведения музыки. На основе данной статьи было принято решение собрать четырехканальный УМЗЧ, суммарная потребляемая мощность которого составила 800 Вт. Поэтому следующим этапом сборки УМЗЧ стала разработка и сборка конструкции источника питания, обеспечивающего мощность на выходе не менее 800 Вт, малые габариты и массу надежность в работе и защиту от перегрузки и коротких замыканий.

Источники питания строятся в основном по двум схемам: традиционной классической и по схеме импульсных преобразователей напряжения. Поэтому было принято решение собрать и доработать конструкцию импульсного источника питания.

Исследование источников вторичного электропитания. Источники электропитания подразделяются на две группы: источники первичного и вторичного электропитания.

Первичные источники - это устройства, преобразующие различные виды энергии в электрическую (электромашинные генераторы, электрохимические источники тока, фотоэлектрические и термоэмиссионные преобразователи и др.).

Вторичные устройства питания - это преобразователи одного вида электрической энергии в другой. К ним относятся:

  • * преобразователи переменного напряжения в постоянное (выпрямители);
  • * преобразователи величины переменного напряжения (трансформаторы);
  • * преобразователи постоянного напряжения в переменное (инверторы).

Источники вторичного электропитания строятся в основном по двум схемам: традиционной классической и по схеме импульсных преобразователей напряжения. Главный недостаток силовых ИП, выполненных по традиционной классической схеме, в их больших массогабаритных характеристиках, а также значительным влиянием на другие устройства РЭА сильного магнитного поля силовых трансформаторов. Проблемой ИИП является создание ими высокочастотных помех, и как следствие этого - электромагнитная несовместимость с некоторыми типами РЭА. Анализ показал, что наиболее полно предъявляемым требованиям отвечают ИИП, что подтверждается их широким использованием в РЭА.

Трансформаторы импульсных источников питания отличаются, от традиционных следующим: - питанием напряжением прямоугольной формы; усложненной формой обмоток (выводы средней точки) и работой на повышенных частотах (до нескольких десятков кГц). Кроме того, параметры трансформатора оказывают существенное влияние на режим работы полупроводниковых приборов и характеристики преобразователя. Так, индуктивность намагничивания трансформатора увеличивает время переключения транзисторов; индуктивность рассеяния (при быстро меняющемся токе) является причиной возникновения перенапряжений на транзисторах, что может привести к их пробою; ток холостого хода уменьшает к. п. д. преобразователя и ухудшает тепловой режим транзисторов. Отмеченные особенности учитываются при расчете и проектировании трансформаторов ИИП.

В данной работе рассматривается импульсный блок питания мощностью 800 Вт. От описанных ранее он отличается применением в преобразователе полевых транзисторов и трансформатора с первичной обмоткой со средним выводом. Первое обеспечивает более высокий КПД и пониженный уровень высокочастотных помех, а второе - вдвое меньший ток через ключевые транзисторы и исключает необходимость в развязывающем трансформаторе в цепях их затворов.

Недостаток такого схемного решения — высокое напряжение на половинах первичной обмотки, что требует применения транзисторов с соответствующим допустимым напряжением. Правда, в отличие от мостового преобразователя, в данном случае достаточно двух транзисторов вместо четырех, что упрощает конструкцию и повышает КПД устройства.

В импульсных блоках питания (ИБП) используют одно- и двухтактные высокочастотные преобразователи. КПД первых ниже, чем вторых, поэтому однотактные ИБП мощностью более 40...60 Вт конструировать нецелесообразно. Двухтактные преобразователи позволяют получать значительно большую выходную мощность при высоком КПД. Они делятся на несколько групп, характеризующихся способом возбуждения выходных ключевых транзисторов и схемой включения их в цепь первичной обмотки трансформатора преобразователя. Если говорить о способе возбуждения, то можно выделить две группы: с самовозбуждением и внешним возбуждением.

Первые пользуются меньшей популярностью из-за трудностей в налаживании. При конструировании мощных (более 200 Вт) ИБП сложность их изготовления неоправданно возрастает, поэтому для таких источников питания они малопригодны. Преобразователи с внешним возбуждением хорошо подходят для создания ИБП повышенной мощности и порой почти не требуют налаживания. Что касается подключения ключевых транзисторов к трансформатору, то здесь различают три схемы: так называемую полумостовую (рис.1, а), мостовую (рис. 1, б). На сегодняшний день наибольшее распространение получил полумостовой преобразователь.

Для него необходимы два транзистора с относительно невысоким значением напряжения Uкэmax. Как видно из рис.1а, конденсаторы С1 и С2 образуют делитель напряжения, к которому подключена первичная (I) обмотка трансформатора Т2. При открывании ключевого транзистора амплитуда импульса напряжения на обмотке достигает значения Uпит/2 - Uкэ нac. Мостовой преобразователь аналогичен полумостовому, но в нем конденсаторы заменены транзисторами VT3 и VT4 (рис. 1б), которые открываются парами по диагонали. Этот преобразователь имеет несколько более высокий КПД за счет увеличения напряжения, подаваемого на первичную обмотку трансформатора, а следовательно, уменьшения тока, протекающего через транзисторы VT1—VT4. Амплитуда напряжения на первичной обмотке трансформатора в этом случае достигает значения Uпит - 2Uкэ нас.

Особо стоит отметить преобразователь по схеме рис.1в, отличающийся наибольшим КПД. Достигается это за счет уменьшения тока первичной обмотки и, как следствие, уменьшения рассеиваемой мощности в ключевых транзисторах, что чрезвычайно важно для мощных ИБП. Амплитуда напряжения импульсов в половине первичной обмотки возрастает до значения Uпит - Uкэ нас.

Следует также отметить, что в отличие от остальных преобразователей для него не нужен входной развязывающий трансформатор. В устройстве по схеме на рис.1в необходимо использовать транзисторы с высоким значением Uкэ mах. Поскольку конец верхней (по схеме) половины первичной обмотки соединен с началом нижней, при протекании тока в первой из них (открыт VT1) во второй создается напряжение, равное (по модулю) амплитуде напряжения на первой, но противоположное по знаку относительно Uпит. Иными словами, напряжение на коллекторе закрытого транзистора VT2 достигает 2Uпит. поэтому его Uкэ mах должно быть больше 2Uпит. В предлагаемом ИБП применен двухтактный преобразователь с трансформатором, первичная обмотка которого имеет средний вывод. Он имеет высокий КПД, низкий уровень пульсации и слабо излучает помехи в окружающее пространство.

Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, – инверторы.

Что это такое?

Инвертор – это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

  • бестрансформаторные;
  • трансформаторные.

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Схема БП

В схему самой распространенной конфигурации импульсного преобразователя входят:

  • сетевой помехоподавляющий фильтр;
  • выпрямитель;
  • сглаживающий фильтр;
  • широтно-импульсный преобразователь;
  • ключевые транзисторы;
  • выходной высокочастотный трансформатор;
  • выходные выпрямители;
  • выходные индивидуальные и групповые фильтры.

Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.

Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.

В том случае когда используется , выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.

ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:

  • генерация высокочастотных импульсов;
  • контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
  • контроль и защита от перегрузок.

Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты. Вместо традиционных используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием. Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.

Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.

Напряжение со вторичной обмотки (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:

  • высокая рабочая частота;
  • сниженная емкость p-n перехода;
  • малое падение напряжения.

Назначение выходного фильтра импульсного блока питания – снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.

Сфера применения импульсного блока питания

Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами. При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное – более высоким КПД и возможностью работать в широком диапазоне входного напряжения. А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.

В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.

Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.

Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.

Как сделать импульсный блок питания своими руками

Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям. Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров. Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.

При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: