Sas применение. Интерфейсы подключения жестких дисков: SCSI, SAS, Firewire, IDE, SATA

Интерфейс SAS.

Интерфейс SAS или Serial Attached SCSI обеспечивает подключение по физическому интерфейсу, аналогичному SATA , устройств, управляемых набором команд SCSI . Обладая обратной совместимостью с SATA , он даёт возможность подключать по этому интерфейсу любые устройства, управляемые набором команд SCSI - не только жёсткие диски, но и сканеры, принтеры и др. По сравнению с SATA, SAS обеспечивает более развитую топологию, позволяя осуществлять параллельное подключение одного устройства по двум или более каналам. Также поддерживаются расширители шины, позволяющие подключить несколько SAS устройств к одному порту.

Протокол SAS разработан и поддерживается комитетом T10. SAS был разработан для обмена данными с такими устройствами, как жёсткие диски, накопители на оптических дисках и им подобные. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями, совместим с интерфейсом SATA. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. Команды (рис. 1), посылаемые в устройство SCSI представляют собой последовательность байт определенной структуры (блоки дескрипторов команд).

Рис. 1.

Некоторые команды сопровождаются дополнительно "блоком параметров", который следует за блоком дескриптора команды, но передается уже как "данные".

Типичная система с интерфейсом SAS состоит из следующих компонентов:

1) Инициаторы. Инициатор - это устройство, которое порождает запросы на обслуживание для целевых устройств и получает подтверждения по мере исполнения запросов.

2) Целевые устройства . Целевое устройство содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса. Целевое устройство может быть как отдельным жёстким диском, так и целым дисковым массивом.

3) Подсистема доставки данных . Является частью системы ввода-вывода, которая осуществляет передачу данных между инициаторами и целевыми устройствами. Обычно подсистема доставки данных состоит из кабелей, которые соединяют инициатор и целевое устройство. Дополнительно, кроме кабелей в состав подсистемы доставки данных могут входить расширители SAS.

3.1) Расширители. Расширители SAS - устройства, входящие в состав подсистемы доставки данных и позволяют облегчить передачи данных между устройствами SAS, например, позволяет соединить несколько целевых устройств SAS к одному порту инициатора. Подключение через расширитель является абсолютно прозрачным для целевых устройств.

SAS поддерживает подключение устройств с интерфейсом SATA. SAS использует последовательный протокол передачи данных между несколькими устройствами, и, таким образом, использует меньшее количество сигнальных линий. SAS использует команды SCSI для управления и обмена данными с целевыми устройствами. Интерфейс SAS использует соединения точка-точка - каждое устройство соединено с контроллером выделенным каналом. В отличии от SCSI, SAS не нуждается в терминации шины пользователем. Интерфейс SCSI использует общую шину - все устройства подключены к одной шине, и с контроллером одновременно может работать только одно устройство. В SCSI скорость передачи информации по разным линиям, составляющим параллельный интерфейс, может отличаться. Интерфейс SAS лишён этого недостатка. SAS поддерживает очень большое количество устройств, в то время как интерфейс SCSI поддерживает 8, 16, или 32 устройства на шине. SAS поддерживает высокие скорости передачи данных (1,5, 3,0 или 6,0 Гбит/с). Такая скорость может быть достигнута при передаче информации на каждом соединении, в то время как на шине SCSI пропускная способность шины разделена между всеми подключёнными к ней устройствами.

SATA использует набор команд ATA и поддерживает жёсткие диски и накопители на оптических дисках, в то время как SAS поддерживает более широкий набор устройств, в том числе жёсткие диски, сканеры и принтеры. SATA-устройства идентифицируются номером порта контроллера интерфейса SATA, в то время как устройства SAS идентифицируются их WWN идентификаторами (World Wide Name). Устройства SATA (версии 1) не поддерживали очередей команд, в то время как устройства SAS поддерживают теггированные очереди команд. Устройства SATA с версии 2 поддерживают Native Command Queuing (NCQ).

Аппаратура SAS поддерживает связь с целевыми устройствами по нескольким независимым линиям , что повышает отказоустойчивость системы (интерфейс SATA такой возможности не имеет). В то же время, интерфейс SATA версии 2 использует дубликаторы портов для достижения аналогичной возможности.

SATA преимущественно используется в некритических приложениях, например в домашних компьютерах. Интерфейс SAS, благодаря своей надёжности, может быть использован в критически важных серверах. Выявление ошибок и обработка ошибочных ситуаций определено в SAS гораздо лучше чем в SATA. SAS считают надмножеством SATA, и не конкурирует с ним.

Разъёмы SAS гораздо меньше разъёмов традиционного параллельного интерфейса SCSI, что позволяет использовать разъёмы SAS для подключения компактных накопителей типоразмером 2,5 дюйма. SAS поддерживает передачу информации со скоростью от 3 Гбит/с до 10 Гбит/с. Существует несколько вариантов разъёмов SAS:

SFF 8482 - вариант, совместимый с разъёмом интерфейса SATA;

SFF 8484 - внутренний разъём с плотной упаковкой контактов; позволяет подключить до 4 устройств;

SFF 8470 - разъём с плотной упаковкой контактов для подключения внешних устройств; позволяет подключить до 4 устройств;

SFF 8087 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внутренних устройств; поддерживает скорость 10 Гбит/с;

SFF 8088 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внешних устройств; поддерживает скорость 10 Гбит/с.

Разъём SFF 8482 позволяет подключать устройства SATA к контроллерам SAS, что избавляет от необходимости устанавливать дополнительный контроллер SATA только потому, что необходимо, к примеру, подключить устройство для записи дисков DVD. Наоборот, устройства SAS не могут подключаться к интерфейсу SATA, и на них устанавливается разъём, предотвращающий их подключение к интерфейсу SATA.

Интерфейс SAS(Serial Attached SCSI) - последовательный интерфейс подключения жестких дисков, пришедший на смену параллельного SCSI-интерфейса. Жесткие диски с интерфейсом SAS предназначены для использования в серверных системах.

Как видно из названия, SAS является родственником SCSI и функционально представляет собой логический протокол своего предшественника, положенный на электрическую и механическую часть последовательного интерфейса SATA.

В сочетании с новой системой адресации это позволяет подключать до 128 устройств на один порт и иметь до 16256 устройств на контроллере.

Выпускающиеся в данный момент SAS контроллеры и жёсткие диски поддерживают скорость передачи данных 300Мбайт/c. Устройства версии SAS-2 будут передавать данные со скоростью до 600Мбайт/с.

История создания

В 2002 г. комитет T10 предложил новый протокол SAS, в котором были устранены вышеописанные недостатки. Соединение "точка-точка" обеспечило выделенную полосу пропускания для каждого диска, предельная длина кабеля составляет до 8м на один порт (увеличивается с помощью SAS-расширителей), количество адресуемых устройств в одном домене возросло до 16 256, вместо ручной установки ID используются уникальные номера (WWN - World Wide Number), присваиваемые каждому из них еще на этапе производства. Разъемы для внешних SAS-устройств рассчитаны на подключение до четырех накопителей и обеспечивают полосу пропускания 1,2Гбит/с в одном направлении. Также в SAS-интерфейсе была обеспечена полная поддержка горячего подключения и сортировка очереди команд.

Стандарты SAS

Набор стандартов SAS (Serial Attached SCSI) включает:

· уровень приложений: SCSI, ATA, SMP (Serial Management Protocol);

· транспортный уровень: SSP (Serial SCSI Protocol), STP (Serial ATA Tunneling Protocol, подключение SATA устройств к SAS HBA через расширитель (expander)), SMP (Serial Management Protocol, поддержка расширителей SAS);

· SAS port layer;

· уровень соединения: общая часть и SSP, STP, SMP;

· SAS phy: согласование скорости (замедление вставкой наполнителей); кодировка (8b10b как в FC и Ethernet); можно объединять в "широкий" (2x, 3x, 4x) порт в HBA/RAID или расширителе; скорость: SAS-1 - 3Гбит/с (300Мбайт/с), SAS-2 - 6Гбит/с (600Мбайт/с) ;

· физический уровень: обеспечивается полный дуплекс; кабели и разъёмы; одиночный внутренний разъём совместим с SATA устройствами, но не наоборот (SAS устройства нельзя подключать к SATA контроллеру); внешние и групповые разъёмы (wide port, несколько phy); в SAS-2 введён период адаптации при подключении устройства (training, позволяет увеличить длину кабеля до 6м); в SAS-2.1 введены активные кабели (встроенная микросхема позволяет уменьшить толщину кабеля и увеличить длину кабеля до 30м); оптический кабель - до 100м; разъём miniSAS x4 обеспечивает питание активного кабеля; внешние miniSAS x4 кабели имеют различные разъёмы для входных и выходных портов; в SAS-2.1 добавлены внешние miniSAS 8x и внутренние miniSAS 8x разъёмы.

Собственно под протоколом передачи данных SAS подразумевается сразу три протокола:

1) последовательный SCSI протокол (Serial SCSI Protocol SSP), передающий команды SCSI;

2) управляющий протокол SCSI (SCSI Management Protocol SMP), передающий управляющую информацию на расширители;

3) туннельный протокол SATA (SATA Tunneled Protocol STP), устанавливает соединение, которое позволяет передавать команды SATA.

Благодаря использованию этих трех протоколов интерфейс SAS полностью совместим с уже существующими SCSI приложениями, управляющим ПО и устройствами SATA.

Такая мультипротокольная архитектура, в сочетании с физической совместимостью разъемов SAS и SATA, делает технологию SAS универсальным связующим звеном между устройствами SAS и SATA.

Разъемы SAS

Разъем SAS является универсальным и по форм-фактору совместим с SATA. Это позволяет напрямую подключать к системе SAS как накопители SAS, так и накопители SATA и таким образом использовать систему либо для жизненно важных приложений, требующих высокой производительности и оперативного доступа к данным, либо для более экономичных приложений с более низкой стоимостью в пересчете на гигабайт.

Набор команд SATA является подмножеством набора команд SAS, что обеспечивает совместимость устройств SATA и контроллеров SAS. Однако SAS накопители не могут работать с контроллером SATA, поэтому они снабжены специальными ключами на разъемах, чтобы исключить вероятность неверного подключения.

Разъем SFF-8482 - внутренний коннектор для подключения стандартного жесткого диска горячей замены с SAS интерфейсом (так же можно подключить диск и с SATA интерфейсом). Через коннектор помимо данных подается питание для жесткого диска.

Разъем SFF-8484 - переходник, позволяющий подключать объединительную панель или корзину с разъемом SFF-8484 к контроллеру. Для 2 или 4 устройств.

Разъем SFF-8470 - внешний разъём с высокой плотностью контактов. Позволяет подключить до 4 устройств. Разъём типа Infiniband.

Разъем SFF-8087 - внутренний разъем mini-SAS для подключения до 4 устройств.

Разъем SFF-8088 - внешний разъем mini-SAS для подключения до 4 устройств

В прошлый раз мы с вами рассмотрели все, что касается технологии SCSI в историческом контексте : кем она была изобретена, как развивалась, какие у нее есть разновидности и так далее. Закончили мы на том, что наиболее современным и актуальным стандартом является Serial Attached SCSI, он появился относительно недавно, но получил быстрое развитие. Первую реализацию «в кремнии» показала компания LSI в январе 2004 года, а в ноябре того же года SAS вошел в топ самых популярных запросов сайта storagesearch.com .

Начнем с основ. Как же работают устройства на технологи SCSI? В стандарте SCSI все построено на концепции клиент/сервер.

Клиент, называемый инициатором (англ. initiator), отправляет разные команды и дожидается их результатов. Чаще всего, разумеется, в роли клиента выступает SAS контроллер. Сегодня SAS контроллеры - это HBA и RAID-контроллеры, а также контроллеры СХД, стоящие внутри внешних систем хранения данных.

Сервер называется целевым устройством (англ. target), его задача - принять запрос инициатора, обработать его и вернуть данные или подтверждение выполнения команды обратно. В роли целевого устройства может выступать и отдельный диск, и целый дисковый массив. В этом случае SAS HBA внутри дискового массива (так называемая внешняя система хранения данных), предназначенный для подключения к нему серверов, работает в режиме Target. Каждому целевому устройству (“таргету”) присваивается отдельный идентификатор SCSI Target ID.

Для связи клиентов с сервером используется подсистема доставки данных (англ. Service Delivery Subsystem), в большинстве случаев, это хитрое название скрывает за собой просто кабели. Кабели бывают как для внешних подключений, так и для подключений внутри серверов. Кабели меняются от поколения к поколению SAS. На сегодня имеется три поколения SAS:

SAS-1 или 3Gbit SAS
- SAS-2 или 6Gbit SAS
- SAS-3 или 12 Gbit SAS – готовится к выходу в середине 2013 года




Внутренние и внешние кабели SAS

Иногда в состав этой подсистемы могут входить расширители или экспандеры SAS. Под экспандерами (англ. Expanders, расширители, но в русском языке прижилось слово «экспандер») понимают устройства, помогающие доставке информации от инициаторов к целям и обратно, но прозрачные для целевых устройств. Одним из самых типичных примеров является экспандер, позволяющий подключить несколько целевых устройств к одному порту инициатора, например, микросхема экспандера в дисковой полке или на бэкплейне сервера. Благодаря такой организации, серверы могут иметь более 8 дисков (контроллеры, которые сегодня используются ведущими производителями серверов, обычно 8-портовые), а дисковые полки – любое необходимое количество.

Инициатор, соединенный с целевым устройством системой доставки данных, называют доменом. Любое SCSI устройство содержит как минимум один порт, который может быть портом инициатора, целевого устройства или совмещать обе функции. Портам могут присваиваться идентификаторы (PID).

Целевые устройства состоят из как минимум одного логического номера устройства (Logical Unit Number или LUN). Именно LUN и идентифицирует с каким из дисков или разделов данного целевого устройства будет работать инициатор. Иногда говорят, что target предоставляет инициатору LUN. Таким образом, для полной адресации к нужному хранилищу используется пара SCSI Target ID + LUN.

Как в известном анекдоте («Я не даю в долг, а Первый Национальный Банк не торгует семечками») - целевое устройство обычно не выступает в роли «посылающего команды», а инициатор - не предоставляет LUN. Хотя стоит отметить, что стандарт допускает тот факт, что одно устройство может быть одновременно и инициатором и целью, но на практике это используют мало.

Для «общения» устройств в SAS существует протокол, по «доброй традиции» и по рекомендации OSI, разделенный на несколько слоев (сверху вниз): Application, Transport, Link, PHY, Architecture и Physical.

SAS включает в себя три транспортных протокола. Serial SCSI Protocol (SSP) - используется для работы со SCSI устройствами. Serial ATA Tunneling Protocol (STP) - для взаимодействия с дисками SATA. Serial Management Protocol (SMP) - для управления SAS-фабрикой. Благодаря STP мы можем подключать диски SATA к контроллерам SAS. Благодаря SMP мы можем строить большие (до 1000 дисковых/SSD-устройств в одном домене) системы, а также использовать зонирование SAS (подробнее об этом в статье про SAS-коммутатор).

Уровень связей служит для управления соединениями и передачи фреймов. Уровень PHY - используется для таких вещей как установка скорости соединения и кодировки. На архитектурном уровне находятся вопросы расширителей и топологии. Физический уровень определяет напряжение, форму сигналов соединения и т.д.

Все взаимодействие в SCSI строится на основании команд, которые инициатор посылает целевому устройству и ожидает их результата. Команды эти посылаются в виде блоков описания команды (Command Description Block или CDB). Блок состоит из одного байта кода команды и ее параметров. Первым параметром почти всегда выступает LUN. CDB может иметь длину от 6 до 32 байт, хотя последние версии SCSI допускают CDB переменной длины.

После получения команды целевое устройство возвращает код подтверждения. 00h означает что команда принята успешно, 02h обозначает ошибку, 08h - занятое устройство.

Команды делятся на 4 большие категории. N, от английского «non-data», предназначены для операций, не относящихся к непосредственно обмену данными. W, от «write» - запись данных, полученных целевым устройством от инициатора. R, как не сложно догадаться от слова «read» используется для чтения. Наконец В - для двустороннего обмена данными.

Команд SCSI существует достаточно много, поэтому перечислим только наиболее часто используемые.

Test unit ready (00h) - проверить, готово ли устройство, есть ли в нем диск (если это ленточный накопитель), раскрутился ли диск и так далее. Стоит отметить, что в данном случае устройство не производит полной самодиагностики, для этого существуют другие команды.
Inquiry (12h) - получить основные характеристики устройства и его параметры
Send diagnostic (1Dh) - произвести самодиагностику устройства - результаты этой команды возвращаются после диагностики командой Receive Diagnostic Results (1Ch)
Request sense (03h) - команда позволяет получить статус выполнения предыдущей команды - результатом этой команды может стать как сообщение типа «нет ошибки», так и разные сбои, начиная с отсутствия диска в накопителе и заканчивая серьезными проблемами.
Read capacity (25h) - позволяет узнать объем целевого устройства
Format Unit (04h) - служит для деструктивного форматирования целевого устройства и подготовки его к хранению данных.
Read (4 варианта) - чтение данных; существует в виде 4 разных команд, отличающихся длиной CDB
Write (4 варианта) - запись. Так же как и для чтения в 4 вариантах
Write and verify (3 варианта) - запись данных и проверка
Mode select (2 варианта) - установка различных параметров устройства
Mode sense (2 варианта) - возвращает текущие параметры устройства

А теперь рассмотрим несколько типичных примеров организации хранения данных на SAS.

Пример первый, сервер хранения данных.

Что это такое и с чем его едят? Большие компании типа Amazon, Youtube, Facebook, Mail.ru и Yandex используют сервера этого типа для того, чтобы хранить контент. Под контентом понимается видео, аудио информация, картинки, результаты индексирования и обработки информации (например, так популярный в последнее время в США, Hadoop), почта, и.т.д. Для понимания задачи и грамотного выбора оборудования под нее нужно дополнительно знать несколько вводных, без которых никак нельзя. Первое и самое главное – чем больше дисков – тем лучше.

Дата-центр одной из российских Web 2.0-компаний

Процессоры и память в таких серверах задействуются не сильно. Второе – в мире Web 2.0, информация хранится географически распределено, несколько копий на различных серверах. Хранится 2-3 копии информации. Иногда, если она запрашивается часто, хранят больше копий для балансировки нагрузки. Ну и третье, исходя из первого и второго, чем дешевле – тем лучше. В большинстве случаев все вышесказанное приводит к тому, что используются Nearline SAS или SATA диски высокой емкости. Как правило, Enterprise-уровня. Это значит, что такие диски предназначены для работы 24x7 и стоят значительно дороже своих собратьев, использующихся в настольных PC. Корпус обычно выбирают такой, куда можно вставить побольше дисков. Если это 3.5’’, то 12 дисков в 2U.

Типичный 2U-сервер хранения данных

Или 24 x 2.5’’ в 2U. Или другие варианты в 3U, 4U и.т.д. Теперь, имея корпус, количество дисков и их тип, мы должны выбрать тип подключения. Вообще-то выбор не очень большой. А сводится он к использованию экспандерного или безэкспандерного бэкплейна. Если мы используем экспандерный бекплейн, то контроллер SAS может быть 8-портовым. Если безэкспандерный – то количество портов контроллера SAS должно равняться или превышать количество дисков. Ну и последнее, выбор контроллера. Мы знаем количество портов, 8, 16, 24, например и выбираем контроллер исходя из этих условий. Контроллеры бывают 2х типов, RAID- и HBA. Отличаются они тем, что RAID-контроллеры поддерживают уровни RAID 5,6,50,60 и имеют достаточно большой объем памяти (512MB-2ГБ сегодня) для кэширования. У HBA памяти или cовсем нет, или ее очень мало. Кроме этого, HBA либо не умеют делать RAID вообще, либо умеют олько простые, не требующие большого объема вычислений уровни. RAID 0/1/1E/10 – типичный набор для HBA. Здесь нам нужен HBA, они стоят значительно дешевле, так защита данных нам не нужна совсем и мы стремимся к минимизации стоимости сервера.

16-портовый SAS HBA

Пример второй, почтовый сервер Exchange. А также MDaemon, Notes и другие подобные сервера.

Здесь все не так очевидно, как в первом примере. В зависимости от того, сколько пользователей должен обслуживать сервер, рекомендации будут различными. В любом случае, мы знаем что базу данных Exchange (так называемую БД Jet) лучше всего хранить на RAID 5/6 и она неплохо кэшируется с использованием SSD. В зависимости от количества пользователей определяем необходимые объемы хранения «сегодня» и «на вырост». Помним, что сервер живет 3-5 лет. Поэтому «на вырост» можно ограничить 5-летней перспективой. Потом будет дешевле полностью поменять сервер. В зависимости от объема дисков выберем корпус. С бэкплейном проще, рекомендуется использовать экспандеры, так как требования по цене не такие жесткие, как в предыдущем случае, и в общем случае, удорожание сервера на $50-$100, а иногда и больше, мы вполне переживем в угоду надежности и функциональности. Диски выберем SAS или NL-SAS/Enterprise SATA в зависимости от объемов. Далее, защита данных и кэширование. Выберем современный 4/8-портовый контроллер, поддерживающий RAID 5/6/50/60 и кэширование на SSD. Для LSI, это любой MegaRAID кроме 9240 с функцией кэширования CacheCade 2.0, или Nytro MegaRAID с SSD «на борту». Для Adaptec, это контроллеры, поддерживающие MAX IQ. Для кэширования в обоих случаях (кроме Nytro MegaRAID) нужно будет взять пару SSD на e-MLC-технологии Enterprise-класса. Такие есть у Intel, Seagate, Toshiba, и.т.д. Цены и компании – на выбор. Если вы не порч доплатить за бренд, то в линейках серверов IBM, Dell, HP, найдите подобные продукты и вперед!

SSD- кэширующий RAID-контроллер Nytro MegaRAID

Пример третий, внешняя система хранения данных своими руками.

Итак, самое серьезное знание SAS, конечно же, требуется тем, кто производит системы хранения данных или хочет их сделать своими руками. Мы остановимся на достаточно простой СХД, программное обеспечение для которой производится компанией Open-E. Конечно же, можно делать СХД и на Windows Storage Server, и на Nexenta, и на AVRORAID, и на Open NAS, и на любом другом подходящем для этих целей софте. Я просто обозначил основные направления, а дальше вам помогут сайты производителей. Итак, если это внешняя система, то мы почти никогда не знаем, сколько же дисков потребуется конечному пользователю. Мы должны быть гибкими. Для этого есть так называемые JBOD – внешние полки для дисков. В их состав входит один или два экспандера, каждый из которых имеет вход (4-х портовый разъем SAS), выход на следующий экспандер, остальные порты разведены на разъемы, предназначенные для подключения дисков. Причем, в двухэкспандерных системах первый порт диска разведен на первый экспандер, второй порт – на второй экспандер. Это позволяет строить отказоустойчивые цепочки JBOD-ов. Головной сервер может иметь внутренние диски в своем составе, либо не иметь их совсем. В этом случае используются «внешние» контроллеры SAS. То есть контроллеры с портами «наружу». Выбор между SAS RAID-контроллером или SAS HBA зависит от управляющего ПО, которое вы выбираете. В случае Open-E, это RAID-контроллер. Можно позаботиться и об опции кэширования на SSD. Если ваша СХД будет иметь очень много дисков, то решение Daisy Chain (когда каждый последующий JBOD подключается к предыдущему, либо к головному серверу) в силу многих причин не подходит. В этом случае головной сервер либо оснащается несколькими контроллерами, либо используется устройство, которое называется SAS-коммутатор. Он позволяет подключать один или несколько серверов к одному или нескольким JBOD. Подробнее SAS-коммутаторы мы разберем в следующих статьях. Для внешних систем хранения данных настоятельно рекомендуется использовать диски только SAS (в том числе NearLine) в силу повышенных требований к отказоустойчивости. Дело в том, что протокол SAS имеет в своем составе гораздо больше функций, чем SATA. Например, контроль записываемых-считываемых данных на всем пути с помощью проверочных сумм (T.10 End-to-End protection). А путь, как мы уже знаем, бывает очень длинным.

Многодисковый JBOD

На этом наш экскурс в мир истории и теории SCSI вообще и SAS в частности подошел к концу, и в следующий раз я расскажу вам более подробно о применении SAS в реальной жизни.

Твердотельные диски с интерфейсом Serial-Attached SCSI (SAS) отличаются простой процедурой установки. Чтобы обеспечить правильную работу этих дисков, не требуется производить установку каких-либо переключателей, терминаторов или выполнять другие настройки.
Каждый твердотельный диск с интерфейсом SAS снабжен отдельным кабелем, который подключается напрямую к хост-адаптеру (контроллеру) SAS. С некоторыми видами контроллеров SAS может использоваться кабель для подключения нескольких устройств (или порт-репликатор). В отличие от дисков с интерфейсом (Parallel) SCSI, в данном случае нет необходимости назначать идентификаторы, так как каждый диск подключается к отдельному порту и все идентификаторы назначаются контроллером.

Диски SAS можно использовать одновременно с дисками SCSI или Serial ATA (SATA), если материнская плата и хост-адаптер поддерживают оба эти интерфейса. Более того, при наличии подходящих портов можно подключать к контроллеру диски SATA одновременно с дисками SAS (однако диски SAS, подключенные к контроллеру SATA, работать не будут).

Конфигурация BIOS

В большинстве современных компьютеров благодаря программам настройки системы (CMOS или BIOS) обнаружение устройств осуществляется автоматически. При запуске системы будет выполнена функция автоматического обнаружения, после чего номер модели диска может появиться на экране компьютера. Номера моделей жестких дисков Seagate начинаются с букв ST.

Иногда BIOS SAS-контроллера имеет собственную утилиту настройки системы, которая отсутствует в стандартной BIOS на материнской плате. В этом случае номер модели диска SAS будет отображаться только в сообщении SAS BIOS. Дополнительные сведения о настройке параметров BIOS для диска SAS содержатся в документации к материнской плате или контроллеру SAS.

Специальное примечание для пользователей хост-адаптера RAID . Для многих RAID-контроллеров с интерфейсом SAS требуется назначить диск для массива, чтобы операционная система смогла работать с диском. Для получения информации о назначении диска для массива см. документацию к контроллеру SAS.

Убедитесь, что каналы SAS включены. В большинстве системных утилит настройки BIOS существует возможность отключения портов SAS. Если контроллер не определяет диск, убедитесь, что все порты SAS включены.

Меры предосторожности/защита от электростатики

  • Твердотельные диски требуют бережного отношения. Предохраняйте диск от ударов и тряски. Берите дисковод только за края корпуса.
  • Электроника диска чрезвычайно чувствительна к статическому электричеству. До установки храните диск в антистатической упаковке. Наденьте контактную манжету с заземлением. Убедитесь, что контактирующие с диском элементы не несут заряда статического электричества. Не используйте омметр на монтажных платах.
  • Соблюдайте осторожность при работе с оборудованием, находящимся под напряжением.
  • Не разбирайте жесткий диск, в противном случае гарантийные обязательства будут аннулированы.
  • Диск для гарантийной замены следует возвращать в комплекте, даже если неисправны только отдельные элементы.
  • Не надавливайте на монтажную плату или на верхнюю крышку диска и не прикрепляйте на них ярлыки.

Инструкции по установке

Операционные системы

Твердотельные диски совместимы с различными операционными системами. Информация о форматировании и подготовке жесткого диска для работы в конкретной операционной системе содержится в руководстве пользователя ОС или хост-адаптера (контроллера) SAS.

«Горячая замена» диска

Функция горячей замены позволяет устанавливать и извлекать диск, не выключая систему.

Параметры раскрутки диска

Большинство систем, к которым подключено всего несколько дисков, позволяют всем дискам запускаться сразу же в момент подачи на них питания. Системы с большим числом дисков можно настроить так, чтобы диски включались в разное время. Это позволит избежать перегрузки системы питания компьютера.

Информация о том, как изменить параметры запуска диска, содержится в документации, входящей в комплект поставки компьютера или хост-адаптера SAS.

Устранение неисправностей

Проблема: компьютер не может распознать диск.

  1. Убедитесь, что диск включен с помощью утилиты настройки хост-адаптера SAS.
  2. Если это так, значит, контроллер распознает диск. Убедитесь, что драйверы контроллера SAS загрузились правильно. Инструкции по загрузке драйверов контроллера см. в документации для платы контроллера.

    При установке операционной системы на жесткий диск необходимо загрузить компьютер с установочного компакт-диска операционной системы и нажать F6, когда появится соответствующий запрос (обычно такой запрос остается на экране всего несколько секунд).

    Установка Windows 8/7/Vista: нажмите кнопку Load Driver, когда это будет предложено. Описанная выше процедура с нажатием клавиши F6 может потребоваться или не потребоваться в зависимости от конкретных условий.

    Установка Windows 2000 или XP: далее установка продолжится в обычном режиме, и на экране будут отображаться все стандартные сообщения, но затем появится экран установки драйверов для адаптера шины главного процессора (HBA) или контроллера.

Serial Attached SCSI

Serial Attached SCSI (SAS ) - компьютерный интерфейс, разработанный для обмена данными с такими устройствами, как жёсткие диски и ленточные накопители. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями (англ. Direct Attached Storage (DAS) devices ). SAS разработан для замены параллельного интерфейса SCSI и позволяет достичь более высокой пропускной способности, чем SCSI; в то же время SAS обратно совместим с интерфейсом SATA : устройства 3Гбит/с и 6Гбит/с SATA могут быть подключены к контроллеру SAS, но устройства SAS нельзя подключить к контроллеру SATA. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. Протокол SAS разработан и поддерживается комитетом T10. Текущую рабочую версию спецификации SAS можно скачать с его сайта. SAS поддерживает передачу информации со скоростью до 6 Гбит/с; ожидается, что к 2012 году скорость передачи достигнет 12 Гбит/с . Благодаря уменьшенному разъему SAS обеспечивает полное двухпортовое подключение как для 3,5-дюймовых, так и для 2,5-дюймовых дисковых накопителей (раньше эта функция была доступна только для 3,5-дюймовых дисковых накопителей с интерфейсом Fibre Channel).

Введение

Типичная система с интерфейсом SAS состоит из следующих компонентов:

Инициаторы (англ. Initiators ) Инициатор - устройство, которое порождает запросы на обслуживание для целевых устройств и получает подтверждения по мере исполнения запросов. Чаще всего инициатор выполняется в виде СБИС . Целевые устройства (англ. Targets ) Целевое устройство содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса. Целевое устройство может быть как отдельным жёстким диском, так и целым дисковым массивом. Подсистема доставки данных (англ. Service Delivery Subsystem ) Является частью системы ввода-вывода, которая осуществляет передачу данных между инициаторами и целевыми устройствами. Обычно подсистема доставки данных состоит из кабелей, которые соединяют инициатор и целевое устройство. Дополнительно, кроме кабелей в состав подсистемы доставки данных могут входить расширители SAS . Расширители (экспандеры) (англ. Expanders ) Расширители (экспандеры) SAS - устройства, входящие в состав подсистемы доставки данных и позволяют облегчить передачи данных между устройствами SAS; например, расширитель позволяет подключить несколько целевых устройств SAS к одному порту инициатора. Подключение через расширитель является абсолютно прозрачным для целевых устройств.

Спецификации на SAS регламентируют физический, канальный и логический уровни интерфейса.

Сравнение SAS и параллельного SCSI

  • SAS использует последовательный протокол передачи данных между несколькими устройствами, и, таким образом, использует меньшее количество сигнальных линий.
  • Интерфейс SCSI использует общую шину. Таким образом, все устройства подключены к одной шине, и с контроллером одновременно может работать только одно устройство. Интерфейс SAS использует соединения точка-точка - каждое устройство соединено с контроллером выделенным каналом.
  • В отличие от SCSI, SAS не нуждается в терминации шины пользователем.
  • В SCSI имеется проблема, связанная с тем, что время распространения сигнала по разным линиям, составляющим параллельный интерфейс, может отличаться. Интерфейс SAS лишён этого недостатка.
  • SAS поддерживает большое количество устройств (> 16384), в то время как интерфейс SCSI поддерживает 8, 16, или 32 устройства на шине.
  • SAS обеспечивает более высокую пропускную способность (1.5, 3.0 или 6.0 Гбит/с). Такая пропускная способность может быть обеспечена на каждом соединении инициатор-целевое устройство, в то время как на шине SCSI пропускная способность шины разделена между всеми подключёнными к ней устройствами.
  • контроллеры SAS могут поддерживать подключение устройств с интерфейсом SATA , при прямом подключении - с использованием протокола SATA, при подключении через SAS-экспандеры - с использованием туннелирования через протокол STP (SATA Tunneled Protocol).
  • SAS, также как и параллельный SCSI, использует команды SCSI для управления и обмена данными с целевыми устройствами.

Сравнение SAS и SATA

Разъёмы

Как правило, разъёмы SAS значительно меньше разъёмов традиционного интерфейса SCSI, что позволяет использовать разъёмы SAS для подключения компактных накопителей размером 2,5 дюйма.

Существует несколько вариантов разъёмов SAS:

  • SFF 8482 - вариант, механически совместимый с разъёмом интерфейса SATA . За счет этого возможно подключать устройства SATA к контроллерам SAS. Подключить же SAS-устройство к интерфейсу SATA - не получится, этому препятствует отсутствие посередине разъема специального выреза-ключа (см. изображение разъема в таблице ниже);
  • SFF 8484 - внутренний разъём с плотной упаковкой контактов; позволяет подключить до 4 устройств;
  • SFF 8470 - разъём с плотной упаковкой контактов для подключения внешних устройств (разъём такого типа применяется в интерфейсе Infiniband , а кроме того, может использоваться для подключения внутренних устройств); позволяет подключить до 4 устройств;
  • SFF 8087 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внутренних устройств;
  • SFF 8088 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внешних устройств;
Изображение Кодовое название Также известен как Внешн./внутр. К-во линий К-во устр-в Комментарий
SFF 8482 SAS разъём Внутренний 1 Форм-фактор, совместимый с SATA-устройствами: позволяет SATA-устройствам соединяться с SAS-контроллером или планкой SAS-разъёмов, что устраняет необходимость в дополнительном SATA контроллере для подключения SATA-устройств типа DVD-рекордеров. Однако жёсткие диски с интерфейсом SAS не могут подключаться к шине SATA, потому что их физический разъём имеет «ключ», не позволяющий подключение к шине SATA. Изображённый на рисунке разъём является разъёмом «дисковой» стороны интерфейса.

SFF 8484 SAS 4x 32-pin Внутренний 32 (19) 4 (2) Разъём с высокой плотностью контактов; в стандарте SFF определены разъёмы для подключения 2 или 4 устройств.
SFF 8485 Определяет SGPIO (расширение стандарта SFF 8484) - последовательное соединение, обычно используемое для подключения светодиодных индикаторов.

SFF 8470 Разъём типа Infiniband Внешний 32 4 Внешний разъём с высокой плотностью контактов (также может использоваться в качестве внутреннего разъёма).

SFF 8087 Внутренний мини-SAS Внутренний 4 Внутренний разъём типа Molex

SFF 8088 Внешний мини-SAS Внешний 32 4 Внешний разъём типа Molex iPASS уменьшенной ширины с подключением до 4-х устройств.

Примечания

Ссылки


Wikimedia Foundation . 2010 .



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: