Какие датчики бывают в смартфонах? Что такое G-Sensor и для чего он нужен в мобильных устройствах.

Современный смартфон уже сложно назвать просто компьютером, ведь он умеет гораздо больше своего стационарного предка: и температуру может измерить, и высоту над уровнем моря подсказать, и влажность воздуха определить, а если вдруг забудешь свою ориентацию в пространстве или силу тяжести потеряешь - все исправит. А помогают ему в этом, как ты уже, наверное, догадался, датчики aka сенсоры. Сегодня мы познакомимся с ними поближе, а заодно и проверим, действительно ли мы находимся на Земле. 😉

Датчики всякие нужны!

Для работы с аппаратными датчиками, доступными в устройствах под управлением Android, применяется класс SensorManager , ссылку на который можно получить с помощью стандартного метода getSystemService :

SensorManager sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);

Чтобы начать работать с датчиком, нужно определить его тип. Удобнее всего это сделать с помощью класса Sensor , так как в нем уже определены все типы сенсоров в виде констант. Рассмотрим их подробнее:

  • Sensor.TYPE_ACCELEROMETER - трехосевой акселерометр, возвращающий ускорение по трем осям (в метрах в секунду в квадрате). Связанная система координат представлена на рис. 1.
  • Sensor.TYPE_LIGHT - датчик освещенности, возвращающий значение в люксах, обычно используется для динамического изменения яркости экрана. Также для удобства степень освещенности можно получить в виде характеристик - «темно», «облачно», «солнечно» (к этому мы еще вернемся).
  • Sensor.TYPE_AMBIENT_TEMPERATURE - термометр, возвращает температуру окружающей среды в градусах Цельсия.
  • Sensor.TYPE_PROXIMITY - датчик приближенности, который сигнализирует о расстоянии между устройством и пользователем (в сантиметрах). Когда в момент разговора гаснет экран - срабатывает именно этот датчик. На некоторых девайсах возвращается только два значения: «далеко» и «близко».
  • Sensor.TYPE_GYROSCOPE - трехосевой гироскоп, возвращающий скорость вращения устройства по трем осям (радиан в секунду).
  • Sensor.TYPE_MAGNETIC_FIELD - магнитометр, определяющий показания магнитного поля в микротеслах (мкТл) по трем осям (имеется в смартфонах с аппаратным компасом).
  • Sensor.TYPE_PRESSURE - датчик атмосферного давления (по-простому - барометр), который возвращает текущее атмосферное давление в миллибарах (мбар). Если немного вспомнить физику, то, используя значение этого датчика, можно легко вычислить высоту (а ежели вспоминать ну никак не хочется, можно воспользоваться готовым методом getAltitude из объекта SensorManager ).
  • Sensor.TYPE_RELATIVE_HUMIDITY - датчик относительной влажности в процентах. Кстати, совместное применение датчиков относительной влажности и давления позволяет предсказывать погоду - конечно, если выйти на улицу. 😉
  • Sensor.TYPE_STEP_COUNTER (с API 19) - счетчик шагов с момента включения устройства (обнуляется только после перезагрузки).
  • Sensor.TYPE_MOTION_DETECT (с API 24) - детектор движения смартфона. Если устройство находится в движении от пяти до десяти секунд, возвращает единицу (по всей видимости, задел для аппаратной функции «антивор»).
  • Sensor.TYPE_HEART_BEAT (с API 24) - детектор биения сердца.
  • Sensor.TYPE_HEART_RATE (с API 20) - датчик, возвращающий пульс (ударов в минуту). Этот датчик примечателен тем, что требует явного разрешения android.permission.BODY_SENSORS в манифесте.

Перечисленные датчики являются аппаратными и работают независимо друг от друга, часто без всякой фильтрации или нормализации значений. «Для облегчения жизни разработчиков»™ Google ввела несколько так называемых виртуальных сенсоров, которые предоставляют более упрощенные и точные результаты.

Например, датчик Sensor.TYPE_GRAVITY пропускает показания акселерометра через низкочастотный фильтр и возвращает текущие направление и величину силы тяжести по трем осям, а Sensor.TYPE_LINEAR_ACCELERATION использует уже высокочастотный фильтр и получает показатели ускорения по трем осям (без учета силы тяжести).

При разработке приложения, эксплуатирующего показания сенсоров, вовсе не обязательно бегать по улице или прыгать в воду с высокой скалы, так как эмулятор, входящий в поставку Android SDK, умеет передавать приложению любые отладочные значения (рис. 2–3).


Ищем датчики

Чтобы узнать, какие сенсоры есть в смартфоне, следует использовать метод getSensorList объекта SensorManager :

List sensors = sensorManager.getSensorList(Sensor.TYPE_ALL);

Полученный список будет включать все поддерживаемые датчики: как аппаратные, так и виртуальные (рис. 4). Более того, некоторые из них будут иметь различные независимые реализации, отличающиеся количеством потребляемой энергии, задержкой, рабочим диапазоном и точностью.

Для получения списка всех доступных датчиков конкретного типа необходимо указать соответствующую константу. Например, код

List pressureList = sensorManager.getSensorList(Sensor.TYPE_PRESSURE);

вернет все доступные барометрические датчики. Причем аппаратные реализации окажутся в начале списка, а виртуальные - в конце (правило действует для всех типов датчиков).


Чтобы получить реализацию датчика по умолчанию (такие датчики хорошо подходят для стандартных задач и сбалансированы в плане энергопотребления), используется метод getDefaultSensor :

Sensor defPressureSensor = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE);

Если для заданного типа датчика существует аппаратная реализация, по умолчанию будет возвращена именно она. Когда нужного варианта нет, в дело вступает виртуальная версия, ну а если, увы, ничего подходящего в девайсе не окажется, getDefaultSensor вернет null .

О том, как самолично выбирать реализацию датчиков по критериям, написано во врезке, мы же плавно двигаемся дальше.

Снимаем показания

Чтобы получать события, генерируемые датчиком, необходимо зарегистрировать реализацию интерфейса SensorEventListener с помощью того же SensorManager . Звучит сложновато, но на практике реализуется одной строчкой:

Sensor defPressureSensor = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE); sensorManager.registerListener(workingSensorEventListener, defPressureSensor, SensorManager.SENSOR_DELAY_NORMAL);

Здесь мы полученный ранее барометр по умолчанию регистрируем с помощью метода registerListener , передавая в качестве второго параметра сенсор, а в качестве третьего - частоту обновления данных.

В классе SensorManager определены четыре статические константы, определяющие частоту обновления:

  • SensorManager.SENSOR_DELAY_FASTEST - максимальная частота обновления данных;
  • SensorManager.SENSOR_DELAY_GAME - частота, обычно используемая в играх, поддерживающих гироскоп;
  • SensorManager.SENSOR_DELAY_NORMAL - частота обновления по умолчанию;
  • SensorManager.SENSOR_DELAY_UI - частота, подходящая для обновления пользовательского интерфейса.

Нужно сказать, что, указывая частоту обновления, не стоит ожидать, что она будет строго соблюдаться. Как показывает практика, данные от сенсора могут приходить как быстрее, так и медленнее.

Оставшийся нерассмотренным первый параметр представляет собой реализацию интерфейса SensorEventListener , где мы наконец-то получим конкретные цифры:

Private final SensorEventListener workingSensorEventListener = new SensorEventListener() { public void onAccuracyChanged(Sensor sensor, int accuracy) { } public void onSensorChanged(SensorEvent event) { // Получаем атмосферное давление в миллибарах double pressure = event.values; } };

В метод onSensorChanged передается объект SensorEvent , описывающий все события, связанные с датчиком: event.sensor - ссылка на датчик, event.accuracy - точность значения датчика (см. ниже), event.timestamp - время возникновения события в наносекундах и, самое главное, массив значений event.values . Для датчика давления передается только один элемент, тогда как, например, для акселерометра предусмотрено сразу три элемента для каждой из осей. В следующих разделах мы рассмотрим примеры работы с различными датчиками.

Метод onAccuracyChanged позволяет отслеживать изменение точности передаваемых значений, определяемой одной из констант: SensorManager.SENSOR_STATUS_ACCURACY_LOW - низкая точность, SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM - средняя точность, возможна калибровка, SensorManager.SENSOR_STATUS_ACCURACY_HIGH - высокая точность, SensorManager.SENSOR_STATUS_UNRELIABLE - данные недостоверны, нужна калибровка.

После того как отпадает необходимость работы с датчиком, следует отменить регистрацию:

SensorManager.unregisterListener(workingSensorEventListener);

Меряем давление и высоту

Весь код для работы с датчиком давления мы уже написали в предыдущем разделе, получив в переменной pressure вполне себе значение атмосферного давления в миллибарах.

Продолжение доступно только подписчикам

Вариант 1. Оформи подписку на «Хакер», чтобы читать все материалы на сайте

Подписка позволит тебе в течение указанного срока читать ВСЕ платные материалы сайта. Мы принимаем оплату банковскими картами, электронными деньгами и переводами со счетов мобильных операторов.

Множество изделий современной электроники оснащено датчиками, распознающими приближение объекта, к примеру, пальца, к клавиатуре или уха человека к телефону. Эта технология активно используется в разного рода, что позволяет устранить механическую коммутацию устройств, а также продлить срок их службы. И у многих вполне может возникнуть вопрос: датчик приближения в телефоне - что это и как он работает? Далее будет рассмотрено данное приспособление с точки зрения реализации по емкостной технологии.

Распознавание приближения

Распознавание приближение по бесконтактной технологии довольно быстро нашло применение в области портативных устройств, питающихся автономно. Функция активно используется в последних моделях смартфонов и планшетов, в музыкальных плеерах. Ее основным назначением является повышение надежности устройств и экономия электрической энергии.

Дисплей прибора будет находиться в неактивном состоянии до тех пор, пока не будет обнаружено приближение руки пользователя, именно за это и отвечает датчик приближения в телефоне. Что это - станет понятно, если рассмотреть принцип его работы. Когда речь идет об использовании подобной технологии, то тут стоит отметить, что в дежурном режиме потреблением энергии занимается исключительно центральный процессор. А когда определяют приближение ладони или пальца, происходит включение дисплея, на котором отображается текущая информация. Все это позволяет снизить среднюю потребляемую мощность гаджета, при этом увеличив время автономной работы батареи.

Особенности использования функции в разной технике

В бытовой автоматике функция распознавания приближения тоже получила весьма широкое распространение. Бесконтактные датчики используют для включения открывания кранов водопровода, когда в поле их действия находится рука человека; дисплеи холодильников и микроволновых печей будут неактивны, пока к ним не приблизится рука пользователя. Снабжены этой функцией и новые системы автоматизации дома. используемые для управления бытовой техникой и освещением, настраиваются так, чтобы служить цифровыми фоторамками. Но как только к ним приближается кто-то из людей, сразу появляются Достаточно интересной технологией является датчик приближения в телефоне. Что это такое, поможет понять описание метода, с помощью которого происходит распознавание.

Методы распознавания приближения

Когда к датчику приближается, к примеру, палец, происходит изменение общей емкости системы. Именно оно и используется для обнаружения объекта вблизи бесконтактного сенсора.

Обнаружение изменения емкости

То, насколько точно и надежно будет работать бесконтактный датчик, полностью зависит от верности измерений изменившейся емкости системы. С такой целью разработан целый ряд методов, в числе которых самыми известными стали методы переноса зарядов, последовательного приближения, взаимодействия емкости и сигма-дельта-метод. Наиболее часто применяются два из них. Оба используют коммутируемую емкостную схему и внешний измерительный конденсатор.

Метод последовательного приближения

В данном случае осуществляется зарядка коммутируемой емкостной цепи. С этого конденсатора подается напряжение на компаратор через ФНЧ, где происходит сравнение с опорным напряжением. Счетчик, синхронизируемый с генератором, запирается при помощи выходного сигнала компаратора. Обработка именно этого сигнала осуществляется для определенного статуса датчика. Для метода последовательных приближений требуется ничтожно малое число внешних компонентов. В данном случае на работу схемы не оказывают влияния переходные помехи по питающей цепи.

Достоинства и недостатки технологии распознавания

Датчик приближения Android, как и другие, обладает определенными особенностями. К числу преимуществ в данном случае можно отнести следующие:

Довольно большая зона обнаружения;

Высокая степень чувствительности;

Относительная доступность в плане цены, ведь производство датчиков осуществляется из довольно дешевых компонентов - меди, пленки оксидов олова, индия и печатной краски, внешнего проволочного датчика;

Малый размер;

Универсальность конструкции;

Температурная стабильность;

Возможность функционирования с применением различных непроводящих покрытий, к примеру, стекол разной толщины;

Долговечность и высокая надежность.

Имеются у данного метода и определенные недостатки:

Чувствительный элемент должен быть проводящим, тогда он сможет обнаружить приближение; однако руку, к примеру, в резиновой перчатке, он может и не обнаружить;

Метод емкостного распознавания работает так, что когда в диапазоне его работы имеются металлические объекты, диапазон уменьшается.

iPhone 4

Датчик приближения работает так, что позволяет отключать экран смартфона во время разговора для исключения случайных нажатий на клавиши. Существуют специальные приложения, которые дают возможность блокировать экран, просто проводя над ним рукой. Для его включения потребуется нажать аппаратную клавишу.

Калибровка

Довольно часто пользователи сталкиваются с неприятной ситуацией, когда блокировка экрана при разговоре не осуществляется. А бывает и так, что после завершения разговора дисплей не включается, из-за чего телефон не разблокируется. К примеру, датчик приближения Nokia работает некорректно. Для устранения этой проблемы его требуется откалибровать. Обычно большинством производителей применяется специализированное программное обеспечение для этих целей, которое можно скачать на официальном сайте.

В последних версиях Android 4 функция калибровки расположена непосредственно в меню. Для этого требуется войти в настройки, отыскать экран, а потом выбрать пункт Proximity Sensor Calibration. После закрытия датчика рукой необходимо в появившемся окне нажать ОК. Иногда калибровка допускается и без закрытия сенсора.

Многие пользователи довольно часто сталкиваются с проблемой, когда экран смартфона не блокируется во время разговора. Или наоборот, дисплей не разблокируется после завершения телефонного разговора. Всему виной датчик приближения. Вернее, неправильная его настройка. В этой статье мы расскажем, как правильно настроить датчик приближения Андроид.

Что такое датчик приближения Андроид?

Датчик приближения – это небольшой элемент устройства, который активируется при физическом сближении телефона и какого-либо предмета. Благодаря правильной работе датчика приближения при разговоре дисплей смартфона гаснет автоматически, как только пользователь подносит его к уху.

Датчик приближения Андроид очень полезен и даже необходим как минимум по двум причинам, а именно:

  1. При отключённом экране во время разговора вы точно не нажмёте случайно какую-либо кнопку на сенсорном экране, к примеру, ухом или щекой
  2. Датчик приближения Андроид позволяет экономить заряд аккумулятора. При включённом во время разговора экране телефона заряд батареи расходовался бы гораздо быстрее, а это крайне неудобно для людей, привыкших или вынужденных подолгу разговаривать по телефону

Датчик приближения находится в верхней части смартфона. Как правило, он размещён рядом с объективом фронтальной камеры. На некоторых устройствах датчик видно невооружённым взглядом, а на некоторых обнаружить его не так уж и просто. Чтобы определить местонахождение датчика приближения, достаточно во время разговора убрать устройство от уха и поднести палец к месту рядом с фронтальной камерой. Если дисплей погас, это означает, что вы нашли датчик.

Обычно, датчик включён по умолчанию, но если он у вас не активен или вы случайно его отключили, то включить датчик приближения Андроид всегда можно снова.

Для этого нужно:

  • Зайти в меню настроек телефона
  • Перейти в раздел «Вызовы »
  • После этого «Входящие вызовы »
  • Далее найти пункт «Датчик приближения »
  • Включить датчик приближения Андроид, активировав галочку

Как отключить датчик приближения на Андроид?

Иногда датчик работает некорректно, и для своего удобства некоторые потребители желают его отключить. Сделать это можно очень быстро и просто. Чтобы отключить датчик приближения на Андроид нужно выполнить все пункты вышеуказанной инструкции, но не ставить галочку в поле активации либо убрать ее.

Как настроить датчик приближения на Андроид?

В случае, если у вас включен, но не работает датчик приближения, его необходимо откалибровать или, простыми словами, настроить. Самый простой и безопасный вариант для решения этой проблемы – скачать бесплатное приложение «Датчик приближения Сброс ».

Чтобы настроить датчик приближения на Андроид с помощью данной программы вам нужно:

  • Скачать и установить приложение «Датчик приближения Сброс «
  • После запуска программы нажать Calibrate Sensor
  • Закрыть датчик приближения рукой и выбрать Next
  • Убрать руку и снова выбрать Next
  • После этого нажать Calibrate и Confirm
  • Дать программе доступ к рут-правам . В открывшемся окне кликнуть «Разрешить »
  • Подождать пока устройство перезагрузится
  • Проверить исправность работы датчика

Если эти действия не решили проблему, и у вас всё равно не работает датчик приближения, то возможно потребуется сделать калибровку дисплея. О том, как правильно откалибровать дисплей, читайте в нашей статье – . Также наладить работу датчика может перепрошивка устройства.

В некоторых ситуациях, происходит аппаратный сбой, и для корректной работы датчика приближения необходима его замена. В таком случае рекомендуем обратиться в сервисный центр за помощью специалиста.

Как проверить датчик приближения Андроид с помощью инженерного меню?

Чтобы проверить датчик приближения Андроид с помощью , нужно в меню набора номера ввести комбинацию *#*#3646633#*#*. В открывшемся меню выбрать вкладку Hardware Testing, далее выбрать Sensor и нажать Light/Proximity Sensor. После этого - PS Data Collection, и вы попадёте в меню окна тестирования датчика приближения. Нужно нажать Get One Data, и во второй строчке должна появиться цифра «0». Далее положите руку на датчик приближения и ещё раз нажмите Get One Data, должно появиться число «255». Если у вас всё как в вышеуказанной инструкции, то датчик приближения работает корректно.



Статьи и Лайфхаки

Итак, для чего нужен датчик расстояния на телефоне? Если приблизить телефон к уху, что происходит с экраном? Не видели? Если заглянуть, то видно что дисплей гаснет, но не только это, он еще и отключает сенсор экрана. Вот и первый ответ на поставленный вопрос.

Функции датчика расстояния в телефоне

  1. Так, во время разговора экран гаснет не потому, что телефон видит ухо. В данном случае датчик расстояния различает приближение объекта (не важно ухо это или любой другой объект) и сигнализирует об этом системе. Система дает команду отключить дисплей.

    Для чего это нужно? Со включенным дисплеем разговаривать по телефону не удобно. Любое неаккуратное движение, и случайное прикосновение уха к экрану сослужит нехорошую службу. Кроме того, экономится заряд батареи.

  2. После окончания разговора, когда пользователь убирает телефон от уха, система получает обратный сигнал и включает дисплей. Так что, как правило, пользователь даже не успевает заметить, что экран выключался, только если специально проследит.
  3. В современных устройствах этот сенсор выполняет множество других задач. На планшетах дает сигнал системе включать и выключать экран при приближении руки, а во время чтения помогает листать электронную книгу взмахом руки.

Часто встречающиеся трудности использования датчика расстояния

  • Вероятнее всего, сенсор «не видит» приближающиеся объекты из-за грязи. В таком случае его можно просто почистить щеточкой и он будет работать, как новенький. Эта процедура намного проще, чем кажется, ее можно выполнить и самому.
  • Если сенсор чист и все равно не работает или работает некорректно. Можно попробовать его откалибровать.

Калибровка датчика приближения

  • Положить устройство на стол.
  • Открыть настройки.
  • Выбрать «ALS PS calibration».
  • Поднести к датчику любой непрозрачный предмет, до нужного расстояния.
  • Выбрать «Calibrate».
В разных устройствах меню может выглядеть по разному и названия функций также могут отличаться. Может быть, что в меню телефона вообще не найдется подобной функции. Тогда нужно скачать необходимое приложение с официального сайта.

Если и после калибровки сенсор не работает некорректно, то самое лучшее решение – обращение в сервисный центр.

Современный смартфон – это сложное высокотехнологичное вычислительное устройство, которое мощнее тысяч бортовых компьютеров, полвека назад запускавших «Аполлоны» на Луну. Датчиков на борту флагманских мобильников тоже установлено едва не больше, чем на борту этого самого «Аполлона». Каждый из них незаметно, но добросовестно выполняет свою работу. Чем же занимаются все эти датчики смартфона, и как они устроены – подробнее читайте далее.

Сенсор освещения в смартфоне расположен на передней панели, обычно возле разговорного динамика (бывают исключения). Конструкционно он представляет полупроводниковый сенсор, чувствительный к потоку фотонов. В зависимости от его интенсивности, сенсор осуществляет управление подсветкой дисплея, с целью более эффективно расходовать заряд аккумулятора. Также он может выполнять вспомогательную функцию для других задач, работая с датчиком приближения.

Датчик приближения

Это – оптический или ультразвуковой сенсор, определяющий, нет ли предметов перед экраном. Он посылает очень слабый световой или звуковой импульс, а если тот отразился – регистрирует отраженный сигнал. За счет этого осуществляется автоматическая блокировка экрана в режиме разговора или при перевороте смартфона дисплеем вниз. Традиционно сенсор приближения откалиброван таким образом, что регистрирует лишь 2 состояния: «посторонний предмет ближе N (обычно 5) сантиметров» и «посторонний предмет дальше N см».

Акселерометр

Этот сенсор смартфона расположен на плате и представляет собой миниатюрный электромеханический прибор, регистрирующий малейшие движения. В обязанности этого датчика входит переключение ориентации экрана смартфона при наклоне, управление в играх, регистрация особых жестов управления (вроде потряхивания или постукивания по корпусу), а также замер шагов (путем подсчета ритмических колебаний в процессе ходьбы).

Обычный двухосевой акселерометр в смартфоне

Бывают двухосевые и трехосевые акселерометры. Особенностью акселерометра является то, что в состоянии покоя - одна из осей всегда будет показывать значение в районе 9-10 м/с 2 (в трехосевом трехмерном акселерометре). Это связанно с тем, что сила тяжести Земли составляет в среднем 9,8 м/с 2 .

Гироскоп

Гироскоп отвечает за определение движения и ориентации смартфона в пространстве. Он тоже конструкционно представляет MEMS (микроэлектромеханическую схему), расположенную на системной плате. Сферы его применени пересекаются с таковыми у акселерометра. Основные отличия состоят в том, что гироскоп имеет заметно большую точность и измеряет движение не в м/с 2 , а радианах или градусах на секунду. За счет этого его можно использовать для отслеживания поворотов головы в VR-гарнитуре, а также более точно реализовать жестовое управление.

Гироскоп MEMS под микроскопом

Магнитометр и датчик Холла

Магнитометр измеряет величину магнитного поля окружающего мира. Он также проводит измерения в трехмерном пространстве (по трем осям декартовых координат - X, Y и Z). Основная функция магнитометра – более точное определение местоположения в ходе навигации. В этом режиме использования он выполняет функцию цифрового компаса. Благодаря тому, что одна из осей, которая расположена в плоскости с Северным полюсом Земли, регистрирует постоянно повышенный фон. Магнитометр помогает более точно определять, в какую сторону относительно севера движется смартфон.

Магнитометр смартфона

Часто магнитометр называют датчиком Холла, однако это не совсем тождественные понятия. Подробнее о датчике Холла мы писали в другой статье . Отличия состоят в том, что первый является более универсальным и чувствительным. Магнитометр способен производить замеры магнитного излучения, в то время как только регистрирует его наличие/отсутствие и уменьшение/усиление. В современных смартфонах отдельный датчик Холла обычно не ставят, так как универсальный магнитометр полностью покрывает его функциональность.

Одной из альтернативных функций магнитометра является поиск проводки в стенах. Проводник под напряжением генерирует слабое электромагнитное излучение, а чувствительность сенсора составляет единицы микротесла. Если водить смартфоном по стене, то в месте заложения кабеля магнитный фон будет повышенным.

Датчик гравитации

Измеряет силу притяжения нашей планеты в трехмерном пространстве. В состоянии покоя (когда смартфон лежит на столе), его показания должны совпадать с акселерометром: по одной из осей сила гравитации будет близка к 9,8 м/с 2 . Самостоятельно этот сенсор обычно не используется, но помогает работе других. В режиме навигации он определяет, в какой стороне земная поверхность, чтобы быстрее определить правильное положение смартфона. При использовании в VR за счет сенсора гравитации осуществляется правильное позиционирование картинки.

Датчик линейного ускорения в смартфоне

Принцип его работы практически идентичен акселерометру, единственное отличие кроется в инертности. То есть, показания этого сенсора не зависят ни от каких глобальных внешних факторов (вроде гравитации). Единственное, что он регистрирует – это скорость перемещений смартфона в пространстве относительно его прежнего положения.

Определять положение аппарата в пространстве датчик линейного ускорения не способен (нет привязки к внешним ориентирам), но это и не нужно (с данной задачей отлично справляются сенсор гравитации и акселерометр). Отсутствие привязки к внешним ориентирам позволяет поворачивать объекты на дисплее безотносительно этих ориентиров, например, в играх. Также данный сенсор, в совокупности с другими, повышает общую точность определения движений.

Датчик вращения

Он определяет направление и частоту вращения смартфона относительно одной из осей трехмерного пространства. Как и датчик ускорения, является независимым и не привязан к внешним ориентирам. Часто выполняется в составе одного модуля с сенсором линейного ускорения. Отдельно, как правило, не задействуется, но позволяет корректировать работу других сенсоров для повышения точности. Также помогает при управлении жестами, например, покрутив смартфон в кисти руки активируется камера.

Гироскоп MEMS в разрезе

Температурные датчики

Современный смартфон обильно напичкан цифровыми термометрами. Конструкционно они представляют собой термопару: резистор с двумя выводами, сопротивление между которыми меняется в зависимости от температуры. Так как он относительно примитивен, то может быть выполнен даже внутри полупроводникового чипа.

В каждом смартфоне обязательно имеется датчик температуры батареи. При ее перегреве он отключает зарядку или снижает силу тока на выходе, чтобы предотвратить закипание электролита, которое влечет возгорание или взрыв. Также распространены термометры внутри SoC (в количестве от пары штук – до десятка и более). Они измеряют температуры процессорных ядер, графического ускорителя, различных контроллеров. Иногда встречаются и датчики окружающей температуры, но они распространены слабо. Причина тому – низкая точность, так как тепло от внутренностей аппарата и рук пользователя искажает показания.

Датчик давления (барометр) в смартфоне

Барометр в смартфоне измеряет атмосферное давление (в мм ртутного столба, бар или паскалях). Он позволяет корректнее определять местоположение и высоту над уровнем моря, так как при подъеме давление снижается. Также он может использоваться в качестве альтиметра, замеряя высоту над уровнем моря, но точность оставляет желать лучшего, так как атмосферное давление меняется вместе с погодой. Еще меньше востребована функция корректировки прогноза погоды в метеорологических программах и виджетах.

Гигрометр

Гигрометр измеряет влажность воздуха. Его основное предназначение очевидно, но популярностью данный сенсор не пользуется. В теории с его помощью можно корректировать данные прогноза погоды. Зная показания, можно также управлять микроклиматом в помещении, включив увлажнитель или осушитель воздуха. Единственный из известных смартфонов с гигрометром – уже старенький Samsung Galaxy S4.

Пульсометр или датчик сердечного ритма в смартфонах

Пульсометр способен измерять частоту и ритм сердечных сокращений. В процессе занятий спортом он дает возможность наблюдать за работой сердца и корректировать нагрузки для повышения эффективности тренировок. Недостатком пульсометра является потребность в плотном контакте смартфона с частью тела, в которой кровеносные сосуды находятся близко к поверхности (например, пальцами), чтобы уловить малейшие пульсации. Из-за этого популярности в смартфонах он не приобрел, а вот в смарт-часах и фитнес трекерах встречается повсеместно.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: