Что нужно для программирования на питоне. Критика языка Python

Все ранее рассматриваемые программы имели линейную структуру: все инструкции выполнялись последовательно одна за одной, каждая записанная инструкция обязательно выполняется.

Допустим мы хотим по данному числу x определить его абсолютную величину (модуль). Программа должна напечатать значение переменной x, если x>0 или же величину -x в противном случае. Линейная структура программы нарушается: в зависимости от справедливости условия x>0 должна быть выведена одна или другая величина. Соответствующий фрагмент программы на Питоне имеет вид:

273 x = int(input()) if x > 0: print(x) else: print(-x)

В этой программе используется условная инструкция if (если). После слова if указывается проверяемое условие (x > 0) , завершающееся двоеточием. После этого идет блок (последовательность) инструкций, который будет выполнен, если условие истинно, в нашем примере это вывод на экран величины x . Затем идет слово else (иначе), также завершающееся двоеточием, и блок инструкций, который будет выполнен, если проверяемое условие неверно, в данном случае будет выведено значение -x .

Итак, условная инструкция в Питоне имеет следующий синтаксис:

If Условие: Блок инструкций 1 else: Блок инструкций 2

Блок инструкций 1 будет выполнен, если Условие истинно. Если Условие ложно, будет выполнен Блок инструкций 2 .

В условной инструкции может отсутствовать слово else и последующий блок. Такая инструкция называется неполным ветвлением. Например, если дано число x и мы хотим заменить его на абсолютную величину x , то это можно сделать следующим образом:

273 x = int(input()) if x < 0: x = -x print(x)

В этом примере переменной x будет присвоено значение -x , но только в том случае, когда x<0 . А вот инструкция print(x) будет выполнена всегда, независимо от проверяемого условия.

Для выделения блока инструкций, относящихся к инструкции if или else в языке Питон используются отступы. Все инструкции, которые относятся к одному блоку, должны иметь равную величину отступа, то есть одинаковое число пробелов в начале строки. Рекомендуется использовать отступ в 4 пробела и не рекомедуется использовать в качестве отступа символ табуляции.

Это одно из существенных отличий синтаксиса Питона от синтаксиса большинства языков, в которых блоки выделяются специальными словами, например, нц... кц в Кумире, begin... end в Паскале или фигурными скобками в Си.

2. Вложенные условные инструкции

Внутри условных инструкций можно использовать любые инструкции языка Питон, в том числе и условную инструкцию. Получаем вложенное ветвление - после одной развилки в ходе исполнения программы появляется другая развилка. При этом вложенные блоки имеют больший размер отступа (например, 8 пробелов). Покажем это на примере программы, которая по данным ненулевым числам x и y определяет, в какой из четвертей координатной плоскости находится точка (x,y):

2 -3 x = int(input()) y = int(input()) if x > 0: if y > 0: # x > 0, y > 0 print("Первая четверть") else: # x > 0, y < 0 print("Четвертая четверть") else: if y > 0: # x < 0, y > 0 print("Вторая четверть") else: # x < 0, y < 0 print("Третья четверть")

В этом примере мы использовали комментарии - текст, который интерпретатор игнорирует. Комментариями в Питоне является символ # и весь текст после этого символа до конца строки.

3. Операторы сравнения

Как правило, в качестве проверяемого условия используется результат вычисления одного из следующих операторов сравнения: < Меньше — условие верно, если первый операнд меньше второго.
> Больше — условие верно, если первый операнд больше второго.
<= Меньше или равно.
>= Больше или равно.
== Равенство. Условие верно, если два операнда равны.
!= Неравенство. Условие верно, если два операнда неравны.

Например, условие (x * x < 1000) означает “значение x * x меньше 1000”, а условие (2 * x != y) означает “удвоенное значение переменной x не равно значению переменной y ”.

Операторы сравнения в Питоне можно объединять в цепочки (в отличии от большинства других языков программирования, где для этого нужно использовать логические связки), например, a == b == c или 1 <= x <= 10 .

4. Тип данных bool

Операторы сравнения возвращают значения специального логического типа bool . Значения логического типа могут принимать одно из двух значений: True (истина) или False (ложь). Если преобразовать логическое True к типу int , то получится 1, а преобразование False даст 0. При обратном преобразовании число 0 преобразуется в False , а любое ненулевое число в True . При преобразовании str в bool пустая строка преобразовывается в False , а любая непустая строка в True .

4.1. Логические операторы

Иногда нужно проверить одновременно не одно, а несколько условий. Например, проверить, является ли данное число четным можно при помощи условия (n % 2 == 0) (остаток от деления n на 2 равен 0), а если необходимо проверить, что два данных целых числа n и m являются четными, необходимо проверить справедливость обоих условий: n % 2 == 0 и m % 2 == 0 , для чего их необходимо объединить при помощи оператора and (логическое И): n % 2 == 0 and m % 2 == 0 .

В Питоне существуют стандартные логические операторы: логическое И, логическое ИЛИ, логическое отрицание.

Логическое И является бинарным оператором (то есть оператором с двумя операндами: левым и правым) и имеет вид and . Оператор and возвращает True тогда и только тогда, когда оба его операнда имеют значение True .

Логическое ИЛИ является бинарным оператором и возвращает True тогда и только тогда, когда хотя бы один операнд равен True . Оператор “логическое ИЛИ” имеет вид or .

Логическое НЕ (отрицание) является унарным (то есть с одним операндом) оператором и имеет вид not , за которым следует единственный операнд. Логическое НЕ возвращает True , если операнд равен False и наоборот.

Пример. Проверим, что хотя бы одно из чисел a или b оканчивается на 0:

15 40 a = int(input()) b = int(input()) if a % 10 == 0 or b % 10 == 0: print("YES") else: print("NO")

Проверим, что число a — положительное, а b — неотрицательное:

If a > 0 and not (b < 0):

Или можно вместо not (b < 0) записать (b >= 0) .

5. Каскадные условные инструкции

Пример программы, определяющий четверть координатной плоскости, можно переписать используя “каскадную“ последовательность операцией if... elif... else:

5 7 x = int(input()) y = int(input()) if x > 0 and y > 0: print("Первая четверть") elif x > 0 and y < 0: print("Четвертая четверть") elif y > 0: print("Вторая четверть") else: print("Третья четверть")

В такой конструкции условия if , ..., elif проверяются по очереди, выполняется блок, соответствующий первому из истинных условий. Если все проверяемые условия ложны, то выполняется блок else , если он присутствует.

Будучи удачно спроектированным языком программирования Python прекрасно подходит для решения реальных задач из разряда тех, которые разработчикам приходится решать ежедневно. Он используется в самом широком спектре применений - и как инструмент управления другими программными компонентами, и для реализации самостоятельных программ. Фактически круг ролей, которые может играть Python как многоцелевой язык программирования, практически не ограничен: он может использоваться для реализации

всего, что угодно, - от веб-сайтов и игровых программ до управления роботами и космическими кораблями.

Однако сферу использования Python в настоящее время можно разбить на несколько широких категорий. Следующие несколько разделов описывают наиболее типичные области применения Python в наши дни, а также инструментальные средства, используемые в каждой из областей. У нас не будет возможности заняться исследованием инструментов, упоминаемых здесь. Если какие-то из них заинтересуют вас, обращайтесь на веб-сайт проекта Python за более

Системное программирование

Встроенные в Python интерфейсы доступа к службам операционных систем делают его идеальным инструментом для создания переносимых программ и утилит системного администрирования (иногда они называются инструментами командной оболочки). Программы на языке Python могут отыскивать файлы и каталоги, запускать другие программы, производить параллельные вычисления с использованием нескольких процессов и потоков и делать

многое другое.

Стандартная библиотека Python полностью отвечает требованиям стандартов POSIX и поддерживает все типичные инструменты операционных систем: переменные окружения, файлы, сокеты, каналы, процессы, многопоточную модель выполнения, поиск по шаблону с использованием регулярных выражений, аргументы командной строки, стандартные интерфейсы доступа к потокам данных, запуск команд оболочки, дополнение имен файлов и многое

Кроме того, системные интерфейсы в языке Python созданы переносимыми, например сценарий копирования дерева каталогов не требует внесения изменений, в какой бы операционной системе он ни использовался. Система Stackless Python, используемая компанией EVE Online, также предлагает улучшенные решения, применяемые для параллельной обработки данных.

Графический интерфейс

Простота Python и высокая скорость разработки делают его отличным средством разработки графического интерфейса. В состав Python входит стандартный объектно-ориентированный интерфейс к Tk GUI API, который называется tkinter(B Python 2.6 он называется Tkinter)t позволяющий программам на языке Python реализовать переносимый графический интерфейс с внешним видом, присущим операционной системе. Графические интерфейсы на базе Python/

tkinter без изменений могут использоваться в MS Windows, X Window (в one-рационных системах UNIX и Linux) и Mac OS (как в классической версии, так и в OS X). Свободно распространяемый пакет расширения PMW содержит дополнительные визуальные компоненты для набора tkinter. Кроме того, существует прикладной интерфейс wxPython GUI API, основанный на библиотеке C++, который предлагает альтернативный набор инструментальных средств построения переносимых графических интерфейсов на языке Python.

Инструменты высокого уровня, такие как PythonCard и Dabot построены на основе таких API, как wxPython и tkinter. При выборе соответствующей библиотеки вы также сможете использовать другие инструменты создания графического интерфейса, такие как Qt (с помощью PyQt), GTK (с помощью PyGtk), MFC (с помощью PyWin32), .NET (с помощью IronPython), Swing (с помощью Jython - реализации языка Python на Java, которая описывается в главе 2, или JPype). Для разработки приложений с веб-интерфейсом или не предъявляющих высоких требований к интерфейсу можно использовать Jython, веб-фреймворки на языке Python и CGI-сценарии, которые описываются в следующем разделе и обеспечивают дополнительные возможности по созданию пользовательского интерфейса.

Веб-сценарии

Интерпретатор Python поставляется вместе со стандартными интернет-модулями, которые позволяют программам выполнять разнообразные сетевые операции как в режиме клиента, так и в режиме сервера. Сценарии могут производить взаимодействия через сокеты, извлекать информацию из форм, отправленных серверным CGI-сценариям; передавать файлы по протоколу FTP; обрабатывать файлы XML; передавать, принимать, создавать и производить разбор

писем электронной почты; загружать веб-страницы с указанных адресов URL; производить разбор разметки HTML и XML полученных веб-страниц; производить взаимодействия по протоколам XML-RPC, SOAP и Telnet и многое другое.

Библиотеки, входящие в состав Python, делают реализацию подобных задач удивительно простым делом.

Кроме того, существует огромная коллекция сторонних инструментов для создания сетевых программ на языке Python, которые можно найти в Интернете. Например, система HTMLGen позволяет создавать HTML-страницы на основе описаний классов Python. Пакет mod_python предназначен для запуска сценариев на языке Python под управлением веб-сервера Apache и поддерживает шаблоны механизма Python Server Pages. Система Jython обеспечивает

бесшовную интеграцию Python/Java и поддерживает серверные апплеты, которые выполняются на стороне клиента.

Помимо этого для Python существуют полноценные пакеты веб-разработки, такие как Django, TurboGears, web2py, Pylons, Zope и WebWare, поддерживающие возможность быстрого создания полнофункциональных высококачественных веб-сайтов на языке Python. Многие из них включают такие возможности, как объектно-реляционные отображения, архитектура Модель/Представление/Контроллер (Model/View/Controller), создание сценариев, выполняющихся на стороне сервера, поддержка шаблонов и технологии AJAX, предоставляя

законченные и надежные решения для разработки веб-приложений.

Интеграция компонентов

Возможность интеграции программных компонентов в единое приложение с помощью Python уже обсуждалась выше, когда мы говорили о Python как о языке управления. Возможность Python расширяться и встраиваться в

системы на языке С и C++ делает его удобным и гибким языком для описания поведения других систем и компонентов. Например, интеграция с библиотекой на языке С позволяет Python проверять наличие и запускать библиотечные компоненты, а встраивание Python в программные продукты позволяет производить настройку программных продуктов без необходимости пересобирать эти продукты или поставлять их с исходными текстами.

Такие инструменты, как Swing и SIP, автоматически генерирующие программный код, могут автоматизировать действия по связыванию скомпилированных компонентов в Python для последующего их использования в сценариях, а система Cython позволяет программистам смешивать программный код на Python и С. Такие огромные платформы на Python, как поддержка СОМ

в MS Windows, Jython - реализация на языке Java, IronPython - реализация на базе.NET и разнообразные реализации CORBA, предоставляют альтернативные способы организации взаимодействий с программными компонентами. Например, в операционной системе Windows сценарии на языке Python могут использовать платформы управления такими приложениями, как MS Word и Excel.

Приложения баз данных

В языке Python имеются интерфейсы доступа ко всем основным реляционным базам данных - Sybase, Oracle, Informix, ODBC, MySQL, PostgreSQL, SQLite и многим другим. В мире Python существует также переносимый прикладной программный интерфейс баз данных, предназначенный для доступа к базам данных SQL из сценариев на языке Python, который унифицирует доступ к различным базам данных. Например, при использовании переносимого API сценарий, предназначенный для работы со свободной базой данных MySQL, практически без изменений сможет работать с другими системами баз данных (такими как Oracle). Все, что потребуется сделать для этого, - заменить используемый низкоуровневый интерфейс.

Стандартный модуль pickle реализует простую систему хранения объектов, что позволяет программам сохранять и восстанавливать объекты Python в файлах или в специализированных объектах. В Сети можно также найти систему, созданную сторонними разработчиками, которая называется ZODB.

Она представляет собой полностью объектно-ориентированную базу данных

для использования в сценариях на языке Python. Существуют также

инструменты, такие как SQLObject и SQLAlchemy, которые отображают

реляционные таблицы в модель классов языка Python. Начиная с версии Python 2.5,

стандартной частью Python стала база данных SQLite.

Быстрое создание прототипов

В программах на языке Python компоненты, написанные на Python и на С, выглядят одинаково. Благодаря этому можно сначала создавать прототипы систем на языке Python, а затем переносить выбранные компоненты на компили-рующие языки, такие как С и C++. В отличие от ряда других инструментов разработки прототипов, язык Python не требует, чтобы система была полностью переписана, как только прототип будет отлажен. Части системы, которые не требуют такой эффективности выполнения, какую обеспечивает C++, можно

оставить на языке Python, что существенно упростит сопровождение и использование такой системы.

Программирование математических

и научных вычислений

Расширение NumPy для математических вычислений, упоминавшееся выше, включает такие мощные элементы, как объекты массивов, интерфейсы к стандартным математическим библиотекам, и многое другое. Расширение NumPy - за счет интеграции с математическими библиотеками, написанными на компилирующих языках программирования - превращает Python в сложный, но удобный инструмент программирования математических вычислений, который зачастую может заменить существующий программный код, написанный на традиционных компилирующих языках, таких как FORTRAN и C++.

Дополнительные инструменты математических вычислений для Python поддерживают возможность создания анимационных эффектов и трехмерных объектов, позволяют организовать параллельные вычисления и так далее. Например, популярные расширения SciPy и ScientificPython предоставляют дополнительные библиотеки для научных вычислений и используют возможности расширения NumPy.

Игры, изображения, искусственный интеллект,

XML роботы и многое другое

Язык программирования Python можно использовать для решения более широкого круга задач, чем может быть упомянуто здесь. Например:

Создавать игровые программы и анимационные ролики с помощью

системы pygame

Обмениваться данными с другими компьютерами через последовательный

порт с помощью расширения PySerial

Обрабатывать изображения с помощью расширений PIL, PyOpenGL,

Blender, Maya и других

Управлять роботом с помощью инструмента PyRo

Производить разбор XML-документов с помощью пакета xml, модуля xmlrp-

clib и расширений сторонних разработчиков

Программировать искусственный интеллект с помощью эмулятора нейро-

сетей и оболочек экспертных систем

Анализировать фразы на естественном языке с помощью пакета NLTK.

Можно даже разложить пасьянс с помощью программы PySol. Поддержку многих других прикладных областей можно найти на веб-сайте PyPI или с помощью поисковых систем (ищите ссылки с помощью Google или на сайте http://www.python.org).

Вообще говоря, многие из этих областей применения Python - всего лишь разновидности одной и той же роли под названием «интеграция компонентов». Использование Python в качестве интерфейса к библиотекам компонентов, написанных на языке С, делает возможным создание сценариев на языке Python для решения задач в самых разных прикладных областях. Как универсальный, многоцелевой язык программирования, поддерживающий возможность интеграции, Python может применяться очень широко.

Кстати, у вас проблемы с блоком питания ноутбука? Советуем вам купить блоки питания для ноутбука по очень доступным ценам. На сайте компании darrom.com.ua вы найдете блоки питания для любого ноутбука.

Программирование на Python

Часть 1. Возможности языка и основы синтаксиса

Серия контента:

Стоит ли изучать Python?

Python – это один из наиболее популярных современных языков программирования. Он пригоден для решения разнообразных задач и предлагает те же возможности, что и другие языки программирования: динамичность, поддержку ООП и кросс-платформенность. Разработку Python начал Гвидо Ван Россум (Guido Van Rossum) еще в середине 1990-х годов, поэтому к настоящему времени удалось избавиться от стандартных «детских» болезней, существенно развить лучшие стороны языка и привлечь множество программистов, использующих Python для реализации своих проектов.

Многие программисты считают, что необходимо изучать только «классические» языки программирования, такие как Java или C++, так как другие языки все равно не смогут обеспечить таких же возможностей. Однако в последнее время возникло убеждение, что программисту желательно знать более одного языка, так как это расширяет его кругозор, позволяя более творчески решать поставленные задачи и повышая его конкурентоспособность на рынке труда.

Изучить в совершенстве два таких языка как Java и C++ достаточно сложно и заняло бы много времени; кроме того, многие аспекты этих языков противоречат друг другу. В то же время Python идеально подходит на роль второго языка, так как он сразу же усваивается благодаря уже имеющимся знаниям в ООП, и тому, что его возможности не конфликтуют, а дополняют опыт, накопленный при работе с другим языком программирования.

Если же программист только начинает свой путь в области разработки ПО, то Python станет идеальным «вводным» языком программирования. Благодаря своей лаконичности он позволит быстрее овладеть синтаксисом языка, а отсутствие «наследства» в виде формировавшихся на протяжении многих лет аксиом поможет быстро освоить ООП. В силу этих факторов «кривая обучения» Python будет довольно короткой, и программист сможет перейти от учебных примеров к коммерческим проектам.

Поэтому кем бы ни являлся читатель данной статьи – опытным программистом или новичком в области разработки ПО, ответом на вопрос, который является и названием этого раздела, должно стать убедительное «да».

Этот цикл статей предназначен для того, чтобы помочь успешному преодолению «кривой обучения», последовательно предоставляя информацию, начиная с самых базовых принципов языка до его продвинутых возможностей в плане интеграции с другими технологиями. В первой статье речь пойдет об основных возможностях и синтаксисе Python. В дальнейшем мы рассмотрим более сложные аспекты работы с этим популярным языком, в частности объектно- ориентированное программирование на Python.

Архитектура Python

Любой язык, неважно – для программирования или общения, состоит как минимум из двух частей – словаря и синтаксиса. Язык Python организован точно так же, предоставляя синтаксис для формирования выражений, образующих исполняемые программы, и словарь – набор функциональности в виде стандартной библиотеки и подключаемых модулей.

Как уже упоминалось, синтаксис Python достаточно лаконичный, особенно если сравнивать с Java или C++. С одной стороны – это хорошо, так как чем проще синтаксис, тем проще его изучить и тем меньше ошибок можно совершить в процессе его использования. Однако у подобных языков есть недостаток – с их помощью можно передавать самую простую информацию и нельзя выражать сложные конструкции.

К Python это не относится, так как это язык простой, но упрощенный. Дело в том, что Python является языком с более высоким уровнем абстракции, выше, например, чем у Java и C++, и позволяет передать такое же количество информации в меньшем объеме исходного кода.

Также Python является языком общего назначения, поэтому может применяться практически в любой области разработки ПО (standalone, клиент-сервер, Web-приложения) и в любой предметной области. Кроме того, Python легко интегрируется с уже существующими компонентами, что позволяет внедрять Python в уже написанные приложения.

Другая составляющая успеха Python – это его модули расширения, как стандартные, так и специфические. Стандартные модули расширения Python – это отлично спроектированная и неоднократно проверенная функциональность для решения задач, возникающих в каждом проекте по разработке ПО, обработка строк и текстов, взаимодействие с операционной системой, поддержка Web-приложений. Эти модули также написаны на языке Python, поэтому обладают его важнейшим свойством – кросс-платформенностью, позволяющей безболезненно и быстро переносить проекты с одной операционной системы на другую.

Если необходимой функциональности не оказалось в стандартной библиотеке Python, то можно создать собственный модуль расширения для его последующего неоднократного использования. Здесь стоит отметить, что модули расширения для Python можно создавать не только на самом языке Python, но и с помощью других языков программирования. В этом случае появляется возможность более эффективной реализации ресурсоемких задач, например сложных научных вычислений, однако теряется преимущество кросс-платформенности, если язык модуля расширения не является сам по себе кросс-платформенным, как Python.

Среда исполнения Python

Как известно, все кросс-платформенные языки программирования построены по одной модели: это действительно переносимый исходный код и среда исполнения (runtime environment), которая не является переносимой и специфична для каждой конкретной платформы. В эту среду исполнения обычно входит интерпретатор, который исполняет исходный код, и различные утилиты, необходимые для сопровождения приложения – отладчик, обратный ассемблер и т.д.

В среду исполнения Java дополнительно входит компилятор, так как исходный код необходимо скомпилировать в байт-код для виртуальной Java-машины. В среду исполнения Python входит только интерпретатор, который одновременно является и компилятором, однако компилирует исходный код Python непосредственно в машинный код целевой платформы.

На данный момент существуют три известных реализации среды исполнения для Python: CPython, Jython и Python.NET. Как можно догадаться из названия, первая среда реализована на языке C, вторая на языке Java, а последняя – на платформе.NET.

Среда исполнения CPython обычно называется просто Python, и когда говорят о Python, то чаще всего имеется в виду именно эта реализация. Эта реализация состоит из интерпретатора и модулей расширения, написанных на языке C, и может использоваться на любой платформе, для которой доступен стандартный компилятор C. Кроме того, существуют уже скомпилированные версии среды исполнения для различных операционных систем, включая различные версии OC Windows и различные дистрибутивы Linux. В этой и последующих статьях будет рассматриваться именно CPython, если иное не оговаривается отдельно.

Среда исполнения Jython – это реализация Python для работы с виртуальной Java-машиной (JVM). Поддерживается любая версия JVM, начиная с версии 1.2.2 (текущая версия Java – 1.6). Для работы с Jython требуется установленная Java-машина (среда исполнения Java) и определенное знание языка программирования Java. Уметь писать исходный код на языке Java не обязательно, однако придется иметь дело c JAR-файлами и Java-апплетами, а также документацией в формате JavaDOC.

Какую версию среды выбрать – зависит исключительно от предпочтений программиста, вообще же рекомендуется держать на компьютере и CPython, и Jython, так как они не конфликтуют между собой, а взаимно дополняют друг друга. Среда CPython работает быстрее, так как нет промежуточного уровня в виде JVM; кроме того, обновленные версии Python сначала выпускают именно в виде среды CPython. Однако Jython может использовать любой класс Java в качестве модуля расширения и работать на любой платформе, для которой существует реализация JVM.

Обе среды исполнения выпущены под лицензией, совместимой с известной лицензией GPL, поэтому могут использоваться для разработки как коммерческого, так и свободного или бесплатного ПО. Большая часть модулей расширения для Python также выходит в рамках лицензии GPL и может свободно применяться в любых проектах, однако существуют и коммерческие расширения или расширения с более строгими лицензиями. Поэтому при использовании Python в коммерческом проекте необходимо знать, какие ограничения существуют в лицензиях подключаемых модулей расширения.

Начало работы с Python

Прежде чем начать использовать Python, необходимо установить его среду исполнения – в данной статье это CPython и соответственно интерпретатор python. Существуют различные способы установки: опытные пользователи могут сами скомпилировать Python из его общедоступного исходного кода, также можно загрузить с Web-сайта www.python.org уже готовые исполняемые файлы для конкретной операционной системы, наконец, многие дистрибутивы Linux поставляются с уже предустановленным интерпретатором Python. В этой статье используется версия Python 2.x для ОС Windows, однако представленные примеры можно запускать на любой версии Python.

После того как программа установки развернет исполняемые файлы Python в указанный каталог, необходимо проверить значения следующих системных переменных:

  • PATH . В этой переменной должен содержаться путь к каталогу, где установлен Python, чтобы его могла найти операционная система.
  • PYTHONHOME . Эта переменная должна содержать только путь к каталогу, где установлен Python. Также в этом каталоге должен содержаться подкаталог lib, в котором будет выполняться поиск стандартных модулей Python.
  • PYTHONPATH . Переменная со списком каталогов, содержащих модули расширения, которые будут подключаться к Python (элементы списка должны разделяться системным разделителем).
  • PYTHONSTARTUP . Не обязательная переменная, определяющая путь к сценарию Python, который должен выполняться каждый раз при запуске интерактивного сеанса интерпретатора Python.

Командная строка для работы с интерпретатором имеет следующую структуру.

PYTHONHOME\python (опции) [ -с команда | файл со сценарием | - ] {аргументы}

Интерактивный режим работы Python

Если запустить интерпретатор, не указывая команды или файла со сценарием, то он запустится в интерактивном режиме. В этом режиме запускается специальная оболочка Python, в которую можно вводить отдельные команды или выражения, а их значение будет немедленно вычисляться. Это очень удобно во время изучения Python, так как можно сразу проверить правильность той или иной конструкции.

Значение вычисленного выражения сохраняется в специальную переменную с именем «Одиночное подчеркивание» (_), так что его можно использовать в последующих выражениях. Завершить интерактивный сеанс можно сочетанием клавиш Ctrl–Z в ОС Windows или Ctrl–D в ОС Linux.

Опции – это не обязательные строковые значения, которые могут изменять поведение интерпретатора во время сеанса; их значение будет рассматриваться в этой и последующих статьях. За опциями указывается либо отдельная команда, которую должен выполнить интерпретатор, либо путь к файлу, в котором содержится сценарий для выполнения. Стоит отметить, что команда может состоять из нескольких выражений, разделенных точкой с запятой, и должна быть заключена в кавычки, чтобы операционная система смогла ее корректно передать интерпретатору. Аргументы – те параметры, которые передаются для последующей обработки в исполняемый сценарий; они передаются в программу в виде строк и разделяются пробелами.

Для проверки правильности установки и работоспособности Python можно выполнить следующие команды:

c:\> python- v
c:\> python –c “import time; print time.asctime()”

Опция –v выводит версию используемой реализации Python и завершает работы, а вторая команда распечатывает на экран значение системного времени.

Писать сценарии Python можно в любом текстовом редакторе, так как они представляют собой обычные текстовые файлы, однако существуют и специальные среды разработки, предназначенные для работы с Python.

Основы синтаксиса Python

Сценарии исходного кода Python состоят из так называемых логических строк , каждая из которых в свою очередь состоит из физических строк . Для обозначения комментариев используется символ #. Комментарии и пустые строки интерпретатор игнорирует.

Далее приведен очень важный аспект, который может показаться странным программистам, изучающим Python в качестве второго языка программирования. Дело в том, что в Python нет символа, который бы отвечал за отделение выражений друг от друга в исходном коде, как, например, точка с запятой (;) в C++ или Java. Точка с запятой позволяет разделить несколько инструкций, если они находятся на одной физической строке. Также отсутствует такая конструкция, как фигурные скобки {}, позволяющая объединить группу инструкций в единый блок.

Физические строки разделяются самим символом конца строки, но если выражение слишком длинное для одной строки, то две физических строки можно объединить в одну логическую. Для этого необходимо в конце первой строки ввести символ обратного слеша (\), и тогда следующую строку интерпретатор будет трактовать как продолжение первой, однако при этом нельзя, чтобы на первой строке за символом \ находились бы другие символы, например, комментарий с #. Для выделения блоков кода используются исключительно отступы. Логические строки с одинаковым размером отступа формируют блок, и заканчивается блок в том случае, когда появляется логическая строка с отступом меньшего размера. Именно поэтому первая строка в сценарии Python не должна иметь отступа. Усвоение этих несложных правил поможет избежать большинства ошибок, связанных с освоением нового языка.

Других радикальных отличий от других языков программирования в синтаксисе Python нет. Имеется стандартный набор операторов и ключевых слов, большая часть которых уже знакома программистам, а специфические для Python будут рассматриваться в этой и последующих статьях. Также используются стандартные правила для заданий идентификаторов переменных, методов и классов – имя должно начинаться с подчеркивания или латинского символа любого регистра и не может содержать символов @, $, %. Также не может использоваться в качестве идентификатора только один символ подчеркивания (см. сноску, в которой говорится об интерактивном режиме работы).

Типы данных, используемых в Python

Типы данных, используемых в Python, также совпадают с другими языками – целые и вещественные типы данных; дополнительно поддерживается комплексный тип данных – с вещественной и мнимой частью (пример такого числа – 1.5J или 2j, где J представляет собой квадратный корень из -1). Python поддерживает строки, которые могут быть заключены в одинарные, двойные или тройные кавычки, при этом строки, как и в Java, являются immutable-объектами, т.е. не могут изменять свое значение после создания.

Есть в Python и логический тип данных bool c двумя вариантами значения – True и False. Однако в старых версиях Python такого типа данных не было, и, кроме того, любой тип данных мог быть приведен к логическому значению True или False. Все числа, отличные от нуля, и непустые строки или коллекции с данными трактовались как True, а пустые и нулевые значения рассматривались как False. Эта возможность сохранилась и в новых версиях Python, однако для повышения читаемости кода рекомендуется использовать для логических переменных тип bool. В то же время, если необходимо поддерживать обратную совместимость со старыми реализациями Python, то в качестве логических переменных стоит использовать 1 (True) или 0 (False).

Функциональность для работы с наборами данных

В Python определены три типа коллекций для хранения наборов данных:

  • кортеж (tuple);
  • список (list);
  • словарь (dictionary).

Кортеж представляет собой неизменяемую упорядоченную последовательность данных. В нем могут содержаться элементы различных типов, например другие кортежи. Кортеж определяется в круглых скобках, а его элементы разделяются запятыми. Специальная встроенная функция tuple() позволяет создавать кортежи из представленной последовательности данных.

Список – это изменяемая упорядоченная последовательность элементов. Элементы списка также разделяются запятыми, но задаются уже в квадратных скобках. Для создания списков предлагается функция list().

Словарь является хеш-таблицей, сохраняющей элемент вместе с его идентификатором-ключом. Последующий доступ к элементам выполняется тоже по ключу, поэтому единица хранения в словаре – это пара объект-ключ и связанный с ним объект-значение. Словарь – это изменяемая, но не упорядоченная коллекция, так что порядок элементов в словаре может меняться со временем. Задается словарь в фигурных скобках, ключ отделяется от значения двоеточием, а сами пары ключ/значение разделяются запятыми. Для создания словарей доступна функция dict().

В листинге 1 приведены примеры различных коллекций, доступных в Python.

Листинг 1. Виды коллекций, доступные в Python
(‘w’,‘o’,‘r’,‘l’,‘d’) # кортеж из пяти элементов (2.62,) # кортеж из одного элемента [“test”,"me"] # список из двух элементов # пустой список { 5:‘a’, 6:‘b’, 7:‘c’ } # словарь из трех элементов с ключами типа int

Определение функций в Python

Хотя Python поддерживает ООП, однако многие его возможности реализованы в виде отдельных функций; кроме того, модули расширения чаще всего делаются тоже в виде библиотеки функций. Функции также применяются и в классах, где они по традиции называются методами.

Синтаксис определения функций в Python крайне простой; с учетом изложенных выше требований:

def ИМЯ_ФУНКЦИИ(параметры): выражение № 1 выражение № 2 ...

Как видно, необходимо использовать служебное слово def, двоеточие и отступы. Вызвать функцию также очень просто:

ИМЯ_ФУНКЦИИ(параметры)

Есть только несколько моментов, специфичных для Python, которые стоит учитывать. Как и в Java, примитивные значения передаются по значению (в функцию попадает копия параметра, и она не может изменить значение, установленное до вызова функции), а сложные объектные типы передаются по ссылке (в функцию передается ссылка и она вполне может изменить объект).

Параметры могут передаваться как просто по порядку перечисления, так и по именам, в этом случае не нужно указывать при вызове те параметры, для которых есть значения по умолчанию, а передавать только обязательные или менять порядок параметров при вызове функции:

#функция, выполняющая деление нацело – с помощью оператора // def foo(delimoe, delitel): return delimoe // delitel print divide(50,5) # результат работы: 10 print divide(delitel=5, delimoe=50) # результат работы: 10

Функция в Python обязательно возвращает значение – это делается либо явно с помощью оператора return, за которым следует возвращаемое значение, либо, в случае отсутствия оператора return, возвращается константа None, когда достигается конец функции. Как видно из примеров объявлений функций, в Python нет необходимости указывать, возвращается что-либо из функции или нет, однако если в функции имеется один оператор return, возвращающей значение, то и другие операторы return в этой функции должны возвращать значения, а если такого значения нет, то необходимо явно прописывать return None.

Если функция очень простая и состоит из одной строки, то ее можно определить прямо на месте использования, в Python подобная конструкция называется лямбда-функцией (lambda). lambda-функция – это анонимная функция (без собственного имени), телом которой является оператор return, возвращающий значение некоторого выражения. Такой подход может оказаться удобным в некоторых ситуациях, однако стоит заметить, что повторное использование подобных функций невозможно («где родился, там и пригодился»).

Еще стоит описать отношение Python к использованию рекурсии. По умолчанию глубина рекурсии ограничена 1000 уровней, и когда этот уровень будет пройден, возникнет исключительная ситуация, и работа программы будет остановлена. Однако при необходимости величину этого предела можно изменить.

У функций в Python есть еще и другие интересные особенности, например документирование или возможность определения вложенных функций, однако они будут рассматриваться в следующих статьях серии на более сложных примерах.

Когда-то давным давно, на одном закрытом форуме я пытался проводить обучение Пайтону. В общем дело там заглохло. Мне стало жалко написанных уроков, и я решил их выложить для широкой общественности. Пока самый первый, самый простой. Дальше идет интереснее, но может быть это будет не интересно. В общем, этот пост будет пробным шаром, если понравится, буду выкладывать дальше.

Python для начинающих. Глава первая. «О чем это мы»

На всякий случай, немного скучного «evangelism». Кому он надоел, можно пропустить несколько абзацев.
Python (читается как «Пайтон» а не «питон») - скриптовый язык, разработанный Гвидо ван Россумом в качестве простого языка, легкого в изучении новичку.
В наше время Пайтон – широко распространенный язык, который используется во многих областях:
- Разработка прикладного ПО (например linux-утилиты yum, pirut, system-config-*, IM-клиент Gajim и многие другие)
- Разработка web-приложений (мощнейший Application-сервер Zope и разработанная на его основе CMS Plone, на основе которой работает например сайт ЦРУ, и масса фреймворков для быстрой разработки приложений Plones, Django, TurboGears и многие другие)
- Использование в качестве встраиваемого скриптового языка во многих играх, и не только (в офисном пакете OpenOffice.org, 3d редакторе Blender, СУБД Postgre)
- Использование в научных рассчетах (с пакетами SciPy и numPy для расчетов и PyPlot для рисования графиков Пайтон становится практически сравним с пакетами типа MatLab)

И это конечно далеко не полный список проектов, использующих этот замечательный язык.

1. Сам интерпретатор, его можно взять тут (http://python.org/download/).
2. Среда разработки. Она для начала необязательна, да и идущий в дистрибутиве IDLE подойдет новичку, но для серъезных проектов нужно что-то посерьезней.
Для Windows я использую замечательный легковесный PyScripter (http://tinyurl.com/5jc63t), для Linux – Komodo IDE.

Хотя для первого урока достаточно будет просто интерактивной оболочки самого Пайтона.

Просто запустите python.exe. Приглашение ввода не заставит себя долго ждать, оно выглядит так:

Также можно записывать программы в файлы с расширением py, в вашем любимом текстовом редакторе, который не добавляет к тексту своих символов разметки (нет Word не подойдет). Также желательно чтобы этот редактор умел делать «умные табуляторы» и не заменял пробелы знаком табуляции.
Для запуска файлов на исполнение по ним можно щелкать 2 раза. Если консольное окно закрывается слишком быстро, вставьте в конце программы следующую строку:

Тогда интерпретатор будет в конце программы ждать нажатия enter.

Или ассоциируйте py-файлы в Far с Пайтоном и открывайте нажимая enter.

Наконец можно воспользоваться одной из многих удобных IDE для Пайтона, которые предоставляют и возможности отладки и подсветку синтаксиса и многие другие «удобства».

Немного теории.

Для начала, Пайтон – язык со строгой динамической типизацией. Что это означает?

Есть языки со строгой типизацией (pascal, java, c и т.п.), у которых тип переменной определяется заранее и не может быть изменен, и есть языки с динамической типизацией (python, ruby, vb), в которых тип переменной трактуется в зависимости от присвоенного значения.
Языки с динамической типизацией можно разделить еще на 2 вида. Строгие, которые не допускают неявного преобразования типа (Пайтон) и нестрогие, которые выполняют неявные преобразования типа (например VB, в котором можно легко сложить строку "123" и число 456).
Разобравшись с классификацией Пайтона, попробуем немного «поиграть» с интерпретатором.

>>> a = b = 1 >>> a, b (1, 1) >>> b = 2 >>> a, b (1, 2) >>> a, b = b, a >>> a, b (2, 1)

Таким, образом мы видим что присваивание осуществляется с помощью знака =. Присвоить значение можно сразу нескольким переменным. При указании интерпретатору имени переменной в интерактивном режиме, он выводит ее значение.

Следующее, что необходимо знать – как строятся базовые алгоритмические единицы – ветвления и циклы. Для начала, необходима небольшая справка. В Пайтоне нет специального ограничителя блоков кода, их роль выполняют отступы. То есть то что написано с одинаковым отступом – является одним командным блоком. Поначалу это может показаться странным, но после легкого привыкание, понимаешь что эта «вынужденная» мера позволяет получать очень читабельный код.
Итак условия.

Условие задается с помощью оператора if, который заканчивается «:». Альтернативные условия которые будут выполняться если первая проверка «не прошла» задаются оператором elif. Наконец else задает ветку, которая будет выполнена если ни одно из условий не подошло.
Обратите внимание, что после ввода if интерпретатор с помощью приглашения «...» показывает что он ожидает продолжения ввода. Чтобы сообщить ему что мы закончили, необходимо ввести пустую строку.

(Пример с ветвлениями почему-то рвет разметку на хабре, не смотря на танцы с тегами pre и code. Простите за неудобство, я его кинул сюда pastebin.com/f66af97ba , если кто-то подскажет что не так - буду очень признателен)

Циклы.

Простейшим случаем цикла является цикл while. В качестве параметра он принимает условие и выполняется до тех пор, пока оно истино.
Вот маленький пример.

>>> x = 0 >>> while x<=10: ... print x ... x += 1 ... 0 1 2 ........... 10

Обратите внимание что поскольку и print x и x+=1 написаны с одинаковым отступом, они считаются телом цикла (помните что я говорил про блоки? ;-)).

Второй вид циклов в Пайтон – цикл for. Он аналогичен циклу foreach других языков. Его синтаксис условно таков.

For переменная in список:
команды

Переменной будут присваиваться по очереди все значения из списка (на самом деле там может быть не только список, но и любой другой итератор, но не будем пока этим забивать голову).

Вот простой пример. В роли списка будет выступать строка, которая является ничем иным как списком символов.

>>> x = "Hello, Python!" >>> for char in x: ... print char ... H e l ........... !

Таким образом мы можем разложить строку по символам.
Что же делать если нам нужен цикл, повторяющийся определенное число раз? Очень просто, на помощь придет функция range.

На входе она принимает от одного до трех параметров, на выходе возвращает список чисел, по которому мы можем «пройтись» оператором for.

Вот несколько примеров использования функции range, которые объясняют роль ее параметров.

>>> range(10) >>> range(2, 12) >>> range(2, 12, 3) >>> range(12, 2, -2)

И маленький пример с циклом.

>>> for x in range(10): ... print x ... 0 1 2 ..... 9

Ввод-вывод

Последнее, что следует знать перед тем как начать использовать Пайтон полноценно – это как осуществляется в нем ввод-вывод.

Для вывода используется команда print, которая выводит на печать все свои аргументы в удобочитаемом виде.

Для ввода с консоли используется функция raw_input(приглашение), которая выводит на экран приглашение и ожидает ввода пользователя, возвращая то что ввел пользователь в виде своего значения.

X = int(raw_input ("Введи число:")) print "Квадрат этого числа составляет ", x * x

Внимание! Несмотря на существование функции input() схожего действия, использовать ее в программах не рекомендуется, так как интерпретатор пытается выполнить вводимые с ее помощью синтаксические выражения, что является серьезной дырой в безопасности программы.

Вот и все для первого урока.

Домашнее задание.

1. Составить программу расчета гипотенузы прямоугольного треугольника. Длина катетов запрашивается у пользователя.
2. Составить программу нахождения корней квадратного уравнения в общем виде. Коэффициенты запрашиваются у пользователя.
3. Составить программу вывода таблицы умножения на число M. Таблица составляется от M * a, до M * b, где M, a, b запрашиваются у пользователя. Вывод должен осуществляется в столбик, по одному примеру на строку в следующем виде (например):
5 х 4 = 20
5 х 5 = 25
И так далее.

О Python (лучше произносить "питон", хотя некоторые говорят "пайтон") - предмете данного изучения, лучше всего говорит создатель этого языка программирования, голландец Гвидо ван Россум:

"Python - интерпретируемый, объектно-ориентированный высокоуровневый язык программирования с динамической семантикой. Встроенные высокоуровневые структуры данных в сочетании с динамической типизацией и связыванием делают язык привлекательным для быстрой разработки приложений ( RAD , Rapid Application Development ). Кроме того, его можно использовать в качестве сценарного языка для связи программных компонентов. Синтаксис Python прост в изучении, в нем придается особое значение читаемости кода, а это сокращает затраты на сопровождение программных продуктов. Python поддерживает модули и пакеты, поощряя модульность и повторное использование кода. Интерпретатор Python и большая стандартная библиотека доступны бесплатно в виде исходных и исполняемых кодов для всех основных платформ и могут свободно распространяться."

В процессе изучения будет раскрыт смысл этого определения, а сейчас достаточно знать, что Python - это универсальный язык программирования. Он имеет свои преимущества и недостатки, а также сферы применения. В поставку Python входит обширная стандартная библиотека для решения широкого круга задач. В Интернете доступны качественные библиотеки для Python по различным предметным областям: средства обработки текстов и технологии Интернет, обработка изображений, инструменты для создания приложений, механизмы доступа к базам данных, пакеты для научных вычислений, библиотеки построения графического интерфейса и т.п. Кроме того, Python имеет достаточно простые средства для интеграции с языками C, C++ (и Java) как путем встраивания (embedding) интерпретатора в программы на этих языках, так и наоборот, посредством использования библиотек, написанных на этих языках, в Python-программах. Язык Python поддерживает несколько парадигм программирования: императивное (процедурный, структурный, модульный подходы), объектно-ориентированное и функциональное программирование.

Можно считать, что Python - это целая технология для создания программных продуктов (и их прототипов). Она доступна почти на всех современных платформах (как 32-битных, так и на 64-битных) с компилятором C и на платформе Java.

Может показаться, что, в программной индустрии нет места для чего-то другого кроме C/C++, Java, Visual Basic, C#. Однако это не так. Возможно, благодаря данному курсу лекций и практических занятий у Python появятся новые приверженцы, для которых он станет незаменимым инструментом.

Как описать язык?

В этой лекции не ставится цели систематически описать Python: для этого существует оригинальное справочное руководство. Здесь предлагается рассмотреть язык одновременно в нескольких аспектах, что достигается набором примеров, которые позволят быстрее приобщиться к реальному программированию, чем в случае строгого академического подхода.

Однако стоит обратить внимание на правильный подход к описанию языка. Создание программы - это всегда коммуникация, в которой программист передает компьютеру информацию, необходимую для выполнения последним действий. То, как эти действия понимает программист (то есть "смысл"), можно назвать семантикой . Средством передачи этого смысла является синтаксис языка программирования. Ну а то, что делает интерпретатор на основании переданного, обычно называют прагматикой . При написании программы очень важно, чтобы в этой цепочке не возникало сбоев.

Синтаксис - полностью формализованная часть: его можно описать на формальном языке синтаксических диаграмм (что и делается в справочных руководствах). Выражением прагматики является сам интерпретатор языка. Именно он читает записанное в соответствии с синтаксисом "послание" и превращает его в действия по заложенному в нем алгоритму. Неформальным компонентом остается только семантика. Именно в переводе смысла в формальное описание и кроется самая большая сложность программирования. Синтаксис языка Python обладает мощными средствами, которые помогают приблизить понимание проблемы программистом к ее "пониманию" интерпретатором. О внутреннем устройстве Python будет говориться в одной из завершающих лекций.

История языка Python

Создание Python было начато Гвидо ван Россумом (Guido van Rossum) в 1991 году, когда он работал над распределенной ОС Амеба. Ему требовался расширяемый язык, который бы обеспечил поддержку системных вызовов. За основу были взяты ABC и Модула-3. В качестве названия он выбрал Python в честь комедийных серий BBC "Летающий цирк Монти-Пайтона", а вовсе не по названию змеи. С тех пор Python развивался при поддержке тех организаций, в которых Гвидо работал. Особенно активно язык совершенствуется в настоящее время, когда над ним работает не только команда создателей, но и целое сообщество программистов со всего мира. И все-таки последнее слово о направлении развития языка остается за Гвидо ван Россумом.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: