Что такое поток в java. Потоки Java: создание и завершение

Здравствуйте! В этой статье я вкратце расскажу вам о процессах, потоках, и об основах многопоточного программирования на языке Java.
Наиболее очевидная область применения многопоточности – это программирование интерфейсов. Многопоточность незаменима тогда, когда необходимо, чтобы графический интерфейс продолжал отзываться на действия пользователя во время выполнения некоторой обработки информации. Например, поток, отвечающий за интерфейс, может ждать завершения другого потока, загружающего файл из интернета, и в это время выводить некоторую анимацию или обновлять прогресс-бар. Кроме того он может остановить поток загружающий файл, если была нажата кнопка «отмена».

Еще одна популярная и, пожалуй, одна из самых хардкорных областей применения многопоточности – игры. В играх различные потоки могут отвечать за работу с сетью, анимацию, расчет физики и т.п.

Давайте начнем. Сначала о процессах.

Процессы

Процесс - это совокупность кода и данных, разделяющих общее виртуальное адресное пространство. Чаще всего одна программа состоит из одного процесса, но бывают и исключения (например, браузер Chrome создает отдельный процесс для каждой вкладки, что дает ему некоторые преимущества, вроде независимости вкладок друг от друга). Процессы изолированы друг от друга, поэтому прямой доступ к памяти чужого процесса невозможен (взаимодействие между процессами осуществляется с помощью специальных средств).

Для каждого процесса ОС создает так называемое «виртуальное адресное пространство», к которому процесс имеет прямой доступ. Это пространство принадлежит процессу, содержит только его данные и находится в полном его распоряжении. Операционная система же отвечает за то, как виртуальное пространство процесса проецируется на физическую память.

Схема этого взаимодействия представлена на картинке. Операционная система оперирует так называемыми страницами памяти, которые представляют собой просто область определенного фиксированного размера. Если процессу становится недостаточно памяти, система выделяет ему дополнительные страницы из физической памяти. Страницы виртуальной памяти могут проецироваться на физическую память в произвольном порядке.

При запуске программы операционная система создает процесс, загружая в его адресное пространство код и данные программы, а затем запускает главный поток созданного процесса.

Потоки

Один поток – это одна единица исполнения кода. Каждый поток последовательно выполняет инструкции процесса, которому он принадлежит, параллельно с другими потоками этого процесса.

Следует отдельно обговорить фразу «параллельно с другими потоками». Известно, что на одно ядро процессора, в каждый момент времени, приходится одна единица исполнения. То есть одноядерный процессор может обрабатывать команды только последовательно, по одной за раз (в упрощенном случае). Однако запуск нескольких параллельных потоков возможен и в системах с одноядерными процессорами. В этом случае система будет периодически переключаться между потоками, поочередно давая выполняться то одному, то другому потоку. Такая схема называется псевдо-параллелизмом. Система запоминает состояние (контекст) каждого потока, перед тем как переключиться на другой поток, и восстанавливает его по возвращению к выполнению потока. В контекст потока входят такие параметры, как стек, набор значений регистров процессора, адрес исполняемой команды и прочее…

Проще говоря, при псевдопараллельном выполнении потоков процессор мечется между выполнением нескольких потоков, выполняя по очереди часть каждого из них.

Вот как это выглядит:

Цветные квадраты на рисунке – это инструкции процессора (зеленые – инструкции главного потока, синие – побочного). Выполнение идет слева направо. После запуска побочного потока его инструкции начинают выполняться вперемешку с инструкциями главного потока. Кол-во выполняемых инструкций за каждый подход не определено.

То, что инструкции параллельных потоков выполняются вперемешку, в некоторых случаях может привести к конфликтам доступа к данным. Проблемам взаимодействия потоков будет посвящена следующая статья, а пока о том, как запускаются потоки в Java…

Запуск потоков

Каждый процесс имеет хотя бы один выполняющийся поток. Тот поток, с которого начинается выполнение программы, называется главным. В языке Java, после создания процесса, выполнение главного потока начинается с метода main(). Затем, по мере необходимости, в заданных программистом местах, и при выполнении заданных им же условий, запускаются другие, побочные потоки.

В языке Java поток представляется в виде объекта-потомка класса Thread. Этот класс инкапсулирует стандартные механизмы работы с потоком.

Запустить новый поток можно двумя способами:

Способ 1
Создать объект класса Thread, передав ему в конструкторе нечто, реализующее интерфейс Runnable. Этот интерфейс содержит метод run(), который будет выполняться в новом потоке. Поток закончит выполнение, когда завершится его метод run().

Выглядит это так:

Class SomeThing //Нечто, реализующее интерфейс Runnable implements Runnable //(содержащее метод run()) { public void run() //Этот метод будет выполняться в побочном потоке { System.out.println("Привет из побочного потока!"); } } public class Program //Класс с методом main() { static SomeThing mThing; //mThing - объект класса, реализующего интерфейс Runnable public static void main(String args) { mThing = new SomeThing(); Thread myThready = new Thread(mThing); //Создание потока "myThready" myThready.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

Для пущего укорочения кода можно передать в конструктор класса Thread объект безымянного внутреннего класса, реализующего интерфейс Runnable:

Public class Program //Класс с методом main(). { public static void main(String args) { //Создание потока Thread myThready = new Thread(new Runnable() { public void run() //Этот метод будет выполняться в побочном потоке { System.out.println("Привет из побочного потока!"); } }); myThready.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

Способ 2
Создать потомка класса Thread и переопределить его метод run():

Class AffableThread extends Thread { @Override public void run() //Этот метод будет выполнен в побочном потоке { System.out.println("Привет из побочного потока!"); } } public class Program { static AffableThread mSecondThread; public static void main(String args) { mSecondThread = new AffableThread(); //Создание потока mSecondThread.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

В приведённом выше примере в методе main() создается и запускается еще один поток. Важно отметить, что после вызова метода mSecondThread.start() главный поток продолжает своё выполнение, не дожидаясь пока порожденный им поток завершится. И те инструкции, которые идут после вызова метода start(), будут выполнены параллельно с инструкциями потока mSecondThread.

Для демонстрации параллельной работы потоков давайте рассмотрим программу, в которой два потока спорят на предмет философского вопроса «что было раньше, яйцо или курица?». Главный поток уверен, что первой была курица, о чем он и будет сообщать каждую секунду. Второй же поток раз в секунду будет опровергать своего оппонента. Всего спор продлится 5 секунд. Победит тот поток, который последним изречет свой ответ на этот, без сомнения, животрепещущий философский вопрос. В примере используются средства, о которых пока не было сказано (isAlive() sleep() и join()). К ним даны комментарии, а более подробно они будут разобраны дальше.

Class EggVoice extends Thread { @Override public void run() { for(int i = 0; i < 5; i++) { try{ sleep(1000); //Приостанавливает поток на 1 секунду }catch(InterruptedException e){} System.out.println("яйцо!"); } //Слово «яйцо» сказано 5 раз } } public class ChickenVoice //Класс с методом main() { static EggVoice mAnotherOpinion; //Побочный поток public static void main(String args) { mAnotherOpinion = new EggVoice(); //Создание потока System.out.println("Спор начат..."); mAnotherOpinion.start(); //Запуск потока for(int i = 0; i < 5; i++) { try{ Thread.sleep(1000); //Приостанавливает поток на 1 секунду }catch(InterruptedException e){} System.out.println("курица!"); } //Слово «курица» сказано 5 раз if(mAnotherOpinion.isAlive()) //Если оппонент еще не сказал последнее слово { try{ mAnotherOpinion.join(); //Подождать пока оппонент закончит высказываться. }catch(InterruptedException e){} System.out.println("Первым появилось яйцо!"); } else //если оппонент уже закончил высказываться { System.out.println("Первой появилась курица!"); } System.out.println("Спор закончен!"); } } Консоль: Спор начат... курица! яйцо! яйцо! курица! яйцо! курица! яйцо! курица! яйцо! курица! Первой появилась курица! Спор закончен!

В приведенном примере два потока параллельно в течении 5 секунд выводят информацию на консоль. Точно предсказать, какой поток закончит высказываться последним, невозможно. Можно попытаться, и можно даже угадать, но есть большая вероятность того, что та же программа при следующем запуске будет иметь другого «победителя». Это происходит из-за так называемого «асинхронного выполнения кода». Асинхронность означает то, что нельзя утверждать, что какая-либо инструкция одного потока, выполнится раньше или позже инструкции другого. Или, другими словами, параллельные потоки независимы друг от друга, за исключением тех случаев, когда программист сам описывает зависимости между потоками с помощью предусмотренных для этого средств языка.

Теперь немного о завершении процессов…

Завершение процесса и демоны

В Java процесс завершается тогда, когда завершается последний его поток. Даже если метод main() уже завершился, но еще выполняются порожденные им потоки, система будет ждать их завершения.

Однако это правило не относится к особому виду потоков – демонам. Если завершился последний обычный поток процесса, и остались только потоки-демоны, то они будут принудительно завершены и выполнение процесса закончится. Чаще всего потоки-демоны используются для выполнения фоновых задач, обслуживающих процесс в течение его жизни.

Объявить поток демоном достаточно просто - нужно перед запуском потока вызвать его метод setDaemon(true) ;
Проверить, является ли поток демоном, можно вызвав его метод boolean isDaemon() ;

Завершение потоков

В Java существуют (существовали) средства для принудительного завершения потока. В частности метод Thread.stop() завершает поток незамедлительно после своего выполнения. Однако этот метод, а также Thread.suspend(), приостанавливающий поток, и Thread.resume(), продолжающий выполнение потока, были объявлены устаревшими и их использование отныне крайне нежелательно. Дело в том что поток может быть «убит» во время выполнения операции, обрыв которой на полуслове оставит некоторый объект в неправильном состоянии, что приведет к появлению трудноотлавливаемой и случайным образом возникающей ошибке.

Вместо принудительного завершения потока применяется схема, в которой каждый поток сам ответственен за своё завершение. Поток может остановиться либо тогда, когда он закончит выполнение метода run(), (main() - для главного потока) либо по сигналу из другого потока. Причем как реагировать на такой сигнал - дело, опять же, самого потока. Получив его, поток может выполнить некоторые операции и завершить выполнение, а может и вовсе его проигнорировать и продолжить выполняться. Описание реакции на сигнал завершения потока лежит на плечах программиста.

Java имеет встроенный механизм оповещения потока, который называется Interruption (прерывание, вмешательство), и скоро мы его рассмотрим, но сначала посмотрите на следующую программку:

Incremenator - поток, который каждую секунду прибавляет или вычитает единицу из значения статической переменной Program.mValue. Incremenator содержит два закрытых поля – mIsIncrement и mFinish. То, какое действие выполняется, определяется булевой переменной mIsIncrement - если оно равно true, то выполняется прибавление единицы, иначе - вычитание. А завершение потока происходит, когда значение mFinish становится равно true.

Class Incremenator extends Thread { //О ключевом слове volatile - чуть ниже private volatile boolean mIsIncrement = true; private volatile boolean mFinish = false; public void changeAction() //Меняет действие на противоположное { mIsIncrement = !mIsIncrement; } public void finish() //Инициирует завершение потока { mFinish = true; } @Override public void run() { do { if(!mFinish) //Проверка на необходимость завершения { if(mIsIncrement) Program.mValue++; //Инкремент else Program.mValue--; //Декремент //Вывод текущего значения переменной System.out.print(Program.mValue + " "); } else return; //Завершение потока try{ Thread.sleep(1000); //Приостановка потока на 1 сек. }catch(InterruptedException e){} } while(true); } } public class Program { //Переменая, которой оперирует инкременатор public static int mValue = 0; static Incremenator mInc; //Объект побочного потока public static void main(String args) { mInc = new Incremenator(); //Создание потока System.out.print("Значение = "); mInc.start(); //Запуск потока //Троекратное изменение действия инкременатора //с интервалом в i*2 секунд for(int i = 1; i <= 3; i++) { try{ Thread.sleep(i*2*1000); //Ожидание в течении i*2 сек. }catch(InterruptedException e){} mInc.changeAction(); //Переключение действия } mInc.finish(); //Инициация завершения побочного потока } } Консоль: Значение = 1 2 1 0 -1 -2 -1 0 1 2 3 4

Взаимодействовать с потоком можно с помощью метода changeAction() (для смены вычитания на сложение и наоборот) и метода finish() (для завершения потока).

В объявлении переменных mIsIncrement и mFinish было использовано ключевое слово volatile (изменчивый, не постоянный). Его необходимо использовать для переменных, которые используются разными потоками. Это связано с тем, что значение переменной, объявленной без volatile, может кэшироваться отдельно для каждого потока, и значение из этого кэша может различаться для каждого из них. Объявление переменной с ключевым словом volatile отключает для неё такое кэширование и все запросы к переменной будут направляться непосредственно в память.

В этом примере показано, каким образом можно организовать взаимодействие между потоками. Однако есть одна проблема при таком подходе к завершению потока - Incremenator проверяет значение поля mFinish раз в секунду, поэтому может пройти до секунды времени между тем, когда будет выполнен метод finish(), и фактическим завершения потока. Было бы замечательно, если бы при получении сигнала извне, метод sleep() возвращал выполнение и поток незамедлительно начинал своё завершение. Для выполнения такого сценария существует встроенное средство оповещения потока, которое называется Interruption (прерывание, вмешательство).

Interruption

Класс Thread содержит в себе скрытое булево поле, подобное полю mFinish в программе Incremenator, которое называется флагом прерывания. Установить этот флаг можно вызвав метод interrupt() потока. Проверить же, установлен ли этот флаг, можно двумя способами. Первый способ - вызвать метод bool isInterrupted() объекта потока, второй - вызвать статический метод bool Thread.interrupted(). Первый метод возвращает состояние флага прерывания и оставляет этот флаг нетронутым. Второй метод возвращает состояние флага и сбрасывает его. Заметьте что Thread.interrupted() - статический метод класса Thread, и его вызов возвращает значение флага прерывания того потока, из которого он был вызван. Поэтому этот метод вызывается только изнутри потока и позволяет потоку проверить своё состояние прерывания.

Итак, вернемся к нашей программе. Механизм прерывания позволит нам решить проблему с засыпанием потока. У методов, приостанавливающих выполнение потока, таких как sleep(), wait() и join() есть одна особенность - если во время их выполнения будет вызван метод interrupt() этого потока, они, не дожидаясь конца времени ожидания, сгенерируют исключение InterruptedException.

Переделаем программу Incremenator – теперь вместо завершения потока с помощью метода finish() будем использовать стандартный метод interrupt(). А вместо проверки флага mFinish будем вызывать метод bool Thread.interrupted();
Так будет выглядеть класс Incremenator после добавления поддержки прерываний:

Class Incremenator extends Thread { private volatile boolean mIsIncrement = true; public void changeAction() //Меняет действие на противоположное { mIsIncrement = !mIsIncrement; } @Override public void run() { do { if(!Thread.interrupted()) //Проверка прерывания { if(mIsIncrement) Program.mValue++; //Инкремент else Program.mValue--; //Декремент //Вывод текущего значения переменной System.out.print(Program.mValue + " "); } else return; //Завершение потока try{ Thread.sleep(1000); //Приостановка потока на 1 сек. }catch(InterruptedException e){ return; //Завершение потока после прерывания } } while(true); } } class Program { //Переменая, которой оперирует инкременатор public static int mValue = 0; static Incremenator mInc; //Объект побочного потока public static void main(String args) { mInc = new Incremenator(); //Создание потока System.out.print("Значение = "); mInc.start(); //Запуск потока //Троекратное изменение действия инкременатора //с интервалом в i*2 секунд for(int i = 1; i <= 3; i++) { try{ Thread.sleep(i*2*1000); //Ожидание в течении i*2 сек. }catch(InterruptedException e){} mInc.changeAction(); //Переключение действия } mInc.interrupt(); //Прерывание побочного потока } } Консоль: Значение = 1 2 1 0 -1 -2 -1 0 1 2 3 4

Как видите, мы избавились от метода finish() и реализовали тот же механизм завершения потока с помощью встроенной системы прерываний. В этой реализации мы получили одно преимущество - метод sleep() вернет управление (сгенерирует исключение) незамедлительно после прерывания потока.

Заметьте что методы sleep() и join() обёрнуты в конструкции try-catch. Это необходимое условие работы этих методов. Вызывающий их код должен перехватывать исключение InterruptedException, которое они бросают при прерывании во время ожидания.

С запуском и завершением потоков разобрались, дальше я расскажу о методах, использующихся при работе с потоками.

Метод Thread.sleep()

Thread.sleep() - статический метод класса Thread, который приостанавливает выполнение потока, в котором он был вызван. Во время выполнения метода sleep() система перестает выделять потоку процессорное время, распределяя его между другими потоками. Метод sleep() может выполняться либо заданное кол-во времени (миллисекунды или наносекунды) либо до тех пор пока он не будет остановлен прерыванием (в этом случае он сгенерирует исключение InterruptedException).

Thread.sleep(1500); //Ждет полторы секунды Thread.sleep(2000, 100); //Ждет 2 секунды и 100 наносекунд

Несмотря на то, что метод sleep() может принимать в качестве времени ожидания наносекунды, не стоит принимать это всерьез. Во многих системах время ожидания все равно округляется до миллисекунд а то и до их десятков.

Метод yield()

Статический метод Thread.yield() заставляет процессор переключиться на обработку других потоков системы. Метод может быть полезным, например, когда поток ожидает наступления какого-либо события и необходимо чтобы проверка его наступления происходила как можно чаще. В этом случае можно поместить проверку события и метод Thread.yield() в цикл:

//Ожидание поступления сообщения while(!msgQueue.hasMessages()) //Пока в очереди нет сообщений { Thread.yield(); //Передать управление другим потокам }

Метод join()

В Java предусмотрен механизм, позволяющий одному потоку ждать завершения выполнения другого. Для этого используется метод join(). Например, чтобы главный поток подождал завершения побочного потока myThready, необходимо выполнить инструкцию myThready.join() в главном потоке. Как только поток myThready завершится, метод join() вернет управление, и главный поток сможет продолжить выполнение.

Метод join() имеет перегруженную версию, которая получает в качестве параметра время ожидания. В этом случае join() возвращает управление либо когда завершится ожидаемый поток, либо когда закончится время ожидания. Подобно методу Thread.sleep() метод join может ждать в течение миллисекунд и наносекунд – аргументы те же.

С помощью задания времени ожидания потока можно, например, выполнять обновление анимированной картинки пока главный (или любой другой) поток ждёт завершения побочного потока, выполняющего ресурсоёмкие операции:

Thinker brain = new Thinker(); //Thinker - потомок класса Thread. brain.start(); //Начать "обдумывание". do { mThinkIndicator.refresh(); //mThinkIndicator - анимированная картинка. try{ brain.join(250); //Подождать окончания мысли четверть секунды. }catch(InterruptedException e){} } while(brain.isAlive()); //Пока brain думает... //brain закончил думать (звучат овации).

В этом примере поток brain (мозг) думает над чем-то, и предполагается, что это занимает у него длительное время. Главный поток ждет его четверть секунды и, в случае, если этого времени на раздумье не хватило, обновляет «индикатор раздумий» (некоторая анимированная картинка). В итоге, во время раздумий, пользователь наблюдает на экране индикатор мыслительного процесса, что дает ему знать, что электронные мозги чем то заняты.

Приоритеты потоков

Каждый поток в системе имеет свой приоритет. Приоритет – это некоторое число в объекте потока, более высокое значение которого означает больший приоритет. Система в первую очередь выполняет потоки с большим приоритетом, а потоки с меньшим приоритетом получают процессорное время только тогда, когда их более привилегированные собратья простаивают.

Работать с приоритетами потока можно с помощью двух функций:

void setPriority(int priority) – устанавливает приоритет потока.
Возможные значения priority - MIN_PRIORITY, NORM_PRIORITY и MAX_PRIORITY.

int getPriority() – получает приоритет потока.

Некоторые полезные методы класса Thread

Это практически всё. Напоследок приведу несколько полезных методов работы с потоками.

boolean isAlive() - возвращает true если myThready() выполняется и false если поток еще не был запущен или был завершен.

setName(String threadName) – Задает имя потока.
String getName() – Получает имя потока.
Имя потока – ассоциированная с ним строка, которая в некоторых случаях помогает понять, какой поток выполняет некоторое действие. Иногда это бывает полезным.

static Thread Thread.currentThread() - статический метод, возвращающий объект потока, в котором он был вызван.

long getId() – возвращает идентификатор потока. Идентификатор – уникальное число, присвоенное потоку.

Заключение

Отмечу, что в статье рассказано далеко не про все нюансы многопоточного программирования. И коду, приведенному в примерах, для полной корректности не хватает некоторых нюансов. В частности, в примерах не используется синхронизация. Синхронизация потоков - тема, не изучив которую, программировать правильные многопоточные приложения не получится. Почитать о ней вы можете, например, в книге «Java Concurrency in Practice» или

Здравствуйте! В этой статье я вкратце расскажу вам о процессах, потоках, и об основах многопоточного программирования на языке Java.
Наиболее очевидная область применения многопоточности – это программирование интерфейсов. Многопоточность незаменима тогда, когда необходимо, чтобы графический интерфейс продолжал отзываться на действия пользователя во время выполнения некоторой обработки информации. Например, поток, отвечающий за интерфейс, может ждать завершения другого потока, загружающего файл из интернета, и в это время выводить некоторую анимацию или обновлять прогресс-бар. Кроме того он может остановить поток загружающий файл, если была нажата кнопка «отмена».

Еще одна популярная и, пожалуй, одна из самых хардкорных областей применения многопоточности – игры. В играх различные потоки могут отвечать за работу с сетью, анимацию, расчет физики и т.п.

Давайте начнем. Сначала о процессах.

Процессы

Процесс - это совокупность кода и данных, разделяющих общее виртуальное адресное пространство. Чаще всего одна программа состоит из одного процесса, но бывают и исключения (например, браузер Chrome создает отдельный процесс для каждой вкладки, что дает ему некоторые преимущества, вроде независимости вкладок друг от друга). Процессы изолированы друг от друга, поэтому прямой доступ к памяти чужого процесса невозможен (взаимодействие между процессами осуществляется с помощью специальных средств).

Для каждого процесса ОС создает так называемое «виртуальное адресное пространство», к которому процесс имеет прямой доступ. Это пространство принадлежит процессу, содержит только его данные и находится в полном его распоряжении. Операционная система же отвечает за то, как виртуальное пространство процесса проецируется на физическую память.

Схема этого взаимодействия представлена на картинке. Операционная система оперирует так называемыми страницами памяти, которые представляют собой просто область определенного фиксированного размера. Если процессу становится недостаточно памяти, система выделяет ему дополнительные страницы из физической памяти. Страницы виртуальной памяти могут проецироваться на физическую память в произвольном порядке.

При запуске программы операционная система создает процесс, загружая в его адресное пространство код и данные программы, а затем запускает главный поток созданного процесса.

Потоки

Один поток – это одна единица исполнения кода. Каждый поток последовательно выполняет инструкции процесса, которому он принадлежит, параллельно с другими потоками этого процесса.

Следует отдельно обговорить фразу «параллельно с другими потоками». Известно, что на одно ядро процессора, в каждый момент времени, приходится одна единица исполнения. То есть одноядерный процессор может обрабатывать команды только последовательно, по одной за раз (в упрощенном случае). Однако запуск нескольких параллельных потоков возможен и в системах с одноядерными процессорами. В этом случае система будет периодически переключаться между потоками, поочередно давая выполняться то одному, то другому потоку. Такая схема называется псевдо-параллелизмом. Система запоминает состояние (контекст) каждого потока, перед тем как переключиться на другой поток, и восстанавливает его по возвращению к выполнению потока. В контекст потока входят такие параметры, как стек, набор значений регистров процессора, адрес исполняемой команды и прочее…

Проще говоря, при псевдопараллельном выполнении потоков процессор мечется между выполнением нескольких потоков, выполняя по очереди часть каждого из них.

Вот как это выглядит:

Цветные квадраты на рисунке – это инструкции процессора (зеленые – инструкции главного потока, синие – побочного). Выполнение идет слева направо. После запуска побочного потока его инструкции начинают выполняться вперемешку с инструкциями главного потока. Кол-во выполняемых инструкций за каждый подход не определено.

То, что инструкции параллельных потоков выполняются вперемешку, в некоторых случаях может привести к конфликтам доступа к данным. Проблемам взаимодействия потоков будет посвящена следующая статья, а пока о том, как запускаются потоки в Java…

Запуск потоков

Каждый процесс имеет хотя бы один выполняющийся поток. Тот поток, с которого начинается выполнение программы, называется главным. В языке Java, после создания процесса, выполнение главного потока начинается с метода main(). Затем, по мере необходимости, в заданных программистом местах, и при выполнении заданных им же условий, запускаются другие, побочные потоки.

В языке Java поток представляется в виде объекта-потомка класса Thread. Этот класс инкапсулирует стандартные механизмы работы с потоком.

Запустить новый поток можно двумя способами:

Способ 1
Создать объект класса Thread, передав ему в конструкторе нечто, реализующее интерфейс Runnable. Этот интерфейс содержит метод run(), который будет выполняться в новом потоке. Поток закончит выполнение, когда завершится его метод run().

Выглядит это так:

Class SomeThing //Нечто, реализующее интерфейс Runnable implements Runnable //(содержащее метод run()) { public void run() //Этот метод будет выполняться в побочном потоке { System.out.println("Привет из побочного потока!"); } } public class Program //Класс с методом main() { static SomeThing mThing; //mThing - объект класса, реализующего интерфейс Runnable public static void main(String args) { mThing = new SomeThing(); Thread myThready = new Thread(mThing); //Создание потока "myThready" myThready.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

Для пущего укорочения кода можно передать в конструктор класса Thread объект безымянного внутреннего класса, реализующего интерфейс Runnable:

Public class Program //Класс с методом main(). { public static void main(String args) { //Создание потока Thread myThready = new Thread(new Runnable() { public void run() //Этот метод будет выполняться в побочном потоке { System.out.println("Привет из побочного потока!"); } }); myThready.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

Способ 2
Создать потомка класса Thread и переопределить его метод run():

Class AffableThread extends Thread { @Override public void run() //Этот метод будет выполнен в побочном потоке { System.out.println("Привет из побочного потока!"); } } public class Program { static AffableThread mSecondThread; public static void main(String args) { mSecondThread = new AffableThread(); //Создание потока mSecondThread.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

В приведённом выше примере в методе main() создается и запускается еще один поток. Важно отметить, что после вызова метода mSecondThread.start() главный поток продолжает своё выполнение, не дожидаясь пока порожденный им поток завершится. И те инструкции, которые идут после вызова метода start(), будут выполнены параллельно с инструкциями потока mSecondThread.

Для демонстрации параллельной работы потоков давайте рассмотрим программу, в которой два потока спорят на предмет философского вопроса «что было раньше, яйцо или курица?». Главный поток уверен, что первой была курица, о чем он и будет сообщать каждую секунду. Второй же поток раз в секунду будет опровергать своего оппонента. Всего спор продлится 5 секунд. Победит тот поток, который последним изречет свой ответ на этот, без сомнения, животрепещущий философский вопрос. В примере используются средства, о которых пока не было сказано (isAlive() sleep() и join()). К ним даны комментарии, а более подробно они будут разобраны дальше.

Class EggVoice extends Thread { @Override public void run() { for(int i = 0; i < 5; i++) { try{ sleep(1000); //Приостанавливает поток на 1 секунду }catch(InterruptedException e){} System.out.println("яйцо!"); } //Слово «яйцо» сказано 5 раз } } public class ChickenVoice //Класс с методом main() { static EggVoice mAnotherOpinion; //Побочный поток public static void main(String args) { mAnotherOpinion = new EggVoice(); //Создание потока System.out.println("Спор начат..."); mAnotherOpinion.start(); //Запуск потока for(int i = 0; i < 5; i++) { try{ Thread.sleep(1000); //Приостанавливает поток на 1 секунду }catch(InterruptedException e){} System.out.println("курица!"); } //Слово «курица» сказано 5 раз if(mAnotherOpinion.isAlive()) //Если оппонент еще не сказал последнее слово { try{ mAnotherOpinion.join(); //Подождать пока оппонент закончит высказываться. }catch(InterruptedException e){} System.out.println("Первым появилось яйцо!"); } else //если оппонент уже закончил высказываться { System.out.println("Первой появилась курица!"); } System.out.println("Спор закончен!"); } } Консоль: Спор начат... курица! яйцо! яйцо! курица! яйцо! курица! яйцо! курица! яйцо! курица! Первой появилась курица! Спор закончен!

В приведенном примере два потока параллельно в течении 5 секунд выводят информацию на консоль. Точно предсказать, какой поток закончит высказываться последним, невозможно. Можно попытаться, и можно даже угадать, но есть большая вероятность того, что та же программа при следующем запуске будет иметь другого «победителя». Это происходит из-за так называемого «асинхронного выполнения кода». Асинхронность означает то, что нельзя утверждать, что какая-либо инструкция одного потока, выполнится раньше или позже инструкции другого. Или, другими словами, параллельные потоки независимы друг от друга, за исключением тех случаев, когда программист сам описывает зависимости между потоками с помощью предусмотренных для этого средств языка.

Теперь немного о завершении процессов…

Завершение процесса и демоны

В Java процесс завершается тогда, когда завершается последний его поток. Даже если метод main() уже завершился, но еще выполняются порожденные им потоки, система будет ждать их завершения.

Однако это правило не относится к особому виду потоков – демонам. Если завершился последний обычный поток процесса, и остались только потоки-демоны, то они будут принудительно завершены и выполнение процесса закончится. Чаще всего потоки-демоны используются для выполнения фоновых задач, обслуживающих процесс в течение его жизни.

Объявить поток демоном достаточно просто - нужно перед запуском потока вызвать его метод setDaemon(true) ;
Проверить, является ли поток демоном, можно вызвав его метод boolean isDaemon() ;

Завершение потоков

В Java существуют (существовали) средства для принудительного завершения потока. В частности метод Thread.stop() завершает поток незамедлительно после своего выполнения. Однако этот метод, а также Thread.suspend(), приостанавливающий поток, и Thread.resume(), продолжающий выполнение потока, были объявлены устаревшими и их использование отныне крайне нежелательно. Дело в том что поток может быть «убит» во время выполнения операции, обрыв которой на полуслове оставит некоторый объект в неправильном состоянии, что приведет к появлению трудноотлавливаемой и случайным образом возникающей ошибке.

Вместо принудительного завершения потока применяется схема, в которой каждый поток сам ответственен за своё завершение. Поток может остановиться либо тогда, когда он закончит выполнение метода run(), (main() - для главного потока) либо по сигналу из другого потока. Причем как реагировать на такой сигнал - дело, опять же, самого потока. Получив его, поток может выполнить некоторые операции и завершить выполнение, а может и вовсе его проигнорировать и продолжить выполняться. Описание реакции на сигнал завершения потока лежит на плечах программиста.

Java имеет встроенный механизм оповещения потока, который называется Interruption (прерывание, вмешательство), и скоро мы его рассмотрим, но сначала посмотрите на следующую программку:

Incremenator - поток, который каждую секунду прибавляет или вычитает единицу из значения статической переменной Program.mValue. Incremenator содержит два закрытых поля – mIsIncrement и mFinish. То, какое действие выполняется, определяется булевой переменной mIsIncrement - если оно равно true, то выполняется прибавление единицы, иначе - вычитание. А завершение потока происходит, когда значение mFinish становится равно true.

Class Incremenator extends Thread { //О ключевом слове volatile - чуть ниже private volatile boolean mIsIncrement = true; private volatile boolean mFinish = false; public void changeAction() //Меняет действие на противоположное { mIsIncrement = !mIsIncrement; } public void finish() //Инициирует завершение потока { mFinish = true; } @Override public void run() { do { if(!mFinish) //Проверка на необходимость завершения { if(mIsIncrement) Program.mValue++; //Инкремент else Program.mValue--; //Декремент //Вывод текущего значения переменной System.out.print(Program.mValue + " "); } else return; //Завершение потока try{ Thread.sleep(1000); //Приостановка потока на 1 сек. }catch(InterruptedException e){} } while(true); } } public class Program { //Переменая, которой оперирует инкременатор public static int mValue = 0; static Incremenator mInc; //Объект побочного потока public static void main(String args) { mInc = new Incremenator(); //Создание потока System.out.print("Значение = "); mInc.start(); //Запуск потока //Троекратное изменение действия инкременатора //с интервалом в i*2 секунд for(int i = 1; i <= 3; i++) { try{ Thread.sleep(i*2*1000); //Ожидание в течении i*2 сек. }catch(InterruptedException e){} mInc.changeAction(); //Переключение действия } mInc.finish(); //Инициация завершения побочного потока } } Консоль: Значение = 1 2 1 0 -1 -2 -1 0 1 2 3 4

Взаимодействовать с потоком можно с помощью метода changeAction() (для смены вычитания на сложение и наоборот) и метода finish() (для завершения потока).

В объявлении переменных mIsIncrement и mFinish было использовано ключевое слово volatile (изменчивый, не постоянный). Его необходимо использовать для переменных, которые используются разными потоками. Это связано с тем, что значение переменной, объявленной без volatile, может кэшироваться отдельно для каждого потока, и значение из этого кэша может различаться для каждого из них. Объявление переменной с ключевым словом volatile отключает для неё такое кэширование и все запросы к переменной будут направляться непосредственно в память.

В этом примере показано, каким образом можно организовать взаимодействие между потоками. Однако есть одна проблема при таком подходе к завершению потока - Incremenator проверяет значение поля mFinish раз в секунду, поэтому может пройти до секунды времени между тем, когда будет выполнен метод finish(), и фактическим завершения потока. Было бы замечательно, если бы при получении сигнала извне, метод sleep() возвращал выполнение и поток незамедлительно начинал своё завершение. Для выполнения такого сценария существует встроенное средство оповещения потока, которое называется Interruption (прерывание, вмешательство).

Interruption

Класс Thread содержит в себе скрытое булево поле, подобное полю mFinish в программе Incremenator, которое называется флагом прерывания. Установить этот флаг можно вызвав метод interrupt() потока. Проверить же, установлен ли этот флаг, можно двумя способами. Первый способ - вызвать метод bool isInterrupted() объекта потока, второй - вызвать статический метод bool Thread.interrupted(). Первый метод возвращает состояние флага прерывания и оставляет этот флаг нетронутым. Второй метод возвращает состояние флага и сбрасывает его. Заметьте что Thread.interrupted() - статический метод класса Thread, и его вызов возвращает значение флага прерывания того потока, из которого он был вызван. Поэтому этот метод вызывается только изнутри потока и позволяет потоку проверить своё состояние прерывания.

Итак, вернемся к нашей программе. Механизм прерывания позволит нам решить проблему с засыпанием потока. У методов, приостанавливающих выполнение потока, таких как sleep(), wait() и join() есть одна особенность - если во время их выполнения будет вызван метод interrupt() этого потока, они, не дожидаясь конца времени ожидания, сгенерируют исключение InterruptedException.

Переделаем программу Incremenator – теперь вместо завершения потока с помощью метода finish() будем использовать стандартный метод interrupt(). А вместо проверки флага mFinish будем вызывать метод bool Thread.interrupted();
Так будет выглядеть класс Incremenator после добавления поддержки прерываний:

Class Incremenator extends Thread { private volatile boolean mIsIncrement = true; public void changeAction() //Меняет действие на противоположное { mIsIncrement = !mIsIncrement; } @Override public void run() { do { if(!Thread.interrupted()) //Проверка прерывания { if(mIsIncrement) Program.mValue++; //Инкремент else Program.mValue--; //Декремент //Вывод текущего значения переменной System.out.print(Program.mValue + " "); } else return; //Завершение потока try{ Thread.sleep(1000); //Приостановка потока на 1 сек. }catch(InterruptedException e){ return; //Завершение потока после прерывания } } while(true); } } class Program { //Переменая, которой оперирует инкременатор public static int mValue = 0; static Incremenator mInc; //Объект побочного потока public static void main(String args) { mInc = new Incremenator(); //Создание потока System.out.print("Значение = "); mInc.start(); //Запуск потока //Троекратное изменение действия инкременатора //с интервалом в i*2 секунд for(int i = 1; i <= 3; i++) { try{ Thread.sleep(i*2*1000); //Ожидание в течении i*2 сек. }catch(InterruptedException e){} mInc.changeAction(); //Переключение действия } mInc.interrupt(); //Прерывание побочного потока } } Консоль: Значение = 1 2 1 0 -1 -2 -1 0 1 2 3 4

Как видите, мы избавились от метода finish() и реализовали тот же механизм завершения потока с помощью встроенной системы прерываний. В этой реализации мы получили одно преимущество - метод sleep() вернет управление (сгенерирует исключение) незамедлительно после прерывания потока.

Заметьте что методы sleep() и join() обёрнуты в конструкции try-catch. Это необходимое условие работы этих методов. Вызывающий их код должен перехватывать исключение InterruptedException, которое они бросают при прерывании во время ожидания.

С запуском и завершением потоков разобрались, дальше я расскажу о методах, использующихся при работе с потоками.

Метод Thread.sleep()

Thread.sleep() - статический метод класса Thread, который приостанавливает выполнение потока, в котором он был вызван. Во время выполнения метода sleep() система перестает выделять потоку процессорное время, распределяя его между другими потоками. Метод sleep() может выполняться либо заданное кол-во времени (миллисекунды или наносекунды) либо до тех пор пока он не будет остановлен прерыванием (в этом случае он сгенерирует исключение InterruptedException).

Thread.sleep(1500); //Ждет полторы секунды Thread.sleep(2000, 100); //Ждет 2 секунды и 100 наносекунд

Несмотря на то, что метод sleep() может принимать в качестве времени ожидания наносекунды, не стоит принимать это всерьез. Во многих системах время ожидания все равно округляется до миллисекунд а то и до их десятков.

Метод yield()

Статический метод Thread.yield() заставляет процессор переключиться на обработку других потоков системы. Метод может быть полезным, например, когда поток ожидает наступления какого-либо события и необходимо чтобы проверка его наступления происходила как можно чаще. В этом случае можно поместить проверку события и метод Thread.yield() в цикл:

//Ожидание поступления сообщения while(!msgQueue.hasMessages()) //Пока в очереди нет сообщений { Thread.yield(); //Передать управление другим потокам }

Метод join()

В Java предусмотрен механизм, позволяющий одному потоку ждать завершения выполнения другого. Для этого используется метод join(). Например, чтобы главный поток подождал завершения побочного потока myThready, необходимо выполнить инструкцию myThready.join() в главном потоке. Как только поток myThready завершится, метод join() вернет управление, и главный поток сможет продолжить выполнение.

Метод join() имеет перегруженную версию, которая получает в качестве параметра время ожидания. В этом случае join() возвращает управление либо когда завершится ожидаемый поток, либо когда закончится время ожидания. Подобно методу Thread.sleep() метод join может ждать в течение миллисекунд и наносекунд – аргументы те же.

С помощью задания времени ожидания потока можно, например, выполнять обновление анимированной картинки пока главный (или любой другой) поток ждёт завершения побочного потока, выполняющего ресурсоёмкие операции:

Thinker brain = new Thinker(); //Thinker - потомок класса Thread. brain.start(); //Начать "обдумывание". do { mThinkIndicator.refresh(); //mThinkIndicator - анимированная картинка. try{ brain.join(250); //Подождать окончания мысли четверть секунды. }catch(InterruptedException e){} } while(brain.isAlive()); //Пока brain думает... //brain закончил думать (звучат овации).

В этом примере поток brain (мозг) думает над чем-то, и предполагается, что это занимает у него длительное время. Главный поток ждет его четверть секунды и, в случае, если этого времени на раздумье не хватило, обновляет «индикатор раздумий» (некоторая анимированная картинка). В итоге, во время раздумий, пользователь наблюдает на экране индикатор мыслительного процесса, что дает ему знать, что электронные мозги чем то заняты.

Приоритеты потоков

Каждый поток в системе имеет свой приоритет. Приоритет – это некоторое число в объекте потока, более высокое значение которого означает больший приоритет. Система в первую очередь выполняет потоки с большим приоритетом, а потоки с меньшим приоритетом получают процессорное время только тогда, когда их более привилегированные собратья простаивают.

Работать с приоритетами потока можно с помощью двух функций:

void setPriority(int priority) – устанавливает приоритет потока.
Возможные значения priority - MIN_PRIORITY, NORM_PRIORITY и MAX_PRIORITY.

int getPriority() – получает приоритет потока.

Некоторые полезные методы класса Thread

Это практически всё. Напоследок приведу несколько полезных методов работы с потоками.

boolean isAlive() - возвращает true если myThready() выполняется и false если поток еще не был запущен или был завершен.

setName(String threadName) – Задает имя потока.
String getName() – Получает имя потока.
Имя потока – ассоциированная с ним строка, которая в некоторых случаях помогает понять, какой поток выполняет некоторое действие. Иногда это бывает полезным.

static Thread Thread.currentThread() - статический метод, возвращающий объект потока, в котором он был вызван.

long getId() – возвращает идентификатор потока. Идентификатор – уникальное число, присвоенное потоку.

Заключение

Отмечу, что в статье рассказано далеко не про все нюансы многопоточного программирования. И коду, приведенному в примерах, для полной корректности не хватает некоторых нюансов. В частности, в примерах не используется синхронизация. Синхронизация потоков - тема, не изучив которую, программировать правильные многопоточные приложения не получится. Почитать о ней вы можете, например, в книге «Java Concurrency in Practice» или

Чтобы создать поток вычислений в Jаvа-программе, следует начать с конструирования объекта класса Thread:

Thread worker = new Thread();

После того как объект Thread создан, его можно настроить и запустить на выполнение. Настройка потока включает в себя задание исходного приоритета выполнения, имени и Т.д. Когда объект готов к работе, вызывается его метод start. Метод start, используя данные объекта Thread, порождает новый поток Вычислений и завершает свое выполнение. Далее виртуальная машина Java вызывает метод run объекта и делает поток активным. Вызов start для каждого потока может быть осуществлен только один раз – повторное обращение приводит к выбрасыванию исключения типа i11ega1ThreadStateException.

Когда метод run возвращает управление, выполнение потока завершается. Прервать работу потока можно с помощью вызова метода interrupt – хорошо спроектированный поток всегда на него реагирует. Во время выполнения потока вы можете Взаимодействовать с ним и другими способами, о которых мы расскажем ниже.

Стандартная реализация метода Thread . run не предполагает выполнения каких бы то ни было действий. Чтобы заставить поток делать что-нибудь полезное, необходимо либо расширить класс Thread и предложить собственную пере

определенную версию метода гип, либо создать объект класса, производного от Runnable, и передать его конструктору потока в качестве аргумента. Сначала мы рассмотрим первый подход, связанный с расширением класса Thread. Вопросам использования объектов Runnablе посвящен следующий раздел.

Ниже приведен пример простой программы, предусматривающей создание двух потоков, которые выводят на экран слова "ping" и "PONG" с различной частотой.

public class РingPong extends Thread {

private String word; // Слово, подлежащее выводу на экран

private int delay; // величина временной задержки

public РingPong(String whatToSay, int delayTime) {

word = whatToSay;

delay = delayTime;

public void run() {

system.out.print(word + Thread.sleep(delay);

} catch (InterruptedException e)

return; // Завершить поток

Public static void main(Stringargs){

new PingPong(“ping”,33).start();

new PingPong(“ping”,100).start();

Мы определили новый класс РingPong, Производный от Thread. Метод гип содержит бесконечный цикл, в котором выполняются инструкции вывода слова word на экран и приостановки действия потока на период времени, заданный значением delay. Метод РingPong. гип не способен генерировать исключения, поскольку Никакие исключения не указаны в объявлении унаследованного метода Thread. тип. Тем не менее мы должны предусмотреть средства обработки исключения типа InterruptedException, которое может быть выброшено методом slеер (об исключении InterruptedException речь пойдет позже).

Теперь ничего не, мешает создать несколько потоков, и метод main – как раз то место, где можно это сделать. Мы создаем два объекта РingPong, передавая конструктору класса различные аргументы, представляющие слово и интервал задержки, и вызываем для каждого объекта метод start. Потоки активизируются и начинают выполняться. Вот как могут выглядеть результаты их работы:

ping PONG ping ping PONG ping ping ping PONG ping

ping PONG ping ping ping PONG ping ping PONG ping

pong ping PONG ping ping PONG ping ping ping PONG

plng ping PONG ping ping ping PONG ping ping PONG

ping ping ping PONG ping ping PONG ping ping ping

PONG ping ping PONG ping ping ping PONG ping ping

Потоку разрешено присвоить имя – либо с помощью аргумента String, передаваемого конструктору, либо посредством вызова метода setName. Текущее значение имени потока легко получить с помощью метода getName. Имена потоков служат только для удобства программиста (исполняющей системой они не используются) но поток должен обладать именем, и если оно не задано, исполняющая система принимает эту обязанность на себя, генерируя имена в соответствии с некоторым простым правилом, например thread_1, thread_2 и Т.д.

ссылку на объект Thread текущего выполняемого потока можно получить с помощью статического метода Thread. currentThread. Во время работы программы текущий. поток существует всегда, даже если вы не создавали Потоки явно – метод main активизируется с помощью потока, создаваемого исполняющей системой.

Упражнение 0.1. Напишите про грамму, которая отображает имя потока, выполняющего код метода main.

Немного о принципе многопоточности

Многопоточность — это принцип построения программы, при котором несколько блоков могут выполняться одновременно и не мешать друг другу. Предположим, нам необходимо, чтобы какие-то операции выполнялись одновременно.
Например, у нас существует два объекта, выполняющие конкретные операции независимо друг от друга. Но они используют один и тот же метод, который добавляет к статической переменной число, передаваемое методу в параметре. Однако если эти операции будут выполняться одновременно, то непонятно будет, что запишется в этой переменной, ведь мы одновременно прибавляем к исходному значению переменной два разных числа.

Возникнет странная ситуация. Для того чтобы такого не происходило, для этого метода необходимо установить так называемый признак блокировки. Если какой-либо объект начинает выполнять метод, то происходит блокировка этого метода, и никто больше не может его выполнить, пока данный объект не закончит работу с ним. Все другие объекты, которые должны выполнить этот метод, будут находиться в состоянии ожидания.

Создание потоков на основе класса Thread

Чтобы создать свой поток, необходимо создать дочерний класс класса Thread. Давайте создадим такой класс и затем разберем весь текст программы (листинг 5.7).

Листинг 5.7.
Создание потока на основе класса Thread

Public class MyThread extends Thread{ private int seconds; public MyThread(int seconds) { this.seconds = seconds; } public void run() { try { for (int i = 0; i < this.seconds; i++) { Thread.sleep(1000); System.out.println("Идет секунда: " + i); } } catch (InterruptedException e) { System.out.println("У нас проблемы с потоком"); } } public static void main(String args) { MyThread myThread = new MyThread(5); myThread.start(); new MyThread(15); } }

Вначале мы создаем дочерний класс для класса Thread, затем — конструктор с параметром, который установит количество секунд выполнения потока. После этого мы определяем метод run. который начинает действовать при запуске потока.
Чтобы его вызвать, необходимо вызвать метод start () — «стартовать поток».

У класса Thread есть метод sleep, который позволяет приостановить выполнение потока на заданное количество миллисекунд (внимание: отсчет идет в миллисекундах). Чтобы использовать данный метод, необходимо поместить его в блок try, а блок catch сделать обрабатывающим исключение InterruptedException. Затем мы запускаем два потока, которые будут выполняться одновременно. Чтобы их различить, можно переделать код так (листинг 5.8).

Листинг 5.8.
Создание двух потоков, которые будут выполняться в классе Thread одновременно

Public class MyThread extends Thread{ private int seconds; private static int numbers = 0; private int number; public static int setNumber() { return ++numbers; } public MyThread(int seconds) { this.seconds = seconds; number = MyThread.setNumber(); } public void run() { try { for (int i = 0; i < this.seconds; i++) { Thread.sleep(1000); System.out.println("Идет секунда: " + i + " выполнения потока под номером " + this.number); } } catch (InterruptedException e) { System.out.println("У нас проблемы с потоком"); } } public static void main(String args) { MyThread myThread = new MyThread(5); myThread.start(); new MyThread(15).start(); } }

Теперь мы каждому потоку присвоили свой уникальный номер.

Использование интерфейса Runnable

Можно создавать классы потоков, реализуя интерфейс Runnable. Это бывает порой значительно удобнее. Например, код из предыдущего примера можно переписать так (листинг 5.9).

Листинг 5.9.
Создание классов потоков с использованием интерфейса Runnable

В некоторых случаях так представляется удобней: обычно у подобного создания потоков более короткая запись.
И в том и в другом случае потоку можно присвоить имя. Обычно оно задается в конструкторе в качестве последнего параметра.

Языка программирования Java. И сегодня речь пойдет о многопоточности:

  • что такое многопоточность;
  • как ее реализовать;
  • как создать о остановить потоки выполнения.

Для начала, нужно разобрать, что же такое многопоточность и для чего она нужна. Долго расписывать не буду.

Многопоточность — это свойство системы выполнять несколько вычислений одновременно, тем самым ускоряя процесс этого вычисления. Например, когда Вы играете в компьютерные игры, вы видите, что Ваш персонаж выполняет определенное действие, другие персонажи, анимация, звук. Это все отдельные потоки если говорить примитивно.

В языке Java есть стандартный класс, который реализует многопоточность: Thread, который имплементирует Runable интерфейс. Для того, чтобы реализовать многопоточность в своей программе нужно унаследовать свой класс от Thread или имплементировать интерфейс Runable. Нечто похожее мы делали, когда создавали свои классы исключения в статье о . Но это еще не все. В классе Thread есть метод run() и start() , которые созданы чтобы делать вычисления и запускать выполнение кода соответственно. То есть в методе run() мы пишем, что хотим выполнить, а когда вызываем метод start(), он автоматически запускает наш код в run. Вот такая многоходовочка)). Все гораздо проще, когда смотришь на код.

    package com.java ;

    Runnable {

    public int i = 0 ;

    public void run() {

    new Thread (myMultithread) .start () ; //третий!!! порядок потоков в методе вовсе не означает, что они выполняться в таком порядке

Результат работы программы может быть разным при каждом запуске:

Как я уже прокомментировал в коде: результат будет не всегда совпадать с порядком следования вызовов в коде. Это зависит от множества факторов. Можно выставить приоритетность потоков. Тогда у каждого потока будет свой приоритет и результат будет более предсказуем, но из опыта скажу, что даже это не гарантирует строгий порядок выполнения потоков по приоритетам:

    package com.java ;

    public class MyMultithreadClass implements Runnable { //создаем наш многопоточный класс имплементируя его от Runnable

    public int i = 0 ;

    public void run() { //делаем реализацию метода run

    // TODO Auto-generated method stub

    MyMultithreadClass myMultithread = new MyMultithreadClass() ; //создаем екземпляр нашего класса

    thread1.setPriority (1) ; //можно задавать приоритет от 0 до 10

    thread2.setPriority (9) ; //теперь результат будет более предсказуем

    thread3.setPriority (5) ;

    thread1.start () ;

    thread2.start () ;

    thread3.start () ;

Теперь предлагаю посмотреть на второй метод создания многопоточности: унаследование от класса. Полагаю, Вы помните из статьи , что унаследоваться в Java можно только от одного класса. В этом и недостаток такого метода. Ваш класс уже не сможет унаследовать другие классы:

    package com.java ;

    public class MyMultithreadClass extends Thread { //создаем наш многопоточный класс унаследуя его от Thread

    public static int i = 0 ; //изменили переменную на static, чтобы она не была привязана к классу.

    public void run() { //делаем реализацию метода run

    // TODO Auto-generated method stub

    MyMultithreadClass thread1 = new MyMultithreadClass() ;

    MyMultithreadClass thread2 = new MyMultithreadClass() ;

    MyMultithreadClass thread3 = new MyMultithreadClass() ;

    thread1.start () ;

    thread2.start () ;

    thread3.start () ;

Результат выполнения все еще не предсказуем:

Как видите, создавать потоки совсем не сложно. Несколько сложнее — это управлять ими и ресурсами, которые они используют. Нужно быть очень внимательным при работе с потоками, так как результаты могут быть не такими, которых вы ожидаете.

Потоки имеют определенные состояния. Всего их 4:

  • создание (когда мы написали new Thread();
  • старт (thread1.start());
  • выполнение (пока выполняется метод run());
  • завершение (когда поток выполнил свою работу).

Вот Вам полезная картинка:

Как видим на рисунке, поток может еще и ожидать. Для того, чтобы на время заставить поток прекратить свою работу в классе есть метод wait() , который приостанавливает выполнение пока не будет вызван метод notify() . Неправильно говорить, что это методы класса потока. Это методы объекта. Может у Вас когда то будет вопрос на тесте или собеседовании назвать методы класса Object; тогда к тем методам что Вы вспомните можете смело называть wait() и notify().

Из статических методов есть метод sleep() , который принимает целочисленную переменную в качестве миллисекунд на который следует приостановить поток. Вызов этого метода можно осуществлять в любом месте кода, где Вы желаете приостановить или замедлить выполнение. Я часто использовал этот метод в циклах, когда нужно было в консоли увидеть большое количество данных и найти нужное. Да, поначалу, я дебажил в консоли)).

Таким образом переменная будет выводиться с задержкой в 500 миллисекунд. Не забывайте только, что данный метод может выбрасывать InterruptedException поэтому, при его вызове нужно или оборачивать его в блок try-catch или прописать throws InterruptedException после названия метода.

Есть еще метод yield(), при вызове которого, поток на время прекращает работу, позволяя другим потокам тоже выполниться.

Чтобы уничтожить потоки есть методы stop() и destroy() . Разница между ними в том, что при вызове destroy() поток уже нельзя возобновить. Можно прервать выполнение потока вызвав метод interrupt() .

Есть еще много других методов, но для начала этого Вам будет достаточно. Многопоточность это очень объемная тема, которую сложно охватить одной статьей. Следите за обновлениями сайта и возможно еще будет туториал посвящен многопоточности, но уже с более практичными примерами и задачами.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: