В реляционной бд информация хранится. Реляционная БД (РБД): понятие, основные элементы БД и краткая хар-стика работы с РБД

РЕЛЯЦИОННАЯ БАЗА ДАННЫХ И ЕЕ ОСОБЕННОСТИ. ВИДЫ СВЯЗЕЙ МЕЖДУ РЕЛЯЦИОННЫМИ ТАБЛИЦАМИ

Реляционная база данных - это совокупность взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного типа. Строка таблицы содержит данные об одном объекте (например, товаре, клиенте), а столбцы таблицы описывают различные характеристики этих объектов - атрибутов (например, наименование, код товара, сведения о клиенте). Записи, т. е. строки таблицы, имеют одинаковую структуру - они состоят из полей, хранящих атрибуты объекта. Каждое поле, т. е. столбец, описывает только одну характеристику объекта и имеет строго определенный тип данных. Все записи имеют одни и те же поля, только в них отображаются различные информационные свойства объекта.

В реляционной базе данных каждая таблица должна иметь первичный ключ - поле или комбинацию полей, которые единственным образом идентифицируют каждую строку таблицы. Если ключ состоит из нескольких полей, он называется составным. Ключ должен быть уникальным и однозначно определять запись. По значению ключа можно отыскать единственную запись. Ключи служат также для упорядочивания информации в БД.

Таблицы реляционной БД должны отвечать требованиям нормализации отношений. Нормализация отношений - это формальный аппарат ограничений на формирование таблиц, который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение базы данных.

Пусть создана таблица Студент, содержащая следу-рэщие поля: № группы, ФИО, № зачетки, дата рождения, шазвание специальности, название факультета. Такая организация хранения информации будет иметь ряд недостатков:

  • дублирование информации (наименование специальности и факультета повторяются для каждого студента), следовательно, увеличится объем БД;
  • процедура обновления информации в таблице затрудняется из-за необходимости редактирования каждой записи таблицы.

Нормализация таблиц предназначена для устранения этих недостатков. Имеется три нормальные формы отношений .

Первая нормальная форма. Реляционная таблица приведена к первой нормальной форме тогда и только тогда, когда ни одна из ее строк не содержит в любом своем поле более одного значения и ни одно из ее ключевых полей не пусто. Так, если из таблицы Студент требуется получать сведения по имени студента, то поле ФИО следует разбить на части Фамилия, Имя, Отчество.

Вторая нормальная форма . Реляционная таблица задана во второй нормальной форме, если она удовлетворяет требованиям первой нормальной формы и все ее поля, не входящие в первичный ключ, связаны полной функциональной зависимостью с первичным ключом. Чтобы привести таблицу ко второй нормальной форме, необходимо определить функциональную зависимость полей. Функциональная зависимость полей - это зависимость, при крторой в экземпляре информационного объекта определенному значению ключевого реквизита соответствует только одно значение описательного реквизита.

Третья нормальная форма. Таблица находится в третьей нормальной форме, если она удовлетворяет требованиям второй нормальной формы, ни одно из ее неключевых полей не зависит функционально от любого другого неключевого поля. Например, в таблице Студент (№ группы, ФИО, № зачетной книжки, Дата рождения, Староста) три поля - № зачетной книжки, № группы, Староста находятся в транзитивной зависимости. № группы зависит от № зачетной книжки, а Староста зависит от № группы. Для устранения транзитивной зависимости необходимо часть полей таблицы Студент перенести в другую таблицу Группа. Таблицы примут следующий вид: Студент (№ группы, ФИО, № зачетной книжки, Дата рождения), Группа (№ группы, Староста).

Над реляционными таблицами возможны следующие операции:

  • Объединение таблиц с одинаковой структурой. Результат- общая таблица: сначала первая, затем вторая (конкатенация).
  • Пересечение таблиц с одинаковой структурой. Результат - выбираются те записи, которые находятся в обеих таблицах.
  • Вычитание таблиц с одинаковой структурой. Результат - выбираются те записи, которых нет в вычитаемом.
  • Выборка (горизонтальное подмножество). Результат - выбираются записи, отвечающие определенным условиям.
  • Проекция (вертикальное подмножество). Результат - отношение, содержащее часть полей из исходных таблиц.
  • Декартово произведение двух таблиц Записи результирующей таблицы получаются путем объединения каждой записи первой таблицы с каждой записью другой таблицы.

Реляционные таблицы могут быть связаны друг с другом, следовательно, данные могут извлекаться одновременно из нескольких таблиц. Таблицы связываются между собой для того, чтобы в конечном счете уменьшить объем БД. Связь каждой пары таблиц обеспечивается при наличии в них одинаковых столбцов.

Существуют следующие типы информационных связей:

  • один-к-одному;
  • один-ко-многим;
  • многие-ко-многим.

Связь один-к-одному предполагает, что одному атрибуту первой таблицы соответствует только один атрибут второй таблицы и наоборот.

Связь один-ко-многим предполагает, что одному атрибуту первой таблицы соответствует несколько атрибутов второй таблицы.

Связь многие-ко-многим предполагает, что одному атрибуту первой таблицы соответствует несколько атрибутов второй таблицы и наоборот.

Как правило, любое веб приложение можно разделить на 2 основные части: фронт-энд, где отображается вся информация сайта, и бэк-энд, где данная информация формируется и размещается. В этой статье мы поговорим о том, что такое реляционные базы данных, и как их проектировать.

База данных хранит записи в специально организованном виде, чтобы информацию можно было легко найти и извлечь. Любая БД состоит из одной или нескольких таблиц. Электронная таблица состоит из строк и столбцов. Все строки имеют одинаковые столбцы, а каждый столбец содержит данные. В общем, для лучшего понимания, определимся, что таблицы в БД очень похожи на те, что вы видели в Excel-е.

Табличные данные могут быть вставлены, восстановлены, обновлены и удалены. Для пакета этих операций была создана специальная аббревиатура CRUD (Create-Read-Update-Delete).

Реляционные базы данных - это базы, где вся информация хранится в таблицах, связанных друг с другом специальными отношениями. Эти отношения позволяют нам извлекать и объединять данные из одной или нескольких таблиц с помощью одного запроса.

Но всё это всего лишь слова. Для того чтобы действительно понять, что такое реляционные базы данных, вам нужно больше практиковаться. Давайте же начнём и посмотрим, с какими данными нам предстоит работать.

Шаг 1. Подготовка данных

Для того чтобы нам было с чем работать, я набрал в твиттере запрос “#databases” и сформировал таблицу из 10 записей:

Таблица 1

full_name username text created_at following_username
Boris Hadjur _DreamLead Scootmedia, MetiersInternet
Gunnar Svalander GunnarSvalander klout, zillow
GE Software GEsoftware DayJobDoc, byosko
Adrian Burch adrianburch CindyCrawford, Arjantim
Andy Ryder AndyRyder5 MichaelDell, Yahoo
Andy Ryder AndyRyder5 MichaelDell, Yahoo
Brett Englebert Brett_Englebert
Brett Englebert Brett_Englebert RealSkipBayless, stephenasmith
Nimbus Data Systems NimbusData dellock6, rohitkilam
SSWUG.ORG SSWUGorg drsql, steam_games

В первую очередь, давайте разберёмся с колонками:

Это реальные данные. Если хотите, вы можете их найти и обновить.

Хорошо. Теперь все наши данные находятся в одном месте. Даёт ли это нам возможность легко осуществить поиск по ним? Не совсем. Данная таблица далека от идеала. Во-первых, в некоторых столбцах у нас есть повторяющиеся записи: к примеру, в х “username” и “following_username”. Также колонка “following_username” нарушает правила реляционных моделей, т.к. её в ячейках присутствует более 1 значения (записи разделены запятыми).

К тому же у нас попадаются дубликаты и в строках.

Повторяющиеся данные действительно являются проблемой, т.к. они затрудняют процесс CRUD. К примеру, при поиске по данной таблице на обработку дубликатов будет уходить дополнительное время. К тому же, если пользователь обновит твитт, то нам нужно будет перезаписать все дубликаты.

Решение данной проблемы заключается в разделении Таблицы 1 на несколько таблиц. Давайте примемся за решение первой проблемы, а именно - устранение дубликатов в столбцах.

Шаг 2. Избавляемся от дубликатов в столбцах

Как было оговорено выше, столбцы “username” и “following_username” содержат дубликаты данных. Они возникли в результате того, что я хотел отобразить отношения между твиттами и пользователями. Давайте улучшим нашу структуру БД, разделив существующую таблицу на две: в одной будем хранить информацию, а в другой - отношения между записями.

Поскольку @Brett_Englebert подписан на @RealSkipBayless, то в таблице “following” отобразим это следующим образом: имя @Brett_Englebert поместим в колонку “from_user”, а @RealSkipBayless в “to_user.” Давайте посмотрим, как будет выглядеть таблица “following” после разделения Таблицы 1 :

Таблица 2. following

from_user to_user
_DreamLead Scootmedia
_DreamLead MetiersInternet
GunnarSvalander klout
GunnarSvalander zillow
GEsoftware DayJobDoc
GEsoftware byosko
adrianburch CindyCrawford
adrianburch Arjantim
AndyRyder MichaelDell
AndyRyder Yahoo
Brett_Englebert RealSkipBayless
Brett_Englebert stephenasmith
NimbusData dellock6
NimbusData rohitkilam
SSWUGorg drsql
SSWUGorg steam_games

Таблица 3. users

full_name username text created_at
Boris Hadjur _DreamLead What do you think about #emailing #campaigns #traffic in #USA? Is it a good market nowadays? do you have #databases? Tue, 12 Feb 2013 08:43:09 +0000
Gunnar Svalander GunnarSvalander Bill Gates Talks Databases, Free Software on Reddit http://t.co/ShX4hZlA #billgates #databases Tue, 12 Feb 2013 07:31:06 +0000
GE Software GEsoftware RT @KirkDBorne: Readings in #Databases: excellent reading list, many categories: http://t.co/S6RBUNxq via @rxin Fascinating. Tue, 12 Feb 2013 07:30:24 +0000
Adrian Burch adrianburch RT @tisakovich: @NimbusData at the @Barclays Big Data conference in San Francisco today, talking #virtualization, #databases, and #flash memory. Tue, 12 Feb 2013 06:58:22 +0000
Andy Ryder AndyRyder5 http://t.co/D3KOJIvF article about Madden 2013 using AI to prodict the super bowl #databases #bus311 Tue, 12 Feb 2013 05:29:41 +0000
Andy Ryder AndyRyder5 http://t.co/rBhBXjma an article about privacy settings and facebook #databases #bus311 Tue, 12 Feb 2013 05:24:17 +0000
Brett Englebert Brett_Englebert #BUS311 University of Minnesota’s NCFPD is creating #databases to prevent “food fraud.” http://t.co/0LsAbKqJ Tue, 12 Feb 2013 01:49:19 +0000
Brett Englebert Brett_Englebert #BUS311 companies might be protecting their production #databases, but what about their backup files? http://t.co/okJjV3Bm Tue, 12 Feb 2013 01:31:52 +0000
Nimbus Data Systems NimbusData @NimbusData CEO @tisakovich @BarclaysOnline Big Data conference in San Francisco today, talking #virtualization, #databases,& #flash memory Mon, 11 Feb 2013 23:15:05 +0000
SSWUG.ORG SSWUGorg Don’t forget to sign up for our FREE expo this Friday: #Databases, #BI, and #Sharepoint: What You Need to Know! http://t.co/Ijrqrz29 Mon, 11 Feb 2013 22:15:37 +0000

Уже лучше. Теперь в таблице “users” (Таблица 3) у нас хранится только информация о твиттах, а в таблице following (Таблица 2) - зависимость пользователей.

Основатель теории реляционных баз данных, Эдгар Кодд, назвал бы этот процесс (удаления повторений из столбцов таблиц) приведением БД к первой нормальной форме.

Шаг 3. Удаление повторений из строк

Теперь мы займёмся устранением других проблем, а именно, избавимся от дубликатов в строках таблицы “users”. Поскольку пользователи @AndyRyder5 и @Brett_Englebert разместили по несколько твиттов, то их имена в таблице “users” (Таблица 3 ) дублируются в колонке full_name. Данная проблема также решается разделением таблицы “users”.

Поскольку текст твитта и время его создания являются уникальными данными, то их мы поместим в одну и ту же таблицу. Также нам нужно указать связь между твитами и пользователями. Для этого я создал специальный столбец username.

Таблица 4. tweets

username text created_at
_DreamLead What do you think about #emailing #campaigns #traffic in #USA? Is it a good market nowadays? do you have #databases? Tue, 12 Feb 2013 08:43:09 +0000
GunnarSvalander Bill Gates Talks Databases, Free Software on Reddit http://t.co/ShX4hZlA #billgates #databases Tue, 12 Feb 2013 07:31:06 +0000
GEsoftware RT @KirkDBorne: Readings in #Databases: excellent reading list, many categories: http://t.co/S6RBUNxq via @rxin Fascinating. Tue, 12 Feb 2013 07:30:24 +0000
adrianburch RT @tisakovich: @NimbusData at the @Barclays Big Data conference in San Francisco today, talking #virtualization, #databases, and #flash memory. Tue, 12 Feb 2013 06:58:22 +0000
AndyRyder5 http://t.co/D3KOJIvF article about Madden 2013 using AI to prodict the super bowl #databases #bus311 Tue, 12 Feb 2013 05:29:41 +0000
AndyRyder5 http://t.co/rBhBXjma an article about privacy settings and facebook #databases #bus311 Tue, 12 Feb 2013 05:24:17 +0000
Brett_Englebert #BUS311 University of Minnesota’s NCFPD is creating #databases to prevent “food fraud.” http://t.co/0LsAbKqJ Tue, 12 Feb 2013 01:49:19 +0000
Brett_Englebert #BUS311 companies might be protecting their production #databases, but what about their backup files? http://t.co/okJjV3Bm Tue, 12 Feb 2013 01:31:52 +0000
NimbusData @NimbusData CEO @tisakovich @BarclaysOnline Big Data conference in San Francisco today, talking #virtualization, #databases,& #flash memory Mon, 11 Feb 2013 23:15:05 +0000
SSWUGorg Don’t forget to sign up for our FREE expo this Friday: #Databases, #BI, and #Sharepoint: What You Need to Know! http://t.co/Ijrqrz29 Mon, 11 Feb 2013 22:15:37 +0000

Таблица 5. users

full_name username
Boris Hadjur _DreamLead
Gunnar Svalander GunnarSvalander
GE Software GEsoftware
Adrian Burch adrianburch
Andy Ryder AndyRyder5
Brett Englebert Brett_Englebert
Nimbus Data Systems NimbusData
SSWUG.ORG SSWUGorg

После разделения в таблице users (Таблица 5 ) у нас присутствуют уникальные (не повторяющиеся) строки.

Данный процесс удаления дубликатов из строк называется приведением ко второй нормальной форме.

Шаг 4. Объединяем таблицы на основе ключей

Итак, в результате наших действий, Таблица 1 была разбита на 3 части: following (Таблица 2), tweets (Таблица 4), users (Таблица 5). Все дубликаты устранены. Для того чтобы в дальнейшем мы могли с лёгкостью извлекать данные из этой структуры, независимые друг от друга таблицы мы должны связать специальными отношениями, которые будут давать нам информацию о том, какому пользователю принадлежит какой твит, и кто на кого подписан.

Для создания связей между записями нам необходимо ввести уникальный идентификатор, который называется первичный ключ.

Вообще говоря, в Таблице 4 и 5 мы уже это сделали. В таблице “users” первичным ключом является колонка “username”, потому что логин пользователя должен быть уникальным значением и не может повторяться. В таблице “tweets” мы используем данный ключ для обозначения связи между пользователем и твитом. Колонка “username” в таблице “tweets” называется внешним ключом.

Если вы когда-то работали с базами данных, то у вас может возникнуть вопрос: можем ли мы использовать колонку “username” в качестве первичного ключа?

С одной стороны, это может упростить процесс поиска, ведь мы не используем никаких числовых ID. С другой стороны, что если пользователь захочет поменять свой логин? Это может привести к огромному количеству проблем. Для того чтобы не попасть в подобную ситуацию, лучше воспользоваться числовыми ID. Всё зависит от вашей системы. Если вы предоставляете вашим пользователям возможность менять логины, то лучше в качестве первичного ключа использовать автоинкрементированное числовое поле ID. В противном случае, колонка “username” вполне подойдёт для этой роли. Я оставлю всё как есть.

Давайте посмотрим на таблицу tweets (Таблица 4). Первичный ключ должен быть уникальным для каждой строки. Какую колонку в данной таблице мы можем выбрать для этой роли? Колонка “created_at” не подойдёт, т.к. в принципе 2 разных пользователя могут в одно и то же время опубликовать запись. С колонкой “text” та же история: два разных пользователя могут создать твит с текстом “Hello World”. Колонка “username” в данной таблице является внешним ключом для обозначения связи между пользователем и твитом. Итак, поскольку все возможные варианты нам не подходят, то лучшим решением будет добавление колонки id, которая будет первичным ключом для данной таблицы.

Таблица 6. tweets с колонкой id

ID username text created_at
1 _DreamLead What do you think about #emailing #campaigns #traffic in #USA? Is it a good market nowadays? do you have #databases? Tue, 12 Feb 2013 08:43:09 +0000
2 GunnarSvalander Bill Gates Talks Databases, Free Software on Reddit http://t.co/ShX4hZlA #billgates #databases Tue, 12 Feb 2013 07:31:06 +0000
3 GEsoftware RT @KirkDBorne: Readings in #Databases: excellent reading list, many categories: http://t.co/S6RBUNxq via @rxin Fascinating. Tue, 12 Feb 2013 07:30:24 +0000
4 adrianburch RT @tisakovich: @NimbusData at the @Barclays Big Data conference in San Francisco today, talking #virtualization, #databases, and #flash memory. Tue, 12 Feb 2013 06:58:22 +0000
5 AndyRyder5 http://t.co/D3KOJIvF article about Madden 2013 using AI to prodict the super bowl #databases #bus311 Tue, 12 Feb 2013 05:29:41 +0000
6 AndyRyder5 http://t.co/rBhBXjma an article about privacy settings and facebook #databases #bus311 Tue, 12 Feb 2013 05:24:17 +0000
7 Brett_Englebert #BUS311 University of Minnesota’s NCFPD is creating #databases to prevent “food fraud.” http://t.co/0LsAbKqJ Tue, 12 Feb 2013 01:49:19 +0000
8 Brett_Englebert #BUS311 companies might be protecting their production #databases, but what about their backup files? http://t.co/okJjV3Bm Tue, 12 Feb 2013 01:31:52 +0000
9 NimbusData @NimbusData CEO @tisakovich @BarclaysOnline Big Data conference in San Francisco today, talking #virtualization, #databases,& #flash memory Mon, 11 Feb 2013 23:15:05 +0000
10 SSWUGorg Don’t forget to sign up for our FREE expo this Friday: #Databases, #BI, and #Sharepoint: What You Need to Know! http://t.co/Ijrqrz29 Mon, 11 Feb 2013 22:15:37 +0000

С таблицей following можем сделать то же самое, т.к. ни одна существующая колонка не подойдёт на роль первичного ключа. Колонки “from_user” и “to_user” являются внешними ключами и обозначают связь между подписками пользователей.

Итак, к этому моменту мы уже много чего сделали. Избавились от дублирующей информации в колонках и строках и выбрали для наших таблиц подходящие колонки на роль первичных и внешних ключей для обозначения зависимостей между данными. Данный процесс называется нормализацией и предназначен для приведения ваших таблиц под реляционную модель. Благодаря нормализации мы можем более простым образом реализовывать операции CRUD.

Ниже вы можете увидеть схему наших таблиц и связей между ними:

Системы Управления Базами Данных

Теперь, когда у нас есть реляционная БД, каким образом мы можем её имплементировать? Для этого мы можем воспользоваться системами управления базами данных (СУБД). Существует целый набор подобных программ, как платных, так и бесплатных. Среди платных можно выделить Oracle Database , IBM DB2 и Microsoft SQL Server . Бесплатные: MySQL , SQLite и PostgreSQL .

Чаще всего различные компании используют MySQL. Twitter в этом смысле - не исключение.

SQLite чаще используется при разработке приложений для iOS и Android, где хранится различного рода конфиденциальная информация. Браузер Google Chrome использует SQLite для хранения истории просмотров, кукисов, изображений...

PostgreSQL используется реже. Для неё существует полезное расширение PostGIS, которое делает данную СУБД удобной для хранения геолокационных данных. К примеру сервис OpenStreetMap исользует PostgreSQL.

Язык структурированных запросов (SQL)

После того, как вы выбрали подходящую для вас СУБД и установили её, следующим шагом было бы создание таблиц и управление данными. Для этого мы можем воспользоваться специальным языком SQL.

Создание БД development:

CREATE DATABASE development;

Создание таблицы Users:

CREATE TABLE users (full_name VARCHAR(100), username VARCHAR(100));

При создании полей нам необходимо указать тип хранимой информации и её размер. Колонки “full_name” и “username” будут типа VARCHAR, который предназначен для хранения строк символов. Размер 100 символов. Список всех типов вы можете найти .

Добавление записи:

INSERT INTO users (full_name, username) VALUES ("Boris Hadjur", "_DreamLead");

Извлечение всех записей пользователя _DreamLead:

Обновление записи:

Удаление записи:

SQL очень похож на человеческий язык (английский). В каждом СУБД SQL обладает рядом собственных особенностей и различий, но в целом, все разновидности SQL похожи друг на друга.

Итог

В этом уроке мы разобрали процесс создания реляционной БД, взяли набор данных и распределили их по таблицам, согласно реляционной модели. Также мы быстро пробежались по существующим СУБД и языку SQL.

Реляционная база данных - основные понятия

Часто, говоря о базе данных, имеют в виду просто некоторое автоматизированное хранилище данных. Такое представление не вполне корректно. Почему это так, будет показано ниже.

Действительно, в узком смысле слова, база данных - это некоторый набор данных, необходимых для работы (актуальные данные). Однако данные - это абстракция; никто никогда не видел "просто данные"; они не возникают и не существуют сами по себе. Данные суть отражение объектов реального мира. Пусть, например, требуется хранить сведения о деталях, поступивших на склад. Как объект реального мира - деталь - будет отображена в базе данных? Для того, чтобы ответить на этот вопрос, необходимо знать, какие признаки или стороны детали будут актуальны, необходимы для работы. Среди них могут быть название детали, ее вес, размеры, цвет, дата изготовления, материал, из которого она сделана и т.д. В традиционной терминологии объекты реального мира, сведения о которых хранятся в базе данных, называются сущностями - entities (пусть это слово не пугает читателя - это общепринятый термин), а их актуальные признаки - атрибутами (attributes).

Каждый признак конкретного объекта есть значение атрибута. Так, деталь "двигатель" имеет значение атрибута "вес", равное "50", что отражает тот факт, что данный двигатель весит 50 килограммов.

Было бы ошибкой считать, что в базе данных отражаются только физические объекты. Она способна вобрать в себя сведения об абстракциях, процессах, явлениях - то есть обо всем, с чем сталкивается человек в своей деятельности. Так, например, в базе данных можно хранить информацию о заказах на поставку деталей на склад (хотя он - не физический объект, а процесс). Атрибутами сущности "заказ" будут название поставляемой детали, количество деталей, название поставщика, срок поставки и т.д.

Объекты реального мира связаны друг с другом множеством сложных зависимостей, которые необходимо учитывать в информационной деятельности. Например, детали на склад поставляются их производителями. Следовательно, в число атрибутов детали необходимо включить атрибут "название фирмы-производителя". Однако этого недостаточно, так как могут понадобиться дополнительные сведения о производителе конкретной детали - его адрес, номер телефона и т.д. Значит, база данных должна содержать не только информацию о деталях и заказах на поставку, но и сведения об их производителях. Более того, база данных должна отражать связи между деталями и производителями (каждая деталь выпускается конкретным производителем) и между заказами и деталями (каждый заказ оформляется на конкретную деталь). Отметим, что в базе данных нужно хранить только актуальные, значимые связи.

Таким образом, в широком смысле слова база данных - это совокупность описаний объектов реального мира и связей между ними, актуальных для конкретной прикладной области. В дальнейшем мы будем исходить из этого определения, уточняя его по ходу изложения.

Реляционная модель данных

Итак, мы получили представление о том, что хранится в базе данных. Теперь необходимо понять, как сущности, атрибуты и связи отображаются на структуры данных. Это определяется моделью данных.

Традиционно все СУБД классифицируются в зависимости от модели данных, которая лежит в их основе. Принято выделять иерархическую, сетевую и реляционную модели данных. Иногда к ним добавляют модель данных на основе инвертированных списков. Соответственно говорят об иерархических, сетевых, реляционных СУБД или о СУБД на базе инвертированных списков.

По распространенности и популярности реляционные СУБД сегодня - вне конкуренции. Они стали фактическим промышленным стандартом, и поэтому отечественному пользователю придется столкнуться в своей практике именно с реляционной СУБД. Кратко рассмотрим реляционную модель данных, не вникая в ее детали.

Она была разработана Коддом еще в 1969-70 годах на основе математической теории отношений и опирается на систему понятий, важнейшими из которых являются таблица, отношение, строка, столбец, первичный ключ, внешний ключ.

Реляционной считается такая база данных, в которой все данные представлены для пользователя в виде прямоугольных таблиц значений данных, и все операции над базой данных сводятся к манипуляциям с таблицами. Таблица состоит из строк и столбцов и имеет имя, уникальное внутри базы данных. Таблица отражает тип объекта реального мира (сущность), а каждая ее строка - конкретный объект. Так, таблица Деталь содержит сведения о всех деталях, хранящихся на складе, а ее строки являются наборами значений атрибутов конкретных деталей. Каждый столбец таблицы - это совокупность значений конкретного атрибута объекта. Так, столбец Материал представляет собой множество значений "Сталь", "Олово", "Цинк", "Никель" и т.д. В столбце Количество содержатся целые неотрицательные числа. Значения в столбце Вес - вещественные числа, равные весу детали в килограммах.

Эти значения не появляются из воздуха. Они выбираются из множества всех возможных значений атрибута объекта, которое называется доменом (domain). Так, значения в столбце материал выбираются из множества имен всех возможных материалов - пластмасс, древесины, металлов и т.д. Следовательно, в столбце Материал принципиально невозможно появление значения, которого нет в соответствующем домене, например, "вода" или "песок".

Каждый столбец имеет имя, которое обычно записывается в верхней части таблицы (Рис. 1 ). Оно должно быть уникальным в таблице, однако различные таблицы могут иметь столбцы с одинаковыми именами. Любая таблица должна иметь по крайней мере один столбец; столбцы расположены в таблице в соответствии с порядком следования их имен при ее создании. В отличие от столбцов, строки не имеют имен; порядок их следования в таблице не определен, а количество логически не ограничено.

Рисунок 1. Основные понятия базы данных.

Так как строки в таблице не упорядочены, невозможно выбрать строку по ее позиции - среди них не существует "первой", "второй", "последней". Любая таблица имеет один или несколько столбцов, значения в которых однозначно идентифицируют каждую ее строку. Такой столбец (или комбинация столбцов) называется первичным ключом (primary key). В таблице Деталь первичный ключ - это столбец Номер детали. В нашем примере каждая деталь на складе имеет единственный номер, по которому из таблицы Деталь извлекается необходимая информация. Следовательно, в этой таблице первичный ключ - это столбец Номер детали. В этом столбце значения не могут дублироваться - в таблице Деталь не должно быть строк, имеющих одно и то же значение в столбце Номер детали. Если таблица удовлетворяет этому требованию, она называется отношением (relation).

Взаимосвязь таблиц является важнейшим элементом реляционной модели данных. Она поддерживается внешними ключами (foreign key). Рассмотрим пример, в котором база данных хранит информацию о рядовых служащих (таблица Служащий) и руководителях (таблица Руководитель) в некоторой организации (Рис. 2 ). Первичный ключ таблицы Руководитель - столбец Номер (например, табельный номер). Столбец Фамилия не может выполнять роль первичного ключа, так как в одной организации могут работать два руководителя с одинаковыми фамилиями. Любой служащий подчинен единственному руководителю, что должно быть отражено в базе данных. Таблица Служащий содержит столбец Номер руководителя, и значения в этом столбце выбираются из столбца Номер таблицы Руководитель (см. Рис. 2 ). Столбец Номер Руководителя является внешним ключом в таблице Служащий.

Рисунок 2. Взаимосвязь таблиц базы данных.

Таблицы невозможно хранить и обрабатывать, если в базе данных отсутствуют "данные о данных", например, описатели таблиц, столбцов и т.д. Их называют обычно метаданными. Метаданные также представлены в табличной форме и хранятся в словаре данных (data dictionary).

Помимо таблиц, в базе данных могут храниться и другие объекты, такие как экранные формы, отчеты (reports), представления (views) и даже прикладные программы, работающие с базой данных.

Для пользователей информационной системы недостаточно, чтобы база данных просто отражала объекты реального мира. Важно, чтобы такое отражение было однозначным и непротиворечивым. В этом случае говорят, что база данных удовлетворяет условию целостности (integrity).

Для того, чтобы гарантировать корректность и взаимную непротиворечивость данных, на базу данных накладываются некоторые ограничения, которые называют ограничениями целостности (data integrity constraints).

Существует несколько типов ограничений целостности. Требуется, например, чтобы значения в столбце таблицы выбирались только из соответствующего домена. На практике учитывают и более сложные ограничения целостности, например, целостность по ссылкам (referential integrity). Ее суть заключается в том, что внешний ключ не может быть указателем на несуществующую строку в таблице. Ограничения целостности реализуются с помощью специальных средств, о которых речь пойдет в Разд. Сервер базы данных .

Язык SQL

Сами по себе данные в компьютерной форме не представляют интерес для пользователя, если отсутствуют средства доступа к ним. Доступ к данным осуществляется в виде запросов к базе данных, которые формулируются на стандартном языке запросов. Сегодня для большинства СУБД таким языком является SQL.

Появление и развития этого языка как средства описания доступа к базе данных связано с созданием теории реляционных баз данных. Прообраз языка SQL возник в 1970 году в рамках научно-исследовательского проекта System/R, работа над которым велась в лаборатории Санта-Тереза фирмы IBM. Ныне SQL - это стандарт интерфейса с реляционными СУБД. Популярность его настолько велика, что разработчики нереляционных СУБД (например, Adabas), снабжают свои системы SQL-интерейсом.

Язык SQL имеет официальный стандарт - ANSI/ISO. Большинство разработчиков СУБД придерживаются этого стандарта, однако часто расширяют его для реализации новых возможностей обработки данных. Новые механизмы управления данными, которые будут описаны в Разд. Сервер базы данных , могут быть использованы только через специальные операторы SQL, в общем случае не включенные в стандарт языка.

SQL не является языком программирования в традиционном представлении. На нем пишутся не программы, а запросы к базе данных. Поэтому SQL - декларативный язык. Это означает, что с его помощью можно сформулировать, что необходимо получить, но нельзя указать, как это следует сделать. В частности, в отличие от процедурных языков программирования (Си, Паскаль, Ада), в языке SQL отсутствуют такие операторы, как if-then-else, for, while и т.д.

Мы не будем подробно рассматривать синтаксис языка. Коснемся его лишь в той мере, которая необходима для понимания простых примеров. С их помощью будут проиллюстрированы наиболее интересные механизмы обработки данных.

Запрос на языке SQL состоит из одного или нескольких операторов, следующих один за другим и разделенных точкой с запятой. Ниже в таблице 1перечислены наиболее важные операторы, которые входят в стандарт ANSI/ISO SQL.

Таблица 1. Основные операторы языка SQL.

В запросах на языке SQL используются имена, которые однозначно идентифицируют объекты базы данных. В частности это - имя таблицы (Деталь), имя столбца (Название), а также имена других объектов в базе, которые относятся к дополнительным типам (например, имена процедур и правил), о которых речь пойдет в Разд. Сервер базы данных . Наряду с простыми, используются также сложные имена - например, квалификационное имя столбца (qualified column name) определяет имя столбца и имя таблицы, которой он принадлежит (Деталь.Вес). Для простоты в примерах имена будут записаны на русском языке, хотя на практике этого делать не рекомендуется.

Каждый столбец в любой таблице хранит данные определенных типов. Различают базовые типы данных - строки символов фиксированной длины, целые и вещественные числа, и дополнительные типы данных - строки символов переменной длины, денежные единицы, дату и время, логические данные (два значения - "ИСТИНА" и "ЛОЖЬ"). В языке SQL можно использовать числовые, строковые, символьные константы и константы типа "дата" и "время".

Рассмотрим несколько примеров.

Запрос "определить количество деталей на складе для всех типов деталей" реализуется следующим образом:

SELECT Название, Количество

FROM Деталь;

Результатом запроса будет таблица с двумя столбцами - Название и Количество, которые взяты из исходной таблицы Деталь. По сути, этот запрос позволяет получить вертикальную проекцию исходной таблицы (более строго, вертикальное подмножество множества строк таблицы). Из всех строк таблицы Деталь образуются строки, которые включают значения, взятые из двух столбцов - Название и Количество.

Запрос "какие детали, изготовленные из стали, хранятся на складе?", сформулированный на языке SQL, выглядит так:

FROM Деталь

WHERE Материал = "Сталь";

Результатом этого запроса также будет таблица, содержащая только те строки исходной таблицы, которые имеют в столбце Материал значение "Сталь". Этот запрос позволяет получить горизонтальную проекцию таблицы Деталь (звездочка в операторе SELECT означает выбор всех столбцов из таблицы).

Запрос "определить название и количество деталей на складе, которые изготовлены из пластмассы и весят меньше пяти килограммов" будет записан следующим образом:

SELECT Название, Количество

FROM Деталь

WHERE Материал = "Пластмасса"

AND Вес < 5;

Результат запроса - таблица из двух столбцов - Название, Количество, которая содержит название и число деталей, изготовленных из пластмассы и весящих менее 5 кг. По сути, операция выборки является операцией образования сначала горизонтальной проекции (найти все строки таблицы Деталь, у которых Материал = "Пластмасса" и Вес < 5), а затем вертикальной проекции (извлечь Название и Количество из выбранных ранее строк).

Одним из средств, обеспечивающих быстрый доступ к таблицам, являются индексы. Индекс - это структура базы данных, представляющая собой указатель на конкретную строку таблицы. Индекс базы данных используется так же, как индексный указатель в книге. Он содержит значения, взятые из одного или нескольких столбцов конкретной строки таблицы, и ссылку на эту строку. Значения в индексе упорядочены, что позволяет СУБД выполнять быстрый поиск в таблице.

Допустим, что сформулирован запрос к базе данных Склад:

SELECT Название Количество, Материал

FROM Деталь

WHERE Номер = "Т145-А8";

Если индексов для данной таблицы не существует, то для выполнения этого запроса СУБД должна просмотреть всю таблицу Деталь, последовательно выбирая из нее строки и проверяя для каждой из них условие выбора. Для больших таблиц такой запрос будет выполняться очень долго.

Если же был предварительно создан индекс по столбцу Номер таблицы Деталь, то время поиска в таблице будет сокращено до минимума. Индекс будет содержать значения из столбца Номер и ссылку на строку с этим значением в таблице Деталь. При выполнении запроса СУБД вначале найдет в индексе значение "Т145-А8" (и сделает это быстро, так как индекс упорядочен, а его строки невелики), а затем по ссылке в индексе определит физическое расположение искомой строки.

Индекс создается оператором SQL CREATE INDEX (СОЗДАТЬ ИНДЕКС). В данном примере оператор

CREATE UNIQUE INDEX Индекс детали

ON Деталь (Номер);

позволит создать индекс с именем "Индекс детали" по столбцу Номер таблицы Деталь.

Для пользователя СУБД интерес представляют не отдельные операторы языка SQL, а некоторая их последовательность, оформленная как единое целое и имеющая смысл с его точки зрения. Каждая такая последовательность операторов языка SQL реализует определенное действие над базой данных. Оно осуществляется за несколько шагов, на каждом из которых над таблицами базы данных выполняются некоторые операции. Так, в банковской системе перевод некоторой суммы с краткосрочного счета на долгосрочный выполняется в несколько операций. Среди них - снятие суммы с краткосрочного счета, зачисление на долгосрочный счет.

Если в процессе выполнения этого действия произойдет сбой, например, когда первая операция будет выполнена, а вторая - нет, то деньги будут потеряны. Следовательно, любое действие над базой данных должно быть выполнено целиком, или не выполняться вовсе. Такое действие получило название транзакции.

Обработка транзакций опирается на журнал, который используется для отката транзакций и восстановления состояния базы данных. Более подробно о транзакциях будет сказано в Разд. Обработка транзакций .

Завершая обсуждение языка SQL, еще раз подчеркнем, что это - язык запросов. На нем нельзя написать сколько-нибудь сложную прикладную программу, которая работает с базой данных. Для этой цели в современных СУБД используется язык четвертого поколения (Forth Generation Language - 4GL), обладающий как основными возможностями процедурных языков третьего поколения (3GL), таких как Си, Паскаль, Ада, так и возможностью встроить в текст программы операторы SQL, а также средствами управления интерфейсом пользователя (меню, формами, вводом пользователя и т.д.). Сегодня язык 4GL - это один из фактических стандартов средств разработки приложений, работающих с базами данных.

В реляционных базах данные хранятся в виде таблиц, состоящих из строк и столбцов. Каждая таблица имеет собственный, заранее определенный набор именованных полей. Столбцы таблиц реляционной базы могут содержать скалярные данные фиксированного типа, например числа, строки или даты. Таблицы в реляционной базе данных могут быть связаны отношениями «один-к-одному» или «один-ко-многим». Количество строк записей в таблице неограниченно, и каждая запись соответствует отдельной сущности.

Реляционные базы данных занимают сейчас доминирующее положение. Иерархическая и сетевая структуры баз данных ушли в прошлое, уступив свое место реляционным базам, под которые постороено большинство современных СУБД (MS SQL Server , MS Access , InterBase, FoxPro, PostgreSQL , Paradox и другие).

Подробности

Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

  • Каждый элемент таблицы является одним элементом данных
  • Каждый столбец обладает своим уникальным именем
  • Одинаковые строки в таблице отсутствуют
  • Все столбцы в таблице однородные, то есть все элементы в столбце имеют одинаковый тип
  • Порядок следования строк и столбцов может быть произвольным

Реляционные СУБД, ориентированные на реализацию систем операционной обработки данных, менее эффективны в задачах аналитической обработки, чем многомерные базы данных. Это связано, во-первых, с наличием достаточно жестких ограничений накладываемых существующей реализацией языка SQL . Примером такого реально существующего ограничения является предположение о том, что данные в реляционной базе неупорядочены (или более точно, упорядочены случайным образом). При этом их упорядочивание требует дополнительных затрат времени на сортировку при каждом обращении к базе данных. В аналитических системах ввод и выборка данных осуществляется большими порциями. В свою очередь данные, после того как они попадают в базу данных, остаются неизменными в течение длительного периода времени. И здесь более эффективным оказывается хранение данных в форме частично денормализованных таблиц, в которых для увеличения производительности могут храниться не только детализированные, но и предварительно вычисленные агрегированные значения. А для навигации и выборки могут использоваться специализированные, основанные на предположении о малой изменчивости и малоподвижности данных в базе данных, методы адресации и индексации. Такой способ организации данных, иногда называют предвычисленным, подчеркивая тем самым, его отличие от нормализованного реляционного подхода, предполагающего динамическое вычисление различного вида итогов (агрегация) и установление связей между реквизитами из разных таблиц (операции соединения).

Основные недостатки

Помимо невысокой эффективности, о которой было сказано ранее, к недостаткам традиционных реляционных СУБД можно отнести факт того, что в качестве основного и, часто, единственного механизма, обеспечивающего быстрый поиск и выборку отдельных строк таблице (или в связанных через внешние ключи таблицах), обычно используются различные модификации индексов, основанных на B-деревьях. Такое решение оказывается эффективным только при обработке небольших групп записей и высокой интенсивности модификации данных в базах данных.

Реляционные СУБД, возможно, никогда не уйдут со сцены, но дни их господства определенно сочтены, полагает Пол Крил, опубликовавший в сентябре 2011 года статью об этом в InfoWorld. Он цитирует аналитика Робина Блора, который утверждает, что архитектура реляционных СУБД морально устарела, так как была создана еще в прошлую эпоху и не отвечает современным требованиям.

Реляционные СУБД все еще доминируют в системах обработки финансовых транзакций, но сегодня компании все шире применяют СУБД новой архитектуры NoSQL - горизонтально масштабируемые, распределенные и разрабатываемые в открытых кодах. Примеры таких систем - Hadoop, MapReduce и VoltDB. По оценкам аналитиков Forrester, около 75% данных на предприятиях это либо полуструктурированная информация (XML, электронная почта и EDI), либо неструктурированная (текст, изображения, аудио и видео), и лишь 5% от этих данных хранится в реляционных СУБД, а остальное - в базах других типов или в виде файлов, и неподвластно обработке реляционными системами.

По мнению Блора, реляционные СУБД «могут умереть так, что этого никто не заметит» - например, если Oracle в своей СУБД попросту заменит SQL-механизм на NoSQL. Таким механизмом, считает аналитик, могла бы стать одна из существующих сегодня столбцовых СУБД.

  • Перевод
Примечание переводчика: хоть статья довольно старая (опубликована 2 года назад) и носит громкое название, в ней все же дается хорошее представление о различиях реляционных БД и NoSQL БД, их преимуществах и недостатках, а также приводится краткий обзор нереляционных хранилищ.

В последнее время появилось много нереляционных баз данных. Это говорит о том, что если вам нужна практически неограниченная масштабируемость по требованию, вам нужна нереляционная БД.

Если это правда, значит ли это, что могучие реляционные БД стали уязвимы? Значит ли это, что дни реляционных БД проходят и скоро совсем пройдут? В этой статье мы рассмотрим популярное течение нереляционных баз данных применительно к различным ситуациям и посмотрим, повлияет ли это на будущее реляционных БД.

Реляционные базы данных существуют уже около 30 лет. За это время вспыхивало несколько революций, которые должны были положить конец реляционным хранилищам. Конечно, ни одна из этих революций не состоялась, и одна из них ни на йоту не поколебала позиции реляционных БД.

Начнем с основ

Реляционная база данных представляет собой набор таблиц (сущностей). Таблицы состоят из колонок и строк (кортежей). Внутри таблиц могут быть определены ограничения, между таблицами существуют отношения. При помощи SQL можно выполнять запросы, которые возвращают наборы данных, получаемых из одной или нескольких таблиц. В рамках одного запроса данные получаются из нескольких таблиц путем их соединения (JOIN), чаще всего для соединения используются те же колонки, которые определяют отношения между таблицами. Нормализация - это процесс структурирования модели данных, обеспечивающий связность и отсутствие избыточности в данных.


Доступ к реляционным базам данных осуществляется через реляционные системы управления базами данных (РСУБД). Почти все системы баз данных, которые мы используем, являются реляционными, такие как Oracle, SQL Server, MySQL, Sybase, DB2, TeraData и так далее.

Причины такого доминирования неочевидны. На протяжении всего существования реляционных БД они постоянно предлагали наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости в сфере управлении данными.

Однако чтобы обеспечить все эти особенности, реляционные хранилища невероятно сложны внутри. Например, простой SELECT запрос может иметь сотни потенциальных путей выполнения, которые оптимизатор оценит непосредственно во время выполнения запроса. Все это скрыто от пользователей, однако внутри РСУБД создает план выполнения, основывающийся на вещах вроде алгоритмов оценки стоимости и наилучшим образом отвечающий запросу.

Проблемы реляционных БД

Хотя реляционные хранилища и обеспечивают наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости, их показатели по каждому из этих пунктов не обязательно выше, чем у аналогичных систем, ориентированных на какую-то одну особенность. Это не являлось большой проблемой, поскольку всеобщее доминирование реляционных СУБД перевешивало какие-либо недочеты. Тем не менее, если обычные РБД не отвечали потребностям, всегда существовали альтернативы.

Сегодня ситуация немного другая. Разнообразие приложений растет, а с ним растет и важность перечисленных особенностей. И с ростом количества баз данных, одна особенность начинает затмевать все другие. Это масштабируемость. Поскольку все больше приложений работают в условиях высокой нагрузки, например, таких как веб-сервисы, их требования к масштабируемости могут очень быстро меняться и сильно расти. Первую проблему может быть очень сложно разрешить, если у вас есть реляционная БД, расположенная на собственном сервере. Предположим, нагрузка на сервер за ночь увеличилась втрое. Как быстро вы сможете проапгрейдить железо? Решение второй проблемы также вызывает трудности в случае использования реляционных БД.

Реляционные БД хорошо масштабируются только в том случае, если располагаются на единственном сервере. Когда ресурсы этого сервера закончатся, вам необходимо будет добавить больше машин и распределить нагрузку между ними. И вот тут сложность реляционных БД начинает играть против масштабируемости. Если вы попробуете увеличить количество серверов не до нескольких штук, а до сотни или тысячи, сложность возрастет на порядок, и характеристики, которые делают реляционные БД такими привлекательными, стремительно снижают к нулю шансы использовать их в качестве платформы для больших распределенных систем.

Чтобы оставаться конкурентоспособными, вендорам облачных сервисов приходится как-то бороться с этим ограничением, потому что какая ж это облачная платформа без масштабируемого хранилища данных. Поэтому у вендоров остается только один вариант, если они хотят предоставлять пользователям масштабируемое место для хранения данных. Нужно применять другие типы баз данных, которые обладают более высокой способностью к масштабированию, пусть и ценой других возможностей, доступных в реляционных БД.

Эти преимущества, а также существующий спрос на них, привел к волне новых систем управления базами данных.

Новая волна

Такой тип баз данных принято называть хранилище типа ключ-значение (key-value store). Фактически, никакого официального названия не существует, поэтому вы можете встретить его в контексте документо-ориентированных, атрибутно-ориентированных, распределенных баз данных (хотя они также могут быть реляционными), шардированных упорядоченных массивов (sharded sorted arrays), распределенных хэш-таблиц и хранилищ типа ключ-значения. И хотя каждое из этих названий указывает на конкретные особенности системы, все они являются вариациями на тему, которую мы будем назвать хранилище типа ключ-значение.

Впрочем, как бы вы его не называли, этот «новый» тип баз данных не такой уж новый и всегда применялся в основном для приложений, для которых использование реляционных БД было бы непригодно. Однако без потребности веба и «облака» в масштабируемости, эти системы оставались не сильно востребованными. Теперь же задача состоит в том, чтобы определить, какой тип хранилища больше подходит для конкретной системы.
Реляционные БД и хранилища типа ключ-значение отличаются коренным образом и предназначены для решения разных задач. Сравнение характеристик позволит всего лишь понять разницу между ними, однако начнем с этого:

Характеристики хранилищ

Реляционная БД Хранилище типа ключ-значение
База данных состоит из таблиц, таблицы содержат колонки и строки, а строки состоят из значений колонок. Все строки одной таблицы имеют единую структуру.
Для доменов можно провести аналогию с таблицами, однако в отличие от таблиц для доменов не определяется структура данных. Домен – это такая коробка, в которую вы можете складывать все что угодно. Записи внутри одного домена могут иметь разную структуру.
Модель данных 1 определена заранее. Является строго типизированной, содержит ограничения и отношения для обеспечения целостности данных.
Записи идентифицируются по ключу, при этом каждая запись имеет динамический набор атрибутов, связанных с ней.
Модель данных основана на естественном представлении содержащихся данных, а не на функциональности приложения.
В некоторых реализация атрибуты могут быть только строковыми. В других реализациях атрибуты имеют простые типы данных, которые отражают типы, использующиеся в программировании: целые числа, массива строк и списки.
Модель данных подвергается нормализации, чтобы избежать дублирования данных. Нормализация порождает отношения между таблицами. Отношения связывают данные разных таблиц.
Между доменами, также как и внутри одного домена, отношения явно не определены.

Никаких join’ов

Хранилища типа ключ-значение ориентированы на работу с записями. Это значит, что вся информация, относящаяся к данной записи, хранится вместе с ней. Домен (о котором вы можете думать как о таблице) может содержать бессчетное количество различных записей. Например, домен может содержать информацию о клиентах и о заказах. Это означает, что данные, как правило, дублируются между разными доменами. Это приемлемый подход, поскольку дисковое пространство дешево. Главное, что он позволяет все связанные данные хранить в одном месте, что улучшает масштабируемость, поскольку исчезает необходимость соединять данные из различных таблиц. При использовании реляционной БД, потребовалось бы использовать соединения, чтобы сгруппировать в одном месте нужную информацию.


Хотя для хранения пар ключ-значение потребность в отношения резко падает, отношения все же нужны. Такие отношения обычно существуют между основными сущностями. Например, система заказов имела бы записи, которые содержат данные о покупателях, товарах и заказах. При этом неважно, находятся ли эти данные в одном домене или в нескольких. Суть в том, что когда покупатель размещает заказ, вам скорее всего не захочется хранить информацию о покупателе и о заказе в одной записи.
Вместо этого, запись о заказе должна содержать ключи, которые указывают на соответствующие записи о покупателе и товаре. Поскольку в записях можно хранить любую информацию, а отношения не определены в самой модели данных, система управления базой данных не сможет проконтролировать целостность отношений. Это значит, что вы можете удалять покупателей и товары, которые они заказывали. Обеспечение целостности данных целиком ложится на приложение.

Доступ к данным

Реляционная БД Хранилище типа ключ-значение
Данные создаются, обновляются, удаляются и запрашиваются с использованием языка структурированных запросов (SQL).
Данные создаются, обновляются, удаляются и запрашиваются с использованием вызова API методов.
SQL-запросы могут извлекать данные как из одиночной таблица, так и из нескольких таблиц, используя при этом соединения (join’ы).
Некоторые реализации предоставляют SQL-подобный синтаксис для задания условий фильтрации.
SQL-запросы могут включать агрегации и сложные фильтры.
Зачастую можно использовать только базовые операторы сравнений (=, !=, <, >, <= и =>).
Реляционная БД обычно содержит встроенную логику, такую как триггеры, хранимые процедуры и функции.
Вся бизнес-логика и логика для поддержки целостности данных содержится в коде приложений.

Взаимодействие с приложениями

Хранилища типа ключ-значение: преимущества

Есть два четких преимущества таких систем перед реляционными хранилищами.
Подходят для облачных сервисов
Первое преимущество хранилищ типа ключ-значение состоит в том, что они проще, а значит обладают большей масштабируемостью, чем реляционные БД. Если вы размещаете вместе собственную систему, и планируете разместить дюжину или сотню серверов, которым потребуется справляться с возрастающей нагрузкой, за вашим хранилищем данных, тогда ваш выбор – хранилища типа ключ-значение.

Благодаря тому, что такие хранилища легко и динамически расширяются, они также пригодятся вендорам, которые предоставляют многопользовательскую веб-платформу хранения данных. Такая база представляет относительно дешевое средство хранения данных с большим потенциалом к масштабируемости. Пользователи обычно платят только за то, что они используют, однако их потребности могут вырасти. Вендор сможет динамически и практически без ограничений увеличить размер платформы, исходя из нагрузки.

Более естественная интеграция с кодом
Реляционная модель данных и объектная модель кода обычно строятся по-разному, что ведет к некоторой несовместимости. Разработчики решают эту проблему при помощи написания кода, который отображает реляционную модель в объектную модель. Этот процесс не имеет четкой и быстро достижимой ценности и может занять довольно значительное время, которое могло быть потрачено на разработку самого приложения. Тем временем многие хранилища типа ключ-значение хранят данные в такой структуре, которая отображается в объекты более естественно. Это может существенно уменьшить время разработки.

Другие аргументы в пользу использования хранилищ типа ключ-значение, наподобие «Реляционные базы могут стать неуклюжими» (кстати, я без понятия, что это значит), являются менее убедительными. Но прежде чем стать сторонником таких хранилищ, ознакомьтесь со следующим разделом.

Хранилища типа ключ-значение: недостатки

Ограничения в реляционных БД гарантируют целостность данных на самом низком уровне. Данные, которые не удовлетворяют ограничениям, физически не могут попасть в базу. В хранилищах типа ключ-значение таких ограничений нет, поэтому контроль целостности данных полностью лежит на приложениях. Однако в любом коде есть ошибки. Если ошибки в правильно спроектированной реляционной БД обычно не ведут к проблемам целостности данных, то ошибки в хранилищах типа ключ-значение обычно приводят к таким проблемам.

Другое преимущество реляционных БД заключается в том, что они вынуждают вас пройти через процесс разработки модели данных. Если вы хорошо спроектировали модель, то база данных будет содержать логическую структуру, которая полностью отражает структуру хранимых данных, однако расходится со структурой приложения. Таким образом, данные становятся независимы от приложения. Это значит, что другое приложение сможет использовать те же самые данные и логика приложения может быть изменена без каких-либо изменений в модели базы. Чтобы проделать то же самое с хранилищем типа ключ-значение, попробуйте заменить процесс проектирования реляционной модели проектированием классов, при котором создаются общие классы, основанные на естественной структуре данных.

И не забудьте о совместимости. В отличие от реляционных БД, хранилища, ориентированные на использование в «облаке», имеют гораздо меньше общих стандартов. Хоть концептуально они и не отличаются, они все имеют разные API, интерфейсы запросов и свою специфику. Поэтому вам лучше доверять вашему вендору, потому что в случае чего, вы не сможете легко переключиться на другого поставщика услуг. А учитывая тот факт, что почти все современные хранилища типа ключ-значение находятся в стадии бета-версий 2 , доверять становится еще рискованнее, чем в случае использования реляционных БД.

Ограниченная аналитика данных
Обычно все облачные хранилища строятся по типу множественной аренды , что означает, что одну и ту же систему использует большое количество пользователей и приложений. Чтобы предотвратить «захват» общей системы, вендоры обычно каким-то образом ограничивают выполнение запросов. Например, в SimpleDB запрос не может выполняться дольше 5 секунд. В Google AppEngine Datastore за один запрос нельзя получить больше, чем 1000 записей 3 .

Эти ограничения не страшны для простой логики (создание, обновление, удаление и извлечение небольшого количества записей). Но что если ваше приложение становится популярным? Вы получили много новых пользователей и много новых данных, и теперь хотите сделать новые возможности для пользователей или каким-то образом извлечь выгоду из данных. Тут вы можете жестко обломаться с выполнением даже простых запросов для анализа данных. Фичи наподобие отслеживания шаблонов использования приложения или системы рекомендаций, основанной на истории пользователя, в лучшем случае могут оказаться сложны в реализации. А в худшем - просто невозможны.

В таком случае для аналитики лучше сделать отдельную базу данных, которая будет заполняться данными из вашего хранилища типа ключ-значение. Продумайте заранее, каким образом это можно будет сделать. Будете ли вы размещать сервер в облаке или у себя? Не будет ли проблем из-за задержек сигнала между вами и вашим провайдером? Поддерживает ли ваше хранилище такой перенос данных? Если у вас 100 миллионов записей, а за один раз вы можете взять 1000 записей, сколько потребуется на перенос всех данных?

Однако не ставьте масштабируемость превыше всего. Она будет бесполезна, если ваши пользователи решат пользоваться услугами другого сервиса, потому что тот предоставляет больше возможностей и настроек.

Облачные хранилища

Множество поставщиков веб-сервисов предлагают многопользовательские хранилища типа ключ-значение. Большинство из них удовлетворяют критериям, перечисленным выше, однако каждое обладает своими отличительными фичами и отличается от стандартов, описанных выше. Давайте взглянем на конкретные пример хранилищ, такие как SimpleDB, Google AppEngine Datastore и SQL Data Services.
Amazon: SimpleDB
SimpleDB - это атрибутно-ориентированное хранилище типа ключ-значение, входящее в состав Amazon WebServices. SimpleDB находится в стадии бета-версии; пользователи могут пользовать ей бесплатно - до тех пор пока их потребности не превысят определенный предел.

У SimpleDB есть несколько ограничений. Первое - время выполнения запроса ограничено 5-ю секундами. Второе - нет никаких типов данных, кроме строк. Все хранится, извлекается и сравнивается как строка, поэтому для того, чтобы сравнить даты, вам нужно будет преобразовать их в формат ISO8601. Третье - максимальные размер любой строки составляет 1024 байта, что ограничивает размер текста (например, описание товара), который вы можете хранить в качестве атрибута. Однако поскольку структура данных гибкая, вы можете обойти это ограничения, добавляя атрибуты «ОписаниеТовара1», «Описание товара2» и т.д. Но количество атрибутов также ограничено - максимум 256 атрибутов. Пока SimpleDB находится в стадии бета-версии, размер домена ограничен 10-ю гигабайтами, а вся база не может занимать больше 1-го терабайта.

Одной из ключевых особенностей SimpleDB является использование модели конечной констистенции (eventual consistency model). Эта модель подходит для многопоточной работы, однако следует иметь в виду, что после того, как вы изменили значение атрибута в какой-то записи, при последующих операциях чтения эти изменения могут быть не видны. Вероятность такого развития событий достаточно низкая, тем не менее, о ней нужно помнить. Вы же не хотите продать последний билет пяти покупателям только потому, что ваши данные были неконсистентны в момент продажи.

Google AppEngine Data Store
Google"s AppEngine Datastore построен на основе BigTable, внутренней системе хранения структурированных данных от Google. AppEngine Datastore не предоставляет прямой доступ к BigTable, но может восприниматься как упрощенный интерфейс взаимодействия с BigTable.

AppEngine Datastore поддерживает большее число типов данных внутри одной записи, нежели SimpleDB. Например, списки, которые могут содержать коллекции внутри записи.

Скорее всего вы будете использовать именно это хранилище данных при разработке с помощью Google AppEngine. Однако в отличии от SimpleDB, вы не сможете использовать AppEngine Datastore (или BigTable) вне веб-сервисов Google.

Microsoft: SQL Data Services

SQL Data Services является частью платформы Microsoft Azure . SQL Data Services является бесплатной, находится в стадии бета-версии и имеет ограничения на размер базы. SQL Data Services представляет собой отдельное приложение - надстройку над множеством SQL серверов, которые и хранят данные. Эти хранилища могут быть реляционными, однако для вас SDS является хранилищем типа ключ-значение, как и описанные выше продукты.

Необлачные хранилища

Существует также ряд хранилищ, которыми вы можете воспользоваться вне облака, установив их у себя. Почти все эти проекты являются молодыми, находятся в стадии альфа- или бета-версии, и имеют открытый код. С открытыми исходниками вы, возможно, будете больше осведомлены о возможных проблемах и ограничениях, нежели в случае использования закрытых продуктов.
CouchDB
CouchDB - это свободно распространяемая документо-ориентированная БД с открытым исходным кодом. В качестве формата хранения данных используется JSON. CouchDB призвана заполнить пробел между документо-ориентированными и реляционными базами данных с помощью «представлений». Такие представления содержат данные из документов в виде, схожим с табличным, и позволяют строить индексы и выполнять запросы.

В настоящее время CouchDB не является по-настоящему распределенной БД. В ней есть функции репликации, позволяющие синхронизировать данные между серверами, однако это не та распределенность, которая нужна для построения высокомасштабируемого окружения. Однако разработчики CouchDB работают над этим.
Проект Voldemort
Проект Voldemort - это распределенная база данных типа ключ-значение, предназначенная для горизонтального масштабирования на большом количестве серверов. Он родилась в процессе разработки LinkedIn и использовалась для нескольких систем, имеющих высокие требования к масштабируемости. В проекте Voldemort также используется модель конечной консистенции.
Mongo

Mongo - это база данных, разрабатываемая в 10gen Гейром Магнуссоном и Дуайтом Меррименом (которого вы можете знать по DoubleClick). Как и CouchDB, Mongo - это документо-ориентированная база данных, хранящая данные в JSON формате. Однако Mongo скорее является объектной базой, нежели чистым хранилищем типа ключ-значение.
Drizzle

Drizzle представляет совсем другой подход к решению проблем, с которыми призваны бороться хранилища типа ключ-значение. Drizzle начинался как одна из веток MySQL 6.0. Позже разработчики удалили ряд функций (включая представления, триггеры, скомпилированные выражения, хранимые процедуры, кэш запросов, ACL, и часть типов данных), с целью создания более простой и быстрой СУБД. Тем не менее, Drizzle все еще можно использовать для хранения реляционных данных. Цель разработчиков - построить полуреляционную платформу, предназначенную для веб-приложений и облачных приложений, работающих на системах с 16-ю и более ядрами.

Решение

В конечном счете, есть четыре причины, по которым вы можете выбрать нереляционное хранилище типа ключ-значение для своего приложения:
  1. Ваши данные сильно документо-ориентированны, и больше подходят для модели данных ключ-значение, чем для реляционной модели.
  2. Ваша доменная модель сильно объектно-ориентированна, поэтому использования хранилища типа ключ-значение уменьшит размер дополнительного кода для преобразования данных.
  3. Хранилище данных дешево и легко интегрируется с веб-сервисами вашего вендора.
  4. Ваша главная проблема - высокая масштабируемость по запросу.
Однако принимая решение, помните об ограничениях конкретных БД и о рисках, которые вы встретите, пойдя по пути использования нереляционных БД.

Для всех остальных требований лучше выбрать старые добрые реляционные СУБД. Так обречены ли они? Конечно, нет. По крайней мере, пока.

1 - по моему мнению, здесь больше подходит термин «структура данных», однако оставил оригинальное data model.
2 - скорее всего, автор имел в виду, что по своим возможностям нереляционные БД уступают реляционным.
3 - возможно, данные уже устарели, статья датируется февралем 2009 года.

Добавить метки

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: