Включение по часам на ардуино. Подключение часов реального времени ds1302 к Arduino

Одним из первых проектов, которые новички собирают на основе платы Arduino, являются простые часы, ведущие отсчет времени. В основном такие часы основаны на подключаемом к Arduino модуле RTC (Real Time Clock или Часы реального времени). Сегодня на рынке электронных компонентов доступны разные модели RTC, различающиеся точностью и ценой. Среди распространенных моделей можно назвать DS1302, DS1307, DS3231.



Но часы на Arduino можно сделать и без использования RTC, особенно если не получается достать такие модули. Конечно, точность в данном случае будет невелика, поэтому проект скорее должен рассматриваться как учебный.


Принцип работы таких часов довольно прост. Каждый раз, когда вы включаете эти часы на Arduino, вы должны будете установить для них текущее значение времени, также как и любые аналоговые часы. Такие часы, безусловно, лучше не использовать в своей повседневной жизни при долгой их активности без перезагрузки и дальнейшей настройки, поскольку рассинхронизация с текущим временем в процессе длительной эксплуатации может быть существенной.


Данные часы можно собрать на обычной макетной плате, поскольку здесь не потребуется много компонентов. Основным нашим звеном здесь будет плата Arduino Uno. Для отображения времени можно взять ЖК-дисплей 16x2. Для изменения настроек времени следует подключить две кнопки (для часов и минут). Кнопки подключаются к Aduino через резисторы 10 КОм. Чтобы изменять яркость дисплея потребуется потенциометр на 10 КОм. Схема подключения всех этих компонентов к плате Arduino Uno представлена ниже.



Теперь следует запрограммировать Arduino. Простой код (скетч), позволяющий выводить время на экран LCD-дисплея приведен ниже.


#include LiquidCrystal lcd(12,11,5,4,3,2); int h=12; int m; int s; int flag; int TIME; const int hs=8; const int ms=9; int state1; int state2; void setup() { lcd.begin(16,2); } void loop() { lcd.setCursor(0,0); s=s+1; lcd.print("TIME:"); lcd.print(h); lcd.print(":"); lcd.print(m); lcd.print(":"); lcd.print(s); if(flag<12)lcd.print("AM"); if(flag==12)lcd.print("PM"); if(flag>12)lcd.print("PM"); if(flag==24)flag=0; delay(1000); lcd.clear(); if(s==60){ s=0; m=m+1; } if(m==60) { m=0; h=h+1; flag=flag+1; } if(h==13) { h=1; } lcd.setCursor(0,1); lcd.print("HAVE A NICE DAY"); //-------Time // setting-------// state1=digitalRead(hs); if(state1==1) { h=h+1; flag=flag+1; if(flag<12)lcd.print("AM"); if(flag==12)lcd.print("PM"); if(flag>12)lcd.print("PM"); if(flag==24)flag=0; if(h==13)h=1; } state2=digitalRead(ms); if(state2==1){ s=0; m=m+1; } }

   Благодарим Вас за интерес к информационному проекту сайт.
   Если Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
   Вы можее поддержать наш проект, пожертвовав любую сумму на его развитие.

В данной статье рассматривается пример создания часов рального времени. На индикатор будет выводиться точное время, а двоеточие на нем будет моргать раз в секунду. Точное время будет автоматически устанавливаться во вермя компиляции прошивки.

Описание компонентов

Часы реального времени

Мы используем модуль с часами реального времени от Seeed Studio. Они построены на базе микросхемы DS1307 от Maxim Integrated. Из элементов обвязки она требует три резистора, часовой кварц и батарейку, которые уже имеются на данном модуле. Модуль обладает следующими свойствами:

    Подсчет времени (секунды, минуты, часы), даты (год, месяц, число), дня недели

    Двухпроводной интерфейс I²C

Суть часов реального времени в том, что при наличии батарейки, они могут идти даже если основное устройство обесточено. Мы с такими часами сталкиваемся постоянно в ноутбуках или цифровых фотоаппаратах. Если достать из этих устройств аккумулятор, а через некоторое время вернуть их обратно, то время не сбросится. В этом заслуга часов реального времени, Real Time Clock (RTC).

Все необходимые библиотеки можно скачать с официального сайта .

Индикатор

Мы используем четырёхразрядный индикатор от Seeed Studio. Основное в индикаторе - микросхема TM1637, представляющая собой драйвер для отдельных 7-сегментных разрядов. В данном модуле используется 4 разряда. Модуль обладает следующими свойствами:

    8 градаций яркости

    Двухпроводной интерфейс работы (CLK, DIO)

Данный модуль мы используем для показа времени: часов и минут. Удобство модуля в том, что подключается он всего по двум проводам и не требует программной реализации динамической индикации, поскольку все уже реализовано внутри модуля.

Динамическая индикация - это процесс, при котором индикаторы в нашем модуле загораются последовательно. Но мерцания мы не видим, поскольку человеческой глаз обладает большой инертностью. Данный метод позволяет очень хорошо экономить количество соединений между индикаторами и контроллером:

    Статическая индикация: 4 цифры × 7 сегментов = 28 соединений.

    Динамическая индикация: 7 сегментов + 4 общих анода или катода = 11 соединений.

    Микросхема TM1637: 2 соединения.

Выгода очевидна.

Подключение

Модуль часов реального времени необходимо подключить к выводам SCL/SDA, относящимся к шине I²C. Также необходимо подключить линии питания (Vcc) и земли (GND).

Линии SDA/SCL имеют собственные отдельные пины на Arduino, однако внутри они так или иначе подключены к пинам общего назначения. Если рассмотреть Arduino Uno, линии SDA соответствует пин A4, а SCL - A5.

В комплекте с модулем поставляется шлейф с мама-контактами, которые удобнее подключать к Troyka Shield. Однако отдельные пины SDA и SCL на ней не выведены, поэтому мы осуществили подключение прямо через пины A5 и A4.

В плане подключения индикатора - все гораздо проще. Выводы CLK и DIO можно подключить к любым цифровым выводам. В данном случае используются 12-й и 11-й выводы соответственно.

Написание прошивки

Функция setup должна инициализировать часы реального времени и индикатор, а также записывать время компиляции во внутреннюю память часов реального времени. Все действие, а точнее, чтение времени из RTC и вывод его на индикатор, будет производиться в функции loop .

Код для этого выглядит следующим образом:

rtc.ino #include #include //Классы TM1637 и DS1307 объявлены именно в них clock ; void setup() { clock .begin () ; clock clock .setTime () ; } void loop() { int8_t timeDisp[ 4 ] ; //Запрашиваем время с часов ] = clock .minute % 10 ; display.point (clock .second % 2 ? POINT_ON : POINT_OFF) ; } //Содержимое функции объяснено ниже char getInt(const char * string, int startIndex) { return int (string[ startIndex] - "0" ) * 10 + int (string[ startIndex+ 1 ] ) - "0" ; }

Теперь загружаем этот код в среду разработки, компилируем и заливаем. Смотрим на дисплей - бинго! Время на дисплее - время компиляции.

Объяснение функции getInt

Для начала необходимо понять, откуда же в массиве compileTime появляется время. Оно появляется в этой строчке:

unsigned char compileTime = __TIME__;

Компилятор вместо __TIME__ подставляет строку, содержащую время компиляции в виде __TIME__ = "hh:mm:ss" , где hh - часы, mm - минуты, ss - секунды.

Вернемся к коду, который необходимо объяснить:

char getInt(const char * string, int startIndex) { return int (string[ startIndex] - "0" ) * 10 + int (string[ startIndex+ 1 ] ) - "0" ; }

В массиве string , передаваемом в качестве параметра в функцию getInt , мы получаем символ с индексом startIndex и следующий за ним, чтобы в итоге получить двухзначное целое число. Однако, изначально это не число, а пара символов . Чтобы получить число по символу, нам необходимо вычесть из этого символа символ нуля ("0 "): ведь в таблице ASCII все символы цифр идут одна за другой, начиная с символа нуля. Поэтому код int(string) - "0") , дословно, делает следующее: «Берем символ номер startIndex , вычитаем из него символ нуля и переводим в целочисленный тип».

Проблемы

Да, этот код рабочий, и часы будут идти. Однако, если отключить питание, а через несколько минут включить, то после включения время время вновь станет тем, которое было при компиляции.

Это происходит потому что после включения питания, вновь исполняется код, находящийся в функции setup . А он записывает в часы реального времени старое значение времени.

Чтобы этого избежать, нам необходимо еще чуть-чуть модифицировать код. Каждый раз в функции setup будет происходить подсчет «хэша» времени компиляции - будет рассчитываться количество секунд, прошедшее с 00:00:00 до времени компиляции. И этот хэш будет сравниваться с хэшем в EEPROM. Напомним EEPROM - память, которая не обнуляется при отключении питания.

Если значения посчитанного и сохранённого ранее хэша совпадают, то это значит, что перезаписывать время в модуль часов нет необходимости: это уже было сделано. А вот если эта проверка не проходит, то происходит перезапись времени в RTC.

Для записи/чтения числа типа unsigned int в/из EEPROM написаны две дополнительные функции EEPROMWriteInt и EEPROMReadInt . Они добавлены потому что функции EEPROM.read и EEPROM.write могуть читать и писать только данные типа char .

rtc-eeprom.ino #include #include #include "TM1637.h" #include "DS1307.h" //Массив, содержащий время компиляции char compileTime = __TIME__; //Номера пинов Arduino, к которым подключается индикатор #define DISPLAY_CLK_PIN 12 #define DISPLAY_DIO_PIN 13 //Для работы с микросхемой часов и индикатором мы используем библиотеки TM1637 display(DISPLAY_CLK_PIN, DISPLAY_DIO_PIN) ; DS1307 clock ; void setup() { //Включаем и настраиваем индикатор display.set () ; display.init () ; //Запускаем часы реального времени clock .begin () ; //Получаем число из строки, зная номер первого символа byte hour = getInt(compileTime, 0 ) ; byte minute = getInt(compileTime, 3 ) ; byte second = getInt(compileTime, 6 ) ; //Импровизированный хэш времени //Содержит в себе количество секунд с начала дня unsigned int hash = hour * 60 * 60 + minute * 60 + second; //Проверяем несовпадение нового хэша с хэшем в EEPROM if (EEPROMReadInt(0 ) != hash) { //Сохраняем новый хэш EEPROMWriteInt(0 , hash) ; //Готовим для записи в RTC часы, минуты, секунды clock .fillByHMS (hour, minute, second) ; //Записываем эти данные во внутреннюю память часов. //С этого момента они начинают считать нужное для нас время clock .setTime () ; } } void loop() { //Значения для отображения на каждом из 4 разрядов int8_t timeDisp[ 4 ] ; //Запрашиваем время с часов ] = clock .minute % 10 ; //... а затем выводим его на экран display.display (timeDisp) ; //у нас нет отдельных разрядов для секунд, поэтому //будем включать и выключать двоеточие каждую секунду display.point (clock .second % 2 ? POINT_ON : POINT_OFF) ; } char getInt(const char * string, int startIndex) { return int (string[ startIndex] - "0" ) * 10 + int (string[ startIndex+ 1 ] ) - "0" ; } //Запись двухбайтового числа в память void EEPROMWriteInt(int address, int value) { EEPROM.write (address, lowByte(value) ) ; EEPROM.write (address + 1 , highByte(value) ) ; } //Чтение числа из памяти unsigned int EEPROMReadInt(int address) { byte lowByte = EEPROM.read (address) ; byte highByte = EEPROM.read (address + 1 ) ; return (highByte << 8 ) | lowByte; }

Заключение

В данной статье был показан пример работы с микросхемой часов реального времени RTC DS1307 и микросхемой-драйвером индикатора TM1637, также мы научились получать дату и время на этапе компиляции. Теперь, если выставить нужное время на часах, а потом отключить питание хоть на несколько часов, то после включения время вновь будет точным. Проверено!

Добрый день, сегодня я поделюсь инструкцией по изготовлению часов с комнатным термометром(Часы на ардуино своими руками ). Часы работают на Arduino UNO, для отображения времени и температуры служит графический экран WG12864B. В качестве датчика температуры - ds18b20. В отличие от большинства других часов я не буду использовать RTS (Real Time Clock), а попробую обойтись без этого дополнительного модуля.

Схемы на ардуино отличаются своей простотой, и может начать изучать ардуино-каждый. О том как подключать библиотеки и прошивать ардуино можно почитать в нашей статье .

Приступим.

Для создания данных часов нам понадобится:

Arduino UNO (Или любая другая Arduino совместимая плата)
- Графический экран WG12864B
- Датчик температуры ds18b20
- Резистор 4.7 Ком 0.25 Вт
- Резистор 100 ом 0.25 Вт
- Батарейный отсек для 4 батареек типа АА «пальчиковых»
- Подходящая коробка
- Мелкий напильник
- Лак для ногтей (черный или под цвет корпуса)
- Немного тонкого пластика или картона
- Изолента
- Соединительные провода
- Монтажная плата
- Кнопки
- Паяльник
- Припой, канифоль
- Двусторонний скотч

Подготовка графического экрана.
С подключение экрана, на первый взгляд, возникает много проблем и сложностей. Но если вначале разобраться с их видами, станет намного легче и понятнее. Существует много разновидностей и типов экранов на контролере ks0107/ks0108. Все экраны принято делить на 4 типа:
Вариант A: HDM64GS12L-4, Crystalfontz CFAG12864B, Sparkfun LCD-00710CM, NKC Electronics LCD-0022, WinStar WG12864B-TML-T
Вариант B: HDM64GS12L-5, Lumex LCM-S12864GSF, Futurlec BLUE128X64LCD, AZ Displays AGM1264F, Displaytech 64128A BC, Adafruit GLCD, DataVision DG12864-88, Topway LM12864LDW, Digitron SG12864J4, QY-12864F, TM12864L-2, 12864J-1
Вариант C: Shenzhen Jinghua Displays Co Ltd. JM12864
Вариант D: Wintek- Cascades WD-G1906G, Wintek - GEN/WD-G1906G/KS0108B, Wintek/WD-G1906G/S6B0108A, TECDIS/Y19061/HD61202, Varitronix/MGLS19264/HD61202

Список не полный, их очень много. Самый распространённый и, на мой взгляд, удобный WG12864B3 V2.0. Дисплей можно подключить к Arduino по последовательному или параллельному порту. При использовании с Arduino UNO лучше выбрать подключение по последовательному порту – тогда нам потребуется всего 3 выхода микроконтроллера, вместо минимум 13 линий при подключении по параллельному порту. Подключается все довольно просто. Есть еще один нюанс, в продаже можно встретить два варианта дисплеев, со встроенным потенциометром (для регулировки контраста) и без него. Я выбрал, и советую тоже сделать вам, со встроенным.


Это уменьшает количество деталей и время пайки. Также стоит поставить токоограничительный резистор номиналом 100 Ом для подсветки. Подключая напрямую 5 вольт, существует риск сжечь подсветку.
WG12864B – Arduino UNO
1 (GND) - GND
2 (VCC) - +5V
4 (RS) – 10
5 (R/W) – 11
6 (E) – 13
15 (PSB) – GND
19 (BLA) – через резистор - +5V
20 (BLK) – GND

Удобнее всего это все собрать сзади экрана и вывести от него 5 проводов подключения к Arduino UNO. В итоге должно получится примерно так:


Для тех кто все-таки выберет параллельное подключение приведу таблицу подключения.

И схема для экранов варианта B:



На одну линию связи может быть включено несколько датчиков. Для наших часов достаточно одного. Подключаем провод от контакта «DQ» ds18b20 к «pin 5» Arduino UNO.

Подготовка платы с кнопками.
Для установки времени и даты на часах будем использовать три кнопки. Для удобства спаиваем три кнопки на монтажной плате и выводим провода.


Подключаем следующим образом: общий для всех трех кнопок провод подключаем к «GND» Arduino. Первую кнопку, она служит для входа в режим установки времени и переключения по времени и дате, подключаем к «Pin 2». Вторая, кнопка увеличения значения, - к «Pin 3», а третья, кнопка уменьшения значения, - к «Pin 4».

Сборка всего воедино.
Чтобы избежать короткого замыкания, следует заизолировать экран. По кругу обматываем изолентой, а на заднюю часть крепим на двусторонний скотч, вырезанную по размеру, планку из изолирующего материала. Подойдет плотный картон или тонкий пластик. Я воспользовался пластиком от планшета для бумаги. Получилось следующее:


Спереди экрана по краю клеим двусторонний скотч на вспененной основе, желательно черный.


Подключаем экран к Arduino:


Плюс от батарейного отсека подключаем к «VIN» Arduino, минус к «GND». Размещаем его сзади Arduino. Перед установкой в корпус, не забудьте подключить датчик температуры и плату с кнопками.


Подготовка и заливка скетча.
Для датчика температуры нужна библиотека OneWire.

Вывод на экран осуществляется через библиотеку U8glib:

Для редактирования и заливки скетча надо установите эти две библиотеки. Сделать это можно двумя способами. Просто распаковать эти архивы и поместить распакованные файлы в папку «libraries», находящуюся в папке с установленной Arduino IDE. Или второй вариант установить библиотеки прямо в среде программирования. Не распаковывая скачанные архивы, в среде Arduino IDE выберите меню Скетч – Подключить библиотеку. В самом верху выпадающего списка выберите пункт «Добавить.Zip библиотеку». В появившемся диалоговом окне выберете библиотеку, которую вы хотите добавить. Снова откройте меню Скетч – Подключить библиотеку. В самом низу выпадающего списка вы должны увидеть новую библиотеку. Теперь библиотеку можно использовать в программах. Не забудьте после всего этого перезагрузить Arduino IDE.

Датчик температуры работает по протоколу One Wire и имеет уникальный адрес для каждого устройства - 64-разрядный код. Каждый раз искать этот код нецелесообразно. Поэтому необходимо вначале подключить датчик к Arduino, залить в нее скетч находящийся в меню Файл – Примеры – Dallas Temperature – OneWireSearch. Далее запускаем Инструменты - Монитор порта. Arduino должна найти наш датчик, написать его адрес и текущие показания температуры. Копируем или просто записываем адрес нашего датчика. Открываем скетч Arduino_WG12864B_Term, ищем строку:

Byte addr={0x28, 0xFF, 0xDD, 0x14, 0xB4, 0x16, 0x5, 0x97};//адрес моего датчика

Записываем адрес вашего датчика между фигурными скобками, заменяя адрес моего датчика.

Стока:

//u8g.setPrintPos(44, 64); u8g.print(sek); // Выводим секунды для контроля правильности хода

Служит для вывода секунд рядом с надписью «Data». Это необходимо для точной установки хода времени.
Если часы спешат или отстаю следует поменять значение в строке:

If (micros() - prevmicros >494000) { // поменять на другое для корректировки было 500000

Я опытным путем определил число, при котором часы идут достаточно точно. Если ваши часы спешат следует увеличить это число, если отстаю – уменьшить. Для определения точности хода и нужен вывод секунд. После точной калибровки числа, секунды можно закомментировать и таким образом убрать с экрана.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: