Реляционными бд называются. Реляционные базы данных обречены? Хранилища типа ключ-значение: преимущества

Было время, когда на компьютерах царил текстовый редактор Lexicon. Имя его создателя Евгения Веселова произносилось с благоговением, а программу изучали студенты ведущих вузов страны. А потом пришел Билл Гейтс с Word и Windows, и, не выдержав конкуренции, "Лексикон" отошел в тень. Даже ходили слухи, что он умер или сменил владельца…

Было время, когда на компьютерах царил текстовый редактор Lexicon. Имя его создателя Евгения Веселова произносилось с благоговением, а программу изучали студенты ведущих вузов страны. А потом пришел Билл Гейтс с Word и Windows, и, не выдержав конкуренции, «Лексикон» (или «Лекса», как его называли пользователи) отошел в тень. Даже ходили слухи, что он умер или сменил владельца…

Часть слухов оказалась верна. Действительно, компания «Микроинформ», работавшая над «Лексиконом» более шести лет, передала все права компании «Арсеналъ». Последняя решила, ни много ни мало, потягаться с Microsoft Office и создать наш родной «Русский офис», который ничем не будет уступать заморскому и станет «учитывать российскую специфику» (разгильдяйство, что ли?). И вот в феврале 1997 года с большой помпой был анонсирован обновленный «Лексикон 97», амбициозно названный «национальным текстовым редактором». До сих пор помню, с каким воодушевлением друг показывал мне четыре дискетки с настоящим, честно купленным «Лексиконом». Мы бросились его инсталлировать. «Ух, ты… красота-то какая, совсем как Word», - сказал я. «Не, лучше!» - ответил друг.

Потом и я стал легальным пользователем «Лексикона 97» - в комплекте с ноутбуком шел пакет программ «Русский офис», куда помимо «Лексикона» входили файловый менеджер «Диско-Командир», система ведения личных финансов «Декарт» и система перевода с английского на русский «Сократ». С какой гордостью за страну и национальный текстовый редактор я заполнял регистрационную карточку и отсылал ее в «Арсеналъ»! Дабы использовать его возможности «на все сто», я даже купил книжку, выпущенную издательством «Компьютер-Пресс» - «Лексикон 97» для всех»…

Читая историю создания и развития «Лексикона» на сайте www.ars.ru/history , просто заливаешься слезами умиления: типичная success story бизнеса по-русски. Здесь есть все: и талантливые программисты во главе с Женей Веселовым, на коленке создавшим E-9 - прототип нынешнего «Лексикона»; и пиво, которое, «с целью ускорения тестирования», автор выставлял пользователям, обнаружившим ошибки; и кропотливая повседневная работа; и «не лучшие времена»; и провалы маркетинга; и авральная подготовка к презентациям; и смена команды; и переход под крышу «Арсенала»; и зависимость от экономического положения страны. Все это, а также неиссякаемый оптимизм разработчиков, и позволило породить сей продукт - «национальный текстовый редактор».

К большому сожалению, мне не удалось попасть в число немногих счастливчиков, тестировавших бета-версию «Лексикона» пятого поколения. А ведь в пятой версии сделано все, чтобы приступить к завоеванию российского рынка (или, если хотите, предпринять попытку возвращения на рынок). И начали с самого перспективного сегмента, на который давно не обращали внимания, - корпоративного. Оно и понятно: крупной фирме легче расстаться с некой суммой денег за лицензию (не забывайте и о корпоративной скидке), нежели простому пользователю. В «Лексикон» 5.0 включена возможность работы нескольких пользователей над группой документов, функция сравнения документов, поддержка протокола работы с полями в системе документооборота Lotus Notes и возможность использования «Лексикона» в этой системе в качестве основного текстового редактора.

За обзор «Лексикона» 5.1 я взялся охотно, и тому было множество причин. Прежде всего, я не испорчен Microsoft Word. В отличие от Евгения Козловского, который «пишет и верстает в Ворде», пользуюсь им лишь в случае крайней необходимости. Во-вторых, я начинал с «Лексикона» для DOS, перепробовав с тех пор великое множество самых разных текстовых редакторов. В-третьих, в свое время я пользовался «Лексиконом 97», и в-четвертых, я навсегда отдал сердце другому - бесплатному текстовому редактору CryptEdit, который практически полностью удовлетворяет моим потребностям, умещаясь при этом на половине дискеты. Так что можете воспринимать мои впечатления как сугубо субъективные. Так сказать, мнение пользователя, который впервые за долгое время сел за «большой» текстовый редактор…

Что делает человек, решивший написать обзор той или иной программы? Существует два основных пути: зайти на сайт производителя и загрузить оттуда пробную версию или обратиться непосредственно к создателям продукта и попросить предоставить вам версию на тестирование (но чтобы воспользоваться этим методом, надо быть по крайней мере корреспондентом - штатным или внештатным - какого-либо компьютерного журнала). Есть и третий вариант: купить продукт.

Поразмыслив, я пошел первым, проверенным путем (что делать - привычка старого тестировщика). Заглянул на сайт «Арсенала», немного поискал, и - о чудо! - нашел там демо-версию «Лексикона» 5.1! Файл, прямо сказать, не маленький - 8,3 Мбайт. Из анонса ясно, что демка отличается от полной версии тем, что у нее отключена функция печати, а при работе с буфером обмена и при сохранении документов в них вставляется текст «Демонстрационная версия».

«Что ж, это не столь существенно», - решил я (о чем впоследствии долго жалел). Установка прошла без особых проблем, но в самом конце мне предложили проассоциировать «Лексикон» с пятью типами файлов (lx, doc, rtf, txt и html). Я, конечно, отказался, но, тем не менее, мне настоятельно порекомендовали перезагрузиться. «С чего бы? - подумалось мне. - Ведь я не делал «Лексикон» редактором по умолчанию, не ассоциировал его ни с какими типами файлов…» На мой взгляд, прикладные программы НЕ ДОЛЖНЫ требовать перезагрузки - она может понадобиться только для системного ПО (драйверы, файрволы, менеджеры памяти и т. п.). И я, разумеется, проигнорировал это требование. Как результат - «Лекса» отказывался запускаться, вылетая уже на стадии заставки с различными ошибками (рис. 1а,б).

Что ж, атака в лоб не прошла - видимо, сработала «защита от дурака». Я перегрузился, но ситуация не изменилась… Я деинсталлировал «Лексикон» и поставил его заново. Заработало! Уже потом, вспомнив народную мудрость: «Когда что-то не работает, прочти, наконец, инструкцию!», я заглянул в файл readme и выяснил: «Для чтения файлов MS Write, MS Word 6 (MS Office 4.x для Windows 3.1) и MS Word 7 (MS Office 95) Лексикон 5.1 использует ряд файлов, устанавливаемых вместе с редактором Word Pad, входящим в состав стандартных приложений Windows. Если Word Pad не был установлен вместе с Windows, при установке Лексикона 5.1 вы увидите предупреждение об отсутствии этих файлов. В таком случае следует установить Word Pad c дистрибутивных дисков вашей версии Windows, после чего повторить установку Лексикона 5.1». Вот оно как! Действительно, Word Pad у меня отсутствует - я принадлежу к той немногочисленной прослойке людей, которые при инсталляции операционной системы выбирают не «Обычную установку», а «Выборочную». Что поделать - люблю знать, что «дядя Гейтс» устанавливает мне на компьютер. А так как Word Pad’ом я в жизни не пользовался, зачем мне его у себя держать? Одно непонятно: для чего редактору (пусть и в демо-версии), который тянет на 8 Мбайт, еще и виндусовский довесок в 1,5 Мбайт? Может, это новое слово в «текстовых редакторах»?

Первое впечатление от «Лексикона» 5.1 - ощущение дежа-вю. Интерфейс по сравнению с версией 1997 года практически не изменился: угловатый, тяжеловесный, по-медвежьи неуклюжий (может, разработчики имели в виду русского «национального» медведя?). Такой интерфейс, когда бал давно правят Word 2000 и XP, выглядит, мягко говоря, устаревшим. Да и система переключения документов с помощью так называемых закладок, которая в свое время произвела фурор в «Лексиконе 97», действительно смотрелась здорово… тогда. Но прошло четыре года, а воз и ныне там. Так, мне не удалось сделать, казалось бы, очевидное: щелкнув по названию документа правой клавишей мыши, закрыть его. Нет, надо по старинке ставить курсор на крестик в углу экрана.

Одной из главных отличительных черт «Лексикона» всех его версий называют преемственность, в основе которой лежит механизм переноса файлов, созданных еще в «Лексиконе» 1.х (DOS-документы), на платформу Windows «без потери данных и их форматирования». Возможно, это было актуально несколько лет назад, когда повальная «вордизация» еще не накрыла страну и огромный объем информации хранился в старом формате. Но с тех пор появилось немало «посторонних» утилит, да и Word научился худо-бедно открывать такие файлы… В общем, сейчас нет никаких причин считать эту функцию действительно важной.

Из явных новшеств в глаза бросаются два: система управления документами «Архив» и возможность сравнения документов.

С «Архивом» вы знакомитесь сразу после запуска программы. Он располагается слева от центра экрана, а документы открываются справа. Это позволяет осуществлять быструю навигацию, внести порядок, разложить, так сказать, «по полочкам» (виртуальным) весь накопленный массив документов. Верхняя часть окна служит для просмотра дисков и системных папок, а в нижней расположены ссылки на документы, с которыми вы работаете или работали ранее (рис. 2). Удобно и то, что документы сортируются по нескольким категориям: тематике, типу, дате создания. Не беспокойтесь, ваш архив виртуален и ничуть не изменяет физического размещения файлов. Поэтому вы смело можете «индексировать» документы не только на винчестере, но и на других накопителях. Возможности настроек «архивации» документов весьма неплохи, в любой момент можно отослать архив (точнее - его структуру) в виде файла по почте. К тому же «Лексикон» способен сам удалять неработающие ссылки на документы, что позволяет держать архив, как говорится, «up to date». Вы даже можете создать древовидную структуру вашего документа, хотя бы по параграфам (рис. 3). В этом случае вы будете лицезреть начало каждого абзаца на экране, что удобно, когда нужно мгновенно увидеть «краткое» содержание открытого документа.

А теперь вернемся к разговору о том, что же такого «национального» в этом текстовом редакторе. Во-первых, разработчики постарались, чтобы работа с русским языком была максимально удобной. Так, весьма удачным мне представляется наличие автоматического переноса слов при форматировании. Самое любопытное, что, открыв тот же самый документ в другом текстовом редакторе, переносов вы не увидите!

Во-вторых, особой гордостью производителей является возможность проверки двуязычных (русско-английских) текстов. Проверка осуществляется во время набора текста с автоматическим распознаванием языка. (Мне, правда, кажется, что гордиться тут нечем. Никакого качественного рывка по сравнению с «Лексиконом 97» я не заметил.) Проверка орфографии довольно громоздкая и несовершенная, как по составу доступных словарей (их всего два: «geography» и «адреса» [русский]), так и по количеству словарных баз (рис. 4). Разумнее, на мой взгляд, было бы договориться с российской компанией «Информатик» и использовать ее систему проверки орфографии «ОРФО», которая на голову выше. Кроме того, не предусмотрена возможность проверки других языков. Мне, к примеру, часто приходится работать с французскими и испанскими текстами. Как правило, бывает достаточно «доустановить» соответствующие модули проверки орфографии от Microsoft - и можно без проблем проверять нужные языки как в почтовом клиенте The Bat!, так и в текстовом редакторе CryptEdit. С «национальным» же «Лексиконом» такой фокус не проходит…

Еще одной особенностью своего текстового редактора создатели называют возможность исправления текста, набранного в другом языковом регистре. Все, что для этого надо, - «выделить фрагмент текста, нажать правую клавишу мыши и выбрать команду «РУС/ЛАТ». То, что шло «на ура» пять лет назад, сегодня, с появлением программ, способных «на лету» исправлять раскладку клавиатуры (типа Keyboard Ninja и Punto Switcher), выглядит анахронизмом.

Визуальное форматирование абзацев текста тоже разочаровало. Изменений мало. Да, теперь можно работать не с одним абзацем, как раньше, а сразу с несколькими выделенными. Однако все, что вы можете, - это изменить высоту или ширину текста. Полноценно форматировать весь текст визуально все равно не удастся. А форматировать по абзацам, на мой взгляд, глупо, так как быстрее и проще изменить внешний вид абзаца не прибегая к визуализации.

«Лексикон» также позволяет выполнять простейшие верстальные операции а-ля «создание брошюр». При выборе этой функции на одном листе бумаги будут размещаться две странички половинного формата. Вместе с тем функция предварительного просмотра печати поражает аскетизмом. Максимум, что можно из нее выжать, - это отображение двух страниц на экране. Если в документе, к примеру, сорок страниц, то все сорок придется листать попарно.

Работа со стилями и шаблонами русских документов (коих насчитывается более сотни и которые, по слухам, можно пополнять), как я и думал, на высоте. Впрочем, ничего кардинально нового по сравнению с версией «Лексы 97» я не заметил.

Наконец-то в версии 5.1 решена проблема редактирования таблиц с большим количеством столбцов - теперь можно смело создавать таблицы, где их хоть тысяча. Расширился и набор шрифтов, наиболее часто используемые группируются вверху списка. Кроме того, «Лексикон» полностью поддерживает стандарт Unicode, но по-прежнему позволяет использовать старый формат шрифтов. Появились возможность работы с «горячими клавишами», которые почему-то названы «клавиатурными командами». По умолчанию их всего 29, однако в любой момент вы можете назначить нужные вам сочетания.

Что касается сравнения документов, здесь мне сначала ничего не удалось проверить: чтобы сравнивать документы, их надо создать. Чего же проще, решил я, открыл один из имеющихся у меня документов, чуть-чуть его модифицировал и… тут мне вздумалось проверить, как «Лексикон» работает с html-файлами. Я подкинул ему свою любимую книжку в виде файла на 600 Кбайт. «Лексикон» задумался, посерел и завис. Что ж, бывает, большой файлик - хотя другими используемыми мною редакторами он открывался без проблем, дадим попроще: открыл небольшую страничку, но отобразилась она в странном виде. Когда же я вернулся, наконец, к сравнению документов, взору предстала ужасающая картина (рис. 5): «Лексикон» вставил в каждый абзац, в заголовок и шаблон текста надпись «Демонстрационная версия». Думаю, от моих проклятий в адрес разработчиков, как от рева иерихонских труб, должны были обвалиться стены их офиса. Загружать восемь мегабайт, мучиться с установкой и оказаться у разбитого корыта, испортив свой файл… хорошо, что у меня была его резервная копия! И на что, собственно, разработчики рассчитывают? Мне кажется, так «обломавшись» при пробе, мало кто захочет купить подобный продукт. Ладно, могут мне возразить, ты знал, на что шел, когда брался за тестирование. Знал, но не думал, что маразм дойдет до такого. Ведь способов ограничить функциональность продукта полно: от тридцатидневного пробного срока до счетчика запусков. Я понимаю, что разработчики борются с пиратством, но, честное слово, мне от этого не легче. Скажу больше, после этого у меня возникло желание взломать «Лексикон». Порче документов нет оправдания! А уж качать пакет только для того, чтобы полюбоваться на сомнительный интерфейс и почитать пусть даже неплохой файл справки - увольте. Проще создать презентационный ролик, показывающий, как работает программа. По мегабайтам получилось бы то же самое, а толку больше.

И как это все соотносится с идеей, которая объединяет всех разработчиков: «создать продукт удобный и не глядящий на пользователя свысока»?

Ладно, успокоившись и переведя дух, я вышел из этого положения легко и изящно: открыл испорченный документ в другом редакторе и везде заменил дурацкую фразу «демонстрационная версия» на «пустоту», восстановив тем самым статус-кво.

Кстати, будь у меня легальная версия «Лексикона», я то же самое мог бы сделать благодаря системе сравнения документов. Поиск различий между документами, как и редактирование сравниваемого документа, реализован хорошо. Все гениальное просто! Окно редактора делится пополам: сверху находится главный документ, внизу тот, с которым сравниваем. Отличия в обоих документах выделяются цветом. Остается только решить, что делать с изменениями дальше, оставить или исправить (рис. 6).

На этом я и завершу повествование. Осталось лишь дать короткое резюме. Потенциал в «Лексиконе» заложен большой, но и тут вмешалась банальная российская безалаберность: идея хорошая, но реализована кое-как. Сказав «А», боимся говорить «Б»… В принципе, на сегодняшний день этот редактор, обладая рядом уникальных функций (которые способны стать незаменимыми, если их довести до ума), может удовлетворить потребности рядового российского пользователя. Тот факт, что продукт постоянно развивается, вселяет оптимизм. Что хочется пожелать разработчикам? Успехов и удачи, а еще веры в то, что россияне в один прекрасный день прекратят пользоваться пиратскими версиями программ и перейдут на легальный софт. Тогда-то и засияет на нашем небосклоне звезда национального текстового редактора!

  • Перевод
Примечание переводчика: хоть статья довольно старая (опубликована 2 года назад) и носит громкое название, в ней все же дается хорошее представление о различиях реляционных БД и NoSQL БД, их преимуществах и недостатках, а также приводится краткий обзор нереляционных хранилищ.

В последнее время появилось много нереляционных баз данных. Это говорит о том, что если вам нужна практически неограниченная масштабируемость по требованию, вам нужна нереляционная БД.

Если это правда, значит ли это, что могучие реляционные БД стали уязвимы? Значит ли это, что дни реляционных БД проходят и скоро совсем пройдут? В этой статье мы рассмотрим популярное течение нереляционных баз данных применительно к различным ситуациям и посмотрим, повлияет ли это на будущее реляционных БД.

Реляционные базы данных существуют уже около 30 лет. За это время вспыхивало несколько революций, которые должны были положить конец реляционным хранилищам. Конечно, ни одна из этих революций не состоялась, и одна из них ни на йоту не поколебала позиции реляционных БД.

Начнем с основ

Реляционная база данных представляет собой набор таблиц (сущностей). Таблицы состоят из колонок и строк (кортежей). Внутри таблиц могут быть определены ограничения, между таблицами существуют отношения. При помощи SQL можно выполнять запросы, которые возвращают наборы данных, получаемых из одной или нескольких таблиц. В рамках одного запроса данные получаются из нескольких таблиц путем их соединения (JOIN), чаще всего для соединения используются те же колонки, которые определяют отношения между таблицами. Нормализация - это процесс структурирования модели данных, обеспечивающий связность и отсутствие избыточности в данных.


Доступ к реляционным базам данных осуществляется через реляционные системы управления базами данных (РСУБД). Почти все системы баз данных, которые мы используем, являются реляционными, такие как Oracle, SQL Server, MySQL, Sybase, DB2, TeraData и так далее.

Причины такого доминирования неочевидны. На протяжении всего существования реляционных БД они постоянно предлагали наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости в сфере управлении данными.

Однако чтобы обеспечить все эти особенности, реляционные хранилища невероятно сложны внутри. Например, простой SELECT запрос может иметь сотни потенциальных путей выполнения, которые оптимизатор оценит непосредственно во время выполнения запроса. Все это скрыто от пользователей, однако внутри РСУБД создает план выполнения, основывающийся на вещах вроде алгоритмов оценки стоимости и наилучшим образом отвечающий запросу.

Проблемы реляционных БД

Хотя реляционные хранилища и обеспечивают наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости, их показатели по каждому из этих пунктов не обязательно выше, чем у аналогичных систем, ориентированных на какую-то одну особенность. Это не являлось большой проблемой, поскольку всеобщее доминирование реляционных СУБД перевешивало какие-либо недочеты. Тем не менее, если обычные РБД не отвечали потребностям, всегда существовали альтернативы.

Сегодня ситуация немного другая. Разнообразие приложений растет, а с ним растет и важность перечисленных особенностей. И с ростом количества баз данных, одна особенность начинает затмевать все другие. Это масштабируемость. Поскольку все больше приложений работают в условиях высокой нагрузки, например, таких как веб-сервисы, их требования к масштабируемости могут очень быстро меняться и сильно расти. Первую проблему может быть очень сложно разрешить, если у вас есть реляционная БД, расположенная на собственном сервере. Предположим, нагрузка на сервер за ночь увеличилась втрое. Как быстро вы сможете проапгрейдить железо? Решение второй проблемы также вызывает трудности в случае использования реляционных БД.

Реляционные БД хорошо масштабируются только в том случае, если располагаются на единственном сервере. Когда ресурсы этого сервера закончатся, вам необходимо будет добавить больше машин и распределить нагрузку между ними. И вот тут сложность реляционных БД начинает играть против масштабируемости. Если вы попробуете увеличить количество серверов не до нескольких штук, а до сотни или тысячи, сложность возрастет на порядок, и характеристики, которые делают реляционные БД такими привлекательными, стремительно снижают к нулю шансы использовать их в качестве платформы для больших распределенных систем.

Чтобы оставаться конкурентоспособными, вендорам облачных сервисов приходится как-то бороться с этим ограничением, потому что какая ж это облачная платформа без масштабируемого хранилища данных. Поэтому у вендоров остается только один вариант, если они хотят предоставлять пользователям масштабируемое место для хранения данных. Нужно применять другие типы баз данных, которые обладают более высокой способностью к масштабированию, пусть и ценой других возможностей, доступных в реляционных БД.

Эти преимущества, а также существующий спрос на них, привел к волне новых систем управления базами данных.

Новая волна

Такой тип баз данных принято называть хранилище типа ключ-значение (key-value store). Фактически, никакого официального названия не существует, поэтому вы можете встретить его в контексте документо-ориентированных, атрибутно-ориентированных, распределенных баз данных (хотя они также могут быть реляционными), шардированных упорядоченных массивов (sharded sorted arrays), распределенных хэш-таблиц и хранилищ типа ключ-значения. И хотя каждое из этих названий указывает на конкретные особенности системы, все они являются вариациями на тему, которую мы будем назвать хранилище типа ключ-значение.

Впрочем, как бы вы его не называли, этот «новый» тип баз данных не такой уж новый и всегда применялся в основном для приложений, для которых использование реляционных БД было бы непригодно. Однако без потребности веба и «облака» в масштабируемости, эти системы оставались не сильно востребованными. Теперь же задача состоит в том, чтобы определить, какой тип хранилища больше подходит для конкретной системы.
Реляционные БД и хранилища типа ключ-значение отличаются коренным образом и предназначены для решения разных задач. Сравнение характеристик позволит всего лишь понять разницу между ними, однако начнем с этого:

Характеристики хранилищ

Реляционная БД Хранилище типа ключ-значение
База данных состоит из таблиц, таблицы содержат колонки и строки, а строки состоят из значений колонок. Все строки одной таблицы имеют единую структуру.
Для доменов можно провести аналогию с таблицами, однако в отличие от таблиц для доменов не определяется структура данных. Домен – это такая коробка, в которую вы можете складывать все что угодно. Записи внутри одного домена могут иметь разную структуру.
Модель данных 1 определена заранее. Является строго типизированной, содержит ограничения и отношения для обеспечения целостности данных.
Записи идентифицируются по ключу, при этом каждая запись имеет динамический набор атрибутов, связанных с ней.
Модель данных основана на естественном представлении содержащихся данных, а не на функциональности приложения.
В некоторых реализация атрибуты могут быть только строковыми. В других реализациях атрибуты имеют простые типы данных, которые отражают типы, использующиеся в программировании: целые числа, массива строк и списки.
Модель данных подвергается нормализации, чтобы избежать дублирования данных. Нормализация порождает отношения между таблицами. Отношения связывают данные разных таблиц.
Между доменами, также как и внутри одного домена, отношения явно не определены.

Никаких join’ов

Хранилища типа ключ-значение ориентированы на работу с записями. Это значит, что вся информация, относящаяся к данной записи, хранится вместе с ней. Домен (о котором вы можете думать как о таблице) может содержать бессчетное количество различных записей. Например, домен может содержать информацию о клиентах и о заказах. Это означает, что данные, как правило, дублируются между разными доменами. Это приемлемый подход, поскольку дисковое пространство дешево. Главное, что он позволяет все связанные данные хранить в одном месте, что улучшает масштабируемость, поскольку исчезает необходимость соединять данные из различных таблиц. При использовании реляционной БД, потребовалось бы использовать соединения, чтобы сгруппировать в одном месте нужную информацию.


Хотя для хранения пар ключ-значение потребность в отношения резко падает, отношения все же нужны. Такие отношения обычно существуют между основными сущностями. Например, система заказов имела бы записи, которые содержат данные о покупателях, товарах и заказах. При этом неважно, находятся ли эти данные в одном домене или в нескольких. Суть в том, что когда покупатель размещает заказ, вам скорее всего не захочется хранить информацию о покупателе и о заказе в одной записи.
Вместо этого, запись о заказе должна содержать ключи, которые указывают на соответствующие записи о покупателе и товаре. Поскольку в записях можно хранить любую информацию, а отношения не определены в самой модели данных, система управления базой данных не сможет проконтролировать целостность отношений. Это значит, что вы можете удалять покупателей и товары, которые они заказывали. Обеспечение целостности данных целиком ложится на приложение.

Доступ к данным

Реляционная БД Хранилище типа ключ-значение
Данные создаются, обновляются, удаляются и запрашиваются с использованием языка структурированных запросов (SQL).
Данные создаются, обновляются, удаляются и запрашиваются с использованием вызова API методов.
SQL-запросы могут извлекать данные как из одиночной таблица, так и из нескольких таблиц, используя при этом соединения (join’ы).
Некоторые реализации предоставляют SQL-подобный синтаксис для задания условий фильтрации.
SQL-запросы могут включать агрегации и сложные фильтры.
Зачастую можно использовать только базовые операторы сравнений (=, !=, <, >, <= и =>).
Реляционная БД обычно содержит встроенную логику, такую как триггеры, хранимые процедуры и функции.
Вся бизнес-логика и логика для поддержки целостности данных содержится в коде приложений.

Взаимодействие с приложениями

Хранилища типа ключ-значение: преимущества

Есть два четких преимущества таких систем перед реляционными хранилищами.
Подходят для облачных сервисов
Первое преимущество хранилищ типа ключ-значение состоит в том, что они проще, а значит обладают большей масштабируемостью, чем реляционные БД. Если вы размещаете вместе собственную систему, и планируете разместить дюжину или сотню серверов, которым потребуется справляться с возрастающей нагрузкой, за вашим хранилищем данных, тогда ваш выбор – хранилища типа ключ-значение.

Благодаря тому, что такие хранилища легко и динамически расширяются, они также пригодятся вендорам, которые предоставляют многопользовательскую веб-платформу хранения данных. Такая база представляет относительно дешевое средство хранения данных с большим потенциалом к масштабируемости. Пользователи обычно платят только за то, что они используют, однако их потребности могут вырасти. Вендор сможет динамически и практически без ограничений увеличить размер платформы, исходя из нагрузки.

Более естественная интеграция с кодом
Реляционная модель данных и объектная модель кода обычно строятся по-разному, что ведет к некоторой несовместимости. Разработчики решают эту проблему при помощи написания кода, который отображает реляционную модель в объектную модель. Этот процесс не имеет четкой и быстро достижимой ценности и может занять довольно значительное время, которое могло быть потрачено на разработку самого приложения. Тем временем многие хранилища типа ключ-значение хранят данные в такой структуре, которая отображается в объекты более естественно. Это может существенно уменьшить время разработки.

Другие аргументы в пользу использования хранилищ типа ключ-значение, наподобие «Реляционные базы могут стать неуклюжими» (кстати, я без понятия, что это значит), являются менее убедительными. Но прежде чем стать сторонником таких хранилищ, ознакомьтесь со следующим разделом.

Хранилища типа ключ-значение: недостатки

Ограничения в реляционных БД гарантируют целостность данных на самом низком уровне. Данные, которые не удовлетворяют ограничениям, физически не могут попасть в базу. В хранилищах типа ключ-значение таких ограничений нет, поэтому контроль целостности данных полностью лежит на приложениях. Однако в любом коде есть ошибки. Если ошибки в правильно спроектированной реляционной БД обычно не ведут к проблемам целостности данных, то ошибки в хранилищах типа ключ-значение обычно приводят к таким проблемам.

Другое преимущество реляционных БД заключается в том, что они вынуждают вас пройти через процесс разработки модели данных. Если вы хорошо спроектировали модель, то база данных будет содержать логическую структуру, которая полностью отражает структуру хранимых данных, однако расходится со структурой приложения. Таким образом, данные становятся независимы от приложения. Это значит, что другое приложение сможет использовать те же самые данные и логика приложения может быть изменена без каких-либо изменений в модели базы. Чтобы проделать то же самое с хранилищем типа ключ-значение, попробуйте заменить процесс проектирования реляционной модели проектированием классов, при котором создаются общие классы, основанные на естественной структуре данных.

И не забудьте о совместимости. В отличие от реляционных БД, хранилища, ориентированные на использование в «облаке», имеют гораздо меньше общих стандартов. Хоть концептуально они и не отличаются, они все имеют разные API, интерфейсы запросов и свою специфику. Поэтому вам лучше доверять вашему вендору, потому что в случае чего, вы не сможете легко переключиться на другого поставщика услуг. А учитывая тот факт, что почти все современные хранилища типа ключ-значение находятся в стадии бета-версий 2 , доверять становится еще рискованнее, чем в случае использования реляционных БД.

Ограниченная аналитика данных
Обычно все облачные хранилища строятся по типу множественной аренды , что означает, что одну и ту же систему использует большое количество пользователей и приложений. Чтобы предотвратить «захват» общей системы, вендоры обычно каким-то образом ограничивают выполнение запросов. Например, в SimpleDB запрос не может выполняться дольше 5 секунд. В Google AppEngine Datastore за один запрос нельзя получить больше, чем 1000 записей 3 .

Эти ограничения не страшны для простой логики (создание, обновление, удаление и извлечение небольшого количества записей). Но что если ваше приложение становится популярным? Вы получили много новых пользователей и много новых данных, и теперь хотите сделать новые возможности для пользователей или каким-то образом извлечь выгоду из данных. Тут вы можете жестко обломаться с выполнением даже простых запросов для анализа данных. Фичи наподобие отслеживания шаблонов использования приложения или системы рекомендаций, основанной на истории пользователя, в лучшем случае могут оказаться сложны в реализации. А в худшем - просто невозможны.

В таком случае для аналитики лучше сделать отдельную базу данных, которая будет заполняться данными из вашего хранилища типа ключ-значение. Продумайте заранее, каким образом это можно будет сделать. Будете ли вы размещать сервер в облаке или у себя? Не будет ли проблем из-за задержек сигнала между вами и вашим провайдером? Поддерживает ли ваше хранилище такой перенос данных? Если у вас 100 миллионов записей, а за один раз вы можете взять 1000 записей, сколько потребуется на перенос всех данных?

Однако не ставьте масштабируемость превыше всего. Она будет бесполезна, если ваши пользователи решат пользоваться услугами другого сервиса, потому что тот предоставляет больше возможностей и настроек.

Облачные хранилища

Множество поставщиков веб-сервисов предлагают многопользовательские хранилища типа ключ-значение. Большинство из них удовлетворяют критериям, перечисленным выше, однако каждое обладает своими отличительными фичами и отличается от стандартов, описанных выше. Давайте взглянем на конкретные пример хранилищ, такие как SimpleDB, Google AppEngine Datastore и SQL Data Services.
Amazon: SimpleDB
SimpleDB - это атрибутно-ориентированное хранилище типа ключ-значение, входящее в состав Amazon WebServices. SimpleDB находится в стадии бета-версии; пользователи могут пользовать ей бесплатно - до тех пор пока их потребности не превысят определенный предел.

У SimpleDB есть несколько ограничений. Первое - время выполнения запроса ограничено 5-ю секундами. Второе - нет никаких типов данных, кроме строк. Все хранится, извлекается и сравнивается как строка, поэтому для того, чтобы сравнить даты, вам нужно будет преобразовать их в формат ISO8601. Третье - максимальные размер любой строки составляет 1024 байта, что ограничивает размер текста (например, описание товара), который вы можете хранить в качестве атрибута. Однако поскольку структура данных гибкая, вы можете обойти это ограничения, добавляя атрибуты «ОписаниеТовара1», «Описание товара2» и т.д. Но количество атрибутов также ограничено - максимум 256 атрибутов. Пока SimpleDB находится в стадии бета-версии, размер домена ограничен 10-ю гигабайтами, а вся база не может занимать больше 1-го терабайта.

Одной из ключевых особенностей SimpleDB является использование модели конечной констистенции (eventual consistency model). Эта модель подходит для многопоточной работы, однако следует иметь в виду, что после того, как вы изменили значение атрибута в какой-то записи, при последующих операциях чтения эти изменения могут быть не видны. Вероятность такого развития событий достаточно низкая, тем не менее, о ней нужно помнить. Вы же не хотите продать последний билет пяти покупателям только потому, что ваши данные были неконсистентны в момент продажи.

Google AppEngine Data Store
Google"s AppEngine Datastore построен на основе BigTable, внутренней системе хранения структурированных данных от Google. AppEngine Datastore не предоставляет прямой доступ к BigTable, но может восприниматься как упрощенный интерфейс взаимодействия с BigTable.

AppEngine Datastore поддерживает большее число типов данных внутри одной записи, нежели SimpleDB. Например, списки, которые могут содержать коллекции внутри записи.

Скорее всего вы будете использовать именно это хранилище данных при разработке с помощью Google AppEngine. Однако в отличии от SimpleDB, вы не сможете использовать AppEngine Datastore (или BigTable) вне веб-сервисов Google.

Microsoft: SQL Data Services

SQL Data Services является частью платформы Microsoft Azure . SQL Data Services является бесплатной, находится в стадии бета-версии и имеет ограничения на размер базы. SQL Data Services представляет собой отдельное приложение - надстройку над множеством SQL серверов, которые и хранят данные. Эти хранилища могут быть реляционными, однако для вас SDS является хранилищем типа ключ-значение, как и описанные выше продукты.

Необлачные хранилища

Существует также ряд хранилищ, которыми вы можете воспользоваться вне облака, установив их у себя. Почти все эти проекты являются молодыми, находятся в стадии альфа- или бета-версии, и имеют открытый код. С открытыми исходниками вы, возможно, будете больше осведомлены о возможных проблемах и ограничениях, нежели в случае использования закрытых продуктов.
CouchDB
CouchDB - это свободно распространяемая документо-ориентированная БД с открытым исходным кодом. В качестве формата хранения данных используется JSON. CouchDB призвана заполнить пробел между документо-ориентированными и реляционными базами данных с помощью «представлений». Такие представления содержат данные из документов в виде, схожим с табличным, и позволяют строить индексы и выполнять запросы.

В настоящее время CouchDB не является по-настоящему распределенной БД. В ней есть функции репликации, позволяющие синхронизировать данные между серверами, однако это не та распределенность, которая нужна для построения высокомасштабируемого окружения. Однако разработчики CouchDB работают над этим.
Проект Voldemort
Проект Voldemort - это распределенная база данных типа ключ-значение, предназначенная для горизонтального масштабирования на большом количестве серверов. Он родилась в процессе разработки LinkedIn и использовалась для нескольких систем, имеющих высокие требования к масштабируемости. В проекте Voldemort также используется модель конечной консистенции.
Mongo

Mongo - это база данных, разрабатываемая в 10gen Гейром Магнуссоном и Дуайтом Меррименом (которого вы можете знать по DoubleClick). Как и CouchDB, Mongo - это документо-ориентированная база данных, хранящая данные в JSON формате. Однако Mongo скорее является объектной базой, нежели чистым хранилищем типа ключ-значение.
Drizzle

Drizzle представляет совсем другой подход к решению проблем, с которыми призваны бороться хранилища типа ключ-значение. Drizzle начинался как одна из веток MySQL 6.0. Позже разработчики удалили ряд функций (включая представления, триггеры, скомпилированные выражения, хранимые процедуры, кэш запросов, ACL, и часть типов данных), с целью создания более простой и быстрой СУБД. Тем не менее, Drizzle все еще можно использовать для хранения реляционных данных. Цель разработчиков - построить полуреляционную платформу, предназначенную для веб-приложений и облачных приложений, работающих на системах с 16-ю и более ядрами.

Решение

В конечном счете, есть четыре причины, по которым вы можете выбрать нереляционное хранилище типа ключ-значение для своего приложения:
  1. Ваши данные сильно документо-ориентированны, и больше подходят для модели данных ключ-значение, чем для реляционной модели.
  2. Ваша доменная модель сильно объектно-ориентированна, поэтому использования хранилища типа ключ-значение уменьшит размер дополнительного кода для преобразования данных.
  3. Хранилище данных дешево и легко интегрируется с веб-сервисами вашего вендора.
  4. Ваша главная проблема - высокая масштабируемость по запросу.
Однако принимая решение, помните об ограничениях конкретных БД и о рисках, которые вы встретите, пойдя по пути использования нереляционных БД.

Для всех остальных требований лучше выбрать старые добрые реляционные СУБД. Так обречены ли они? Конечно, нет. По крайней мере, пока.

1 - по моему мнению, здесь больше подходит термин «структура данных», однако оставил оригинальное data model.
2 - скорее всего, автор имел в виду, что по своим возможностям нереляционные БД уступают реляционным.
3 - возможно, данные уже устарели, статья датируется февралем 2009 года.

Добавить метки

База данных (БД) - это поименованная совокупность структурированных данных, относящихся к определенной предметной области и предназначенных для хранения, накопления и обработки с помощью ЭВМ.

Реляционная База Данных (РБД) - это набор отношений, имена которых совпадают с именами схемотношений в схеме БД.

Основные понятия реляционных баз данных:

· Тип данных – тип значений конкретного столбца.

· Домен (domain) – множество всех допустимых значений атрибута.

· Атрибут (attribute) – заголовок столбца таблицы, характеризующий поименованное свойство объекта, например, фамилия студента, дата оформления заказа, пол сотрудника и т.п.

· Кортеж – строка таблицы, представляющая собой совокупность значений логически связанных атрибутов.

· Отношение (relation) – таблица, отражающая информацию об объектах реального мира, например, о студентах, заказах, сотрудниках, жителях и т.д.

· Первичный ключ (primary key) – поле (или набор полей) таблицы, однозначно идентифицирующий каждую из ее записей.

· Альтернативный ключ – это поле (или набор полей), несовпадающее с первичным ключом и уникально идентифицирующий экземпляр записи.

· Внешний ключ – это поле (или набор полей), чьи значения совпадают с имеющимися значениями первичного ключа другой таблицы. При связи двух таблиц с первичным ключом первой таблицы связывается внешний ключ второй таблицы.

· Реляционная модель данных (РМД) - организация данных в виде двумерных таблиц.

Каждая реляционная таблица должна обладать следующими свойствами:

1. Каждая запись таблицы уникальна, т.е. совокупность значений по полям не повторяется.

2. Каждое значение, записывается на пересечении строки и столбца - является атомарным (неразделимым).

3. Значения каждого поля должны быть одного типа.

4. Каждое поле имеет уникальное имя.

5. Порядок расположения записей несущественен.

Основные элементы БД:

Поле - элементарная единица логической организации данных. Для описания поля используются следующие характеристики:

· имя, например, Фамилия, Имя, Отчество, Дата рождения;

· тип, например, строковый, символьный, числовой, датовый;

· длина, например, в байтах;

· точность для числовых данных, например, два десятичных знака для отображения дробной части числа.

Запись - совокупность значений логически связанных полей.

Индекс – средство ускорения операции поиска записей, использующееся для установки связей между таблицами. Таблица, для которой используется индекс, называют индексированной. При работе с индексами необходимо обращать внимание на организацию индексов, являющуюся основой для классификации. Простой индекс представлен одним полем или логическим выражением, обрабатывающим одно поле. Составной индекс представлен несколькими полями с возможностью использования различных функций. Индексы таблицы хранятся в индексном файле.


Целостность данных – это средство защиты данных по полям связи, позволяющее поддерживать таблицы в согласованном (непротиворечивом) состоянии (то есть не допускающее существование в подчиненной таблице записей, не имеющих соответствующих записей в родительской таблице).

Запрос – сформулированный вопрос к одной или нескольким взаимосвязанным таблицам, содержащий критерии выборки данных. Запрос осуществляется с помощью структурированного языка запросов SQL (Srtructured Query Language). В результате выборки данных из одной или нескольких таблиц может быть получено множество записей, называемое представлением.

Представление данных – сохраняемый в базе данных именованный запрос на выборку данных (из одной или нескольких таблиц).

Представление, по существу, является временной таблицей, формируемой в результате выполнения запроса. Сам запрос может быть направлен в отдельный файл, отчет, временную таблицу, таблицу на диске и т.п.

Отчет – компонент системы, основное назначение которого – описание и вывод на печать документов на основе информации из БД.

Общая характеристика работы с РБД:

Наиболее распространенная трактовка реляционной модели данных, по-видимому, принадлежит Дейту, который воспроизводит ее (с различными уточнениями) практически во всех своих книгах. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение.

В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка. Заметим, что основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.


28. АЛГОРИТМИЧЕСКИЕ ЯЗЫКИ. ТРАНСЛЯТОРЫ (ИНТЕРПРЕТАТОРЫ И КОМПИЛЯТОРЫ). АЛГОРИТМИЧЕСКИЙ ЯЗЫК БЕЙСИК. СТРУКТУРА ПРОГРАММЫ. ИДЕНТИФИКАТОРЫ. ПЕРЕМЕННЫЕ. ОПЕРАТОРЫ. ОБРАБОТКА ОДНОМЕРНЫХ И ДВУХМЕРНЫХ МАССИВОВ. ФУНКЦИИ ПОЛЬЗОВАТЕЛЯ. ПОДПРОГРАММЫ. РАБОТА С ФАЙЛАМИ ДАННЫХ.

Язык высокого уровня - язык программирования, понятия и структура которого удобны для восприятия человеком.

Алгоритмический язык (Algorithmic language) - язык программирования - искусственный (формальный) язык, предназначенный для записи алгоритмов. Язык программирования задается своим описанием и реализуется в виде специальной программы: компилятора или интерпретатора. Примерами алгоритмических языков служат – Borland Pascal, C++, Basic и т.д.

Основные понятия алгоритмического языка:

Состав языка :

Обычный разговорный язык состоит из четырех основных элементов: символов, слов, словосочетаний и предложений. Алгоритмический язык содержит подобные элементы, только слова называют элементарными конструкциями, словосочетания - выражениями, предложения - операторами.

Символы , элементарные конструкции, выражения и операторы составляют иерархическую структуру, поскольку элементарные конструкции образуются из последовательности символов.

Выражения - это последовательность элементарных конструкций и символов,

Оператор - последовательность выражений, элементарных конструкций и символов.

Описание языка:

Описание символов заключается в перечислении допустимых символов языка. Под описанием элементарных конструкций понимают правила их образования. Описание выражений - это правила образования любых выражений, имеющих смысл в данном языке. Описание операторов состоит из рассмотрения всех типов операторов, допустимых в языке. Описание каждого элемента языка задается его СИНТАКСИСОМ и СЕМАНТИКОЙ.

Синтаксические определения устанавливают правила построения элементов языка.

Семантика определяет смысл и правила использования тех элементов языка, для которых были даны синтаксические определения.

Символы языка - это основные неделимые знаки, в терминах которых пишутся все тексты на языке.

Элементарные конструкции - это минимальные единицы языка, имеющие самостоятельный смысл. Они образуются из основных символов языка.

Выражение в алгоритмическом языке состоит из элементарных конструкций и символов, оно задает правило вычисления некоторого значения.

Оператор задает полное описание некоторого действия, которое необходимо выполнить. Для описания сложного действия может потребоваться группа операторов.

В этом случае операторы объединяются в Составной оператор или Блок. Действия , заданные операторами, выполняются над данными. Предложения алгоритмического языка, в которых даются сведения о типах данных, называются описаниями или неисполняемыми операторами. Объединенная единым алгоритмом совокупность описаний и операторов образует программу на алгоритмическом языке. В процессе изучения алгоритмического языка необходимо отличать алгоритмический язык от того языка, с помощью которого осуществляется описание изучаемого алгоритмического языка. Обычно изучаемый язык называют просто языком, а язык, в терминах которого дается описание изучаемого языка - Метаязыком .

Трансляторы - (англ. translator - переводчик) - это программа-переводчик. Она преобразует программу, написанную на одном из языков высокого уровня, в программу, состоящую из машинных команд.

Программа, написанная на каком-либо алгоритмическом языке высокого уровня, не может быть непосредственно выполнена на ЭВМ. ЭВМ понимает только язык машинных команд. Следовательно, программа на алгоритмическом языке должна быть переведена (транслирована) на язык команд конкретной ЭВМ. Такой перевод осуществляется автоматически специальными программами-трансляторами, создаваемыми для каждого алгоритмического языка и для каждого типа компьютеров.

Существуют два основных способа трансляции - компиляция и интерпретация.

1.Компиляция: Компилятор (англ. compiler - составитель, собиратель) читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.

При компиляции вся исходная программа сразу превращается в последовательность машинных команд. После этого полученная результирующая программа выполняется ЭВМ с имеющимися исходными данными. Достоинство такого способа состоит в том, что трансляция выполняется один раз, а (многократное) выполнение результирующей программы может осуществляться с большой скоростью. Вместе с тем результирующая программа может занять в памяти ЭВМ очень много места, так как один оператор языка при трансляции заменяется сотнями или даже тысячами команд. Кроме того, отладка и видоизменения транслированной программы весьма затруднены.

2. Интерпретация: Интерпретатор (англ. interpreter - истолкователь, устный переводчик) переводит и выполняет программу строка за строкой.

При интерпретации исходная программа хранится в памяти ЭВМ почти в неизменном виде. Программа-интерпретатор декодирует операторы исходной программы по одному и тут же обеспечивает их выполнение с имеющимися данными. Интерпретируемая программа занимает в памяти компьютера мало места, ее легко отлаживать и видоизменять. Зато выполнение программы происходит достаточно медленно, поскольку при каждом исполнении заново осуществляется поочередная интерпретация всех операторов.

Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять

Каждый конкретный язык ориентирован либо на компиляцию, либо на интерпретацию - в зависимости от того, для каких целей он создавался. Например, Паскаль обычно используется для решения довольно сложных задач, в которых важна скорость работы программ. Поэтому данный язык обычно реализуется с помощью компилятора.

С другой стороны, Бейсик создавался как язык для начинающих программистов, для которых построчное выполнение программы имеет неоспоримые преимущества.

Иногда для одного языка имеется и компилятор, и интерпретатор. В этом случае для разработки и тестирования программы можно воспользоваться интерпретатором, а затем откомпилировать отлаженную программу, чтобы повысить скорость ее выполнения.

Появление компьютерной техники в нашей современности ознаменовало информационный переворот во всех сферах человеческой деятельности. Но для того, чтобы вся информация не стала ненужным мусором в глобальной сети Интернет, была изобретена система баз данных, в которой материалы сортируются, систематизируются, в результате чего их легко отыскать и представить последующей обработке. Существуют три основные разновидности - выделяют базы данных реляционные, иерархические, сетевые.

Фундаментальные модели

Возвращаясь к возникновению баз данных, стоит сказать, что этот процесс был достаточно сложным, он берет свое начало вместе с развитием программируемого оборудования обработки информации. Поэтому неудивительно, что количество их моделей на данный момент достигает более 50, но основными из них считаются иерархическая, реляционная и сетевая, которые и до сих пор широко применяются на практике. Что же они собой представляют?

Иерархическая имеет древовидную структуру и составляется из данных разных уровней, между которыми существуют связи. Сетевая модель БД представляет собой более сложный шаблон. Ее структура напоминает иерархическую, а схема расширенная и усовершенствованная. Разница между ними в том, что потомственные данные иерархической модели могут иметь связь только с одним предком, а у сетевой их может быть несколько. Структура реляционной базы данных гораздо сложнее. Поэтому ее следует разобрать более подробно.

Основное понятие реляционной базы данных

Такая модель была разработана в 1970-х годах доктором науки Эдгаром Коддом. Она представляет собой логически структурированную таблицу с полями, описывающую данные, их отношения между собой, операции, произведенные над ними, а главное - правила, которые гарантируют их целостность. Почему модель называется реляционной? В ее основе лежат отношения (от лат. relatio) между данными. Существует множество определений этого типа базы данных. Реляционные таблицы с информацией гораздо проще систематизировать и придать обработке, нежели в сетевой или иерархической модели. Как же это сделать? Достаточно знать особенности, структуру модели и свойства реляционных таблиц.

Процесс моделирования и составления основных элементов

Для того чтобы создать собственную СУБД, следует воспользоваться одним из инструментов моделирования, продумать, с какой информацией вам необходимо работать, спроектировать таблицы и реляционные одно- и множественные связи между данными, заполнить ячейки сущностей и установить первичный, внешние ключи.

Моделирование таблиц и проектирование реляционных баз данных производится посредством бесплатных инструментов, таких как Workbench, PhpMyAdmin, Case Studio, dbForge Studio. После детальной проектировки следует сохранить графически готовую реляционную модель и перевести ее в готовый SQL-код. На этом этапе можно начинать работу с сортировкой данных, их обработку и систематизацию.

Особенности, структура и термины, связанные с реляционной моделью

Каждый источник по-своему описывает ее элементы, поэтому для меньшей путаницы хотелось бы привести небольшую подсказку:

  • реляционная табличка = сущность;
  • макет = атрибуты = наименование полей = заголовок столбцов сущности;
  • экземпляр сущности = кортеж = запись = строка таблички;
  • значение атрибута = ячейка сущности= поле.

Для перехода к свойствам реляционной базы данных следует знать, из каких базовых компонентов она состоит и для чего они предназначены.

  1. Сущность. Таблица реляционной базы данных может быть одна, а может быть целый набор из таблиц, которые характеризируют описанные объекты благодаря хранящимся в них данным. У них фиксированное количество полей и переменное число записей. Таблица реляционной модели баз данных составляется из строк, атрибутов и макета.
  2. Запись - переменное число строк, отображающих данные, что характеризируют описываемый объект. Нумерация записей производится системой автоматически.
  3. Атрибуты - данные, демонстрирующие собой описание столбцов сущности.
  4. Поле. Представляет собой столбец сущности. Их количество - фиксированная величина, устанавливаемая во время создания или изменения таблицы.

Теперь, зная составляющие элементы таблицы, можно переходить к свойствам реляционной модели database:

  • Сущности реляционной БД двумерные. Благодаря этому свойству с ними легко проделывать различные логические и математические операции.
  • Порядок следования значений атрибутов и записей в реляционной таблице может быть произвольным.
  • Столбец в пределах одной реляционной таблицы должен иметь свое индивидуальное название.
  • Все данные в столбце сущности имеют фиксированную длину и одинаковый тип.
  • Любая запись в сущности считается одним элементом данных.
  • Составляющие компоненты строк единственны в своем роде. В реляционной сущности отсутствуют одинаковые строки.

Исходя из свойств понятно, что значения атрибутов должны быть одинакового типа, длины. Рассмотрим особенности значений атрибутов.

Основные характеристики полей реляционных БД

Названия полей должны быть уникальными в рамках одной сущности. Типы атрибутов или полей реляционных баз данных описывают, данные какой категории хранятся в полях сущностей. Поле реляционной базы данных должно иметь фиксированный размер, исчисляемый в символах. Параметры и формат значений атрибутов определяют манеру исправления в них данных. Еще есть такое понятие, как "маска", или "шаблон ввода". Оно предназначено для определения конфигурации ввода данных в значение атрибута. Непременно при записи неправильного в поле должно выдаваться извещение об ошибке. Также на элементы полей накладываются некоторые ограничения - условия проверки точности и безошибочности ввода данных. Существует некоторое обязательное значение атрибута, которое однозначно должно быть заполнено данными. Некоторые строки атрибутов могут быть заполнены NULL-значениями. Разрешается ввод пустых данных в атрибуты полей. Как и извещение об ошибке, есть значения, которые заполняются системой автоматически - это данные по умолчанию. Для ускорения поиска любых данных предназначено индексированное поле.

Схема двумерной реляционной таблицы базы данных

Для детального понимания модели с помощью SQL лучше всего рассмотреть схему на примере. Нам уже известно, что представляет собой реляционная БД. Запись в каждой таблице - это один элемент данных. Чтобы предотвратить избыточность данных, необходимо провести операции нормализации.

Базовые правила нормализации реляционной сущности

1. Значение названия поля для реляционной таблицы должно быть уникальным, единственным в своем роде (первая нормальная форма - 1НФ).

2. Для таблицы, которая уже приведена к 1НФ, наименование любого неидентифицирующего столбца должно быть зависимым от уникального идентификатора таблицы (2НФ).

3. Для всей таблицы, что уже находится в 2НФ, каждое неидентифицирующее поле не может зависеть от элемента другого неопознанного значения (3НФ сущности).

Базы данных: реляционные связи между таблицами

Существует 2 основных реляционных табличек:

  • «Один-многие». Возникает при соответствии одной ключевой записи таблицы №1 нескольким экземплярам второй сущности. Значок ключа на одном из концов проведенной линии говорит о том, что сущность находится на стороне «один», второй конец линии зачастую отмечают символом бесконечности.

  • Связь «много-много» образуется в случае возникновения между несколькими строками одной сущности явного логичного взаимодействия с рядом записей другой таблицы.
  • Если между двумя сущностями возникает конкатенация «один к одному», это значит, что ключевой идентификатор одной таблицы присутствует в другой сущности, тогда следует убрать одну из таблиц, она лишняя. Но иногда исключительно в целях безопасности программисты преднамеренно разделяют две сущности. Поэтому гипотетически связь «один к одному» может существовать.

Существование ключей в реляционной базе данных

Первичный и вторичный ключи определяют потенциальные отношения базы данных. Реляционные связи модели данных могут иметь только один потенциальный ключ, это и будет primary key. Что же он собой представляет? Первичный ключ - это столбец сущности или набор атрибутов, благодаря которому можно получить доступ к данным конкретной строки. Он должен быть уникальным, единственным, а его поля не могут содержать пустых значений. Если первичный ключ состоит всего из одного атрибута, тогда он называется простым, в ином случае будет составляющим.

Кроме первичного ключа, существует и внешний (foreign key). Многие не понимают, какая между ними разница. Разберем их более детально на примере. Итак, существует 2 таблицы: «Деканат» и «Студенты». Сущность «Деканат» содержит поля: «ID студента», «ФИО» и «Группа». Таблица «Студенты» имеет такие значения атрибутов, как «ФИО», «Группа» и «Средний бал». Так как ID студента не может быть одинаковым для нескольких студентов, это поле и будет первичным ключом. «ФИО» и «Группа» из таблицы «Студенты» могут быть одинаковыми для нескольких человек, они ссылаются на ID номер студента из сущности «Деканат», поэтому могут быть использованы в качестве внешнего ключа.

Пример модели реляционной базы данных

Для наглядности приведем простой пример реляционной модели базы данных, состоящей из двух сущностей. Существует таблица с названием «Деканат».

Необходимо провести связи, чтобы получилась полноценная реляционная база данных. Запись "ИН-41", как и "ИН-72", может присутствовать не единожды в табличке "Деканат", также фамилия, имя и отчество студентов в редких случаях могут совпадать, поэтому данные поля никак нельзя сделать первичным ключом. Покажем сущность «Студенты».

Как мы видим, типы полей реляционных баз данных совершенно различаются. Присутствуют как цифровые записи, так и символьные. Поэтому в настройках атрибутов следует указывать значения integer, char, vachar, date и другие. В таблице "Деканат" уникальным значением является только ID студента. Данное поле можно взять за первичный ключ. ФИО, группа и телефон из сущности "Студенты" могут быть взяты как внешний ключ, ссылающийся на ID студента. Связь установлена. Это пример модели со связью «один к одному». Гипотетически одна из таблиц лишняя, их можно легко объединить в одну сущность. Чтобы ID-номера студентов не стали всеобще известными, вполне реально существование двух таблиц.

Базой данных (БД) называется организованная в соответствии с определенными правилами и поддерживаемая в памяти компьютера совокупность сведений об объектах, процессах, событиях или явлениях, относящихся к некоторой предметной области, теме или задаче. Она организована таким образом, чтобы обеспечить информационные потребности пользователей, а также удобное хранение этой совокупности данных, как в целом, так и любой ее части.

Реляционная база данных представляет собой множество взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного вида. Каждая строка таблицы содержит данные об одном объекте (например, автомобиле, компьютере, клиенте), а столбцы таблицы содержат различные характеристики этих объектов - атрибуты (например, номер двигателя, марка процессора, телефоны фирм или клиентов).

Строки таблицы называются записями. Все записи таблицы имеют одинаковую структуру - они состоят из полей (элементов данных), в которых хранятся атрибуты объекта (рис. 1). Каждое поле записи содержит одну характеристику объекта и представляет собой заданный тип данных (например, текстовая строка, число, дата). Для идентификации записей используется первичный ключ. Первичным ключом называется набор полей таблицы, комбинация значений которых однозначно определяет каждую запись в таблице.

Рис. 1. Названия объектов в таблице

Для работы с данными используются системы управления базами данных (СУБД). Основные функции СУБД:

Определение данных (описание структуры баз данных);

Обработка данных;

Управление данными.

Разработка структуры БД - важнейшая задача, решаемая при проектировании БД. Структура БД (набор, форма и связи ее таблиц) - это одно из основных проектных решений при создании приложений с использованием БД. Созданная разработчиком структура БД описывается на языке определения данных СУБД.

Любая СУБД позволяет выполнять следующие операции с данными:

Добавление записей в таблицы;

Удаление записей из таблицы;

Обновление значений некоторых полей в одной или нескольких записях в таблицах БД;

Поиск одной или нескольких записей, удовлетворяющих заданному условию.

Для выполнения этих операций применяется механизм запросов. Результатом выполнения запросов является либо отобранное по определенным критериям множество записей, либо изменения в таблицах. Запросы к базе формируются на специально созданном для этого языке, который так и называется «язык структурированных запросов» (SQL - Structured Query Language).

Под управлением данными обычно понимают защиту данных от несанкционированного доступа, поддержку многопользовательского режима работы с данными и обеспечение целостности и согласованности данных.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: