Частотное регулирование однофазного асинхронного двигателя. Частотный преобразователь для электродвигателя и принцип работы

Добавить тег

Частотный преобразователь

Всем здравствуйте. Вот решил написать статейку про асинхронный привод и преобразователь частоты, который я изготавливал. Моему товарищу надо было крутить пилораму, и крутить хорошо. А сам я занимался импульсной электроникой и сразу предложил ему частотник. Да, можно было купить фирмовый преобразователь, и мне приходилось с ними сталкиваться, параметрировать, но захотелось своего, САМОДЕЛАШНОГО! Да и привод циркулярки к качеству регулирования скорости не критичен, только вот к ударным нагрузкам и к работе в перегрузе должен быть готов. Также максимально-простое управление с помощью пары кнопок и никаких там параметров.

Основные достоинства частотнорегулируемого привода (может для кого-то повторюсь):

Формируем из одной фазы 220В полноценные 3 фазы 220В со сдвигом 120 град., и имеем полный вращающий момент и мощность на валу.

Увеличенный пусковой момент и плавный пуск без большого пускового тока

Отсутствует замагничивание и лишний нагрев двигателя, как при использовании конденсаторов.

Возможность легко регулировать скорость и направление, если необходимо.

Вот какая схемка собралась:

3-фазный мост на IGBT транзисторах c обратными диодами (использовал имеющиеся G4PH50UD) управляется через оптодрайвера HCPL 3120 (бутстрепная схема запитки) микроконтроллером PIC16F628A. На входе гасящий конденсатор для плавного заряда электролитов DC звена. Затем его шунтирует реле и на микроконтроллер одновременно приходит логический уровень готовности. Также имеется триггер токовой защиты от к.з. и сильной перегрузки двигателя. Управление осуществляют 2 кнопки и тумблер изменения направления вращения.

Силовая часть мною была собрана навесным монтажом. Плата контроллера отутюжина вот в таком виде:

Параллельные резисторы по 270к на проходных затворных конденсаторах (забыл под них места нарисовать) припаял сзади платы, потом хотел заменить на смд но так и оставил.

Есть внешний вид этой платы, когда уже спаивал:

С другой стороны

Для питания управления был собран типовой импульсный обратноходовой (FLAYBACK) блок питания.

Его схема:

Можно использовать любой блок питания на 24В, но стабилизированный и с запаздыванием пропадания выходного напряжения от момента пропажи сетевого на пару тройку секунд. Это необходимо чтобы привод успел отключиться по ошибке DC. Добивался установкой электролита С1 большей ёмкости.

Теперь о самом главном...о програме микроконтроллера. Программирование простых моргалок для меня сложности не представляло, но тут надо было поднатужить мозги. Порыскав в нете, я не нашёл на то время подходящей информации. Мне предлагали поставить и специализированные контроллеры, например контроллер фирмы MOTOROLA MC3PHAC. Но хотелось, повторюсь, своего. Принялся детально разбираться с ШИМ модуляцией, как и когда нужно открыть какой транзистор... Открылись некие закономерности и вышел шаблон самой простой программы отработки задержек, с помощью которой можно выдать удовлетворительно синусовую ШИМ и регулировать напряжение. Считать ничего контроллер конечно не успевал, прерывания не давали что надо и поэтому я идею крутого обсчёта ШИМ на PIC16F628A сразу отбросил. В итоге получилась матрица констант, которую отрабатывал контроллер. Они задавали и частоту и напряжение. Возился честно скажу, долго. Пилорама уже во всю пилила конденсаторами, когда вышла первая версия прошивки. Проверял всю схему сначала на 180 ватном движке вентиляторе. Вот как выглядела "экспериментальная установка":

Первые эксперименты показали, что у этого проекта точно есть будущее.

Программа дорабатывалась и в итоге после раскрутки 4кВТ-ного движка её можно было собирать и идти на лесопилку.

Товарищ был приятно удивлён, хоть и с самого начала относился скептически. Я тоже был удивлён, т.к. проверилась защита от к.з. (случайно произошло в борно двигателя). Всё осталось живо. Двигатель на 1,5кВт 1440об/мин легко грыз брусы диском на 300мм. Шкивы один к одному. При ударах и сучках свет слегка пригасал, но двигатель не останавливался. Ещё пришлось сильно подтягивать ремень, т.к. скользил при сильной нагрузке. Потом поставили двойную передачу.

Сейчас ещё дорабатываю программу она станет еще лучше, алгоритм работы шим чуть сложнее, режимов больше, возможность раскручиваться выше номинала...а тут снизу та самая простая версия которая работает на пиле уже около года.

Её характеристики:

Выходная Частота: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ синхронная, изменяющаяся. Диапазон примерно 1700-3300Гц.; Скалярный режим управления U/F, мощность двигателя до 4кВт.

Минимальная рабочая частота после однократного нажатия на кнопку ПУСК(RUN) - 10Гц.

При удержании кнопки RUN происходит разгон, при отпускании частота остаётся та, до которой успел разогнаться. Максимальная 50Гц- сигнализируется светодиодом. Время разгона около 2с.

Светодиод "готовность" сигнализирует о готовности к запуску привода.

Реверс опрашивается в состоянии готовности.

Режимов торможения и регулирования частоты вниз нет, но они в данном случае и не нужны.

При нажатии Стоп или СБРОС происходит остановка выбегом.

На этом пока всё. Спасибо, кто дочитал до конца.



Как вам эта статья?

Созданный в конце XIX столетия, трёхфазный асинхронный двигатель стал незаменимой составляющей современного промышленного производства.

Для плавного пуска и остановки такого оборудования требуется специальное устройство – преобразователь частоты. Особо актуально наличие преобразователя для крупных двигателей с большой мощностью. С помощью этого дополнительного устройства можно регулировать пусковые токи, то есть, контролировать и ограничивать их величину.

Если регулировать пусковой ток исключительно механическим способом, не удастся избежать энергетических потерь и уменьшения срока службы оборудования. Показатели этого тока в пять-семь раз превышают номинальное напряжение, что недопустимо для нормальной работы оборудования.

Принцип работы современного преобразователя частоты подразумевает использование электронного управления. Они не только обеспечивают мягкий пуск, но и плавно регулируют работу привода, придерживаясь соотношения между напряжением и частотой строго по заданной формуле.

Основное преимущество устройства – экономия в потреблении электроэнергии, составляющая в среднем 50%. А также возможность регулировки с учётом потребностей конкретного производства.

Устройство функционирует по принципу двойного преобразования напряжения.

  1. выпрямляется и фильтруется системой конденсаторов.
  2. Затем в работу вступает электронное управление – образуется ток с указанной (запрограммированной) частотой.

На выходе выдаются прямоугольные импульсы, которые под воздействием обмотки статора двигателя (её индуктивности) становятся близкими к синусоиде.

На что обратить внимание при выборе?

Производители делают упор на стоимость преобразователя. Поэтому многие опции доступны только у дорогих моделей. При выборе устройства следует определиться с основными требованиями для конкретного использования.

  • Управление может быть векторным или скалярным. Первое даёт возможность точной регулировки. Второе лишь поддерживает одно, заданное соотношение между частотой и напряжением на выходе и подходит только для простых приборов, вроде вентилятора.
  • Чем выше указанная мощность, тем универсальнее будет устройство — обеспечится взаимозаменяемость и упростится обслуживание оборудования.
  • Диапазон напряжения сети должен быть максимально широким, что обезопасит при перепадах его норм. Понижение не так опасно для устройства, как повышение. При последнем — вполне могут взорваться сетевые конденсаторы.
  • Частота должна полностью соответствовать потребностям производства. Нижний предел указывает на диапазон регулирования скорости привода. Если нужен более широкий, потребуется векторное управление. На практике применяются частоты от 10 до 60 Гц, реже до 100Гц.
  • Управление осуществляется через различные входы и выходы. Чем их больше, тем лучше. Но большее количество разъёмов существенно увеличивает стоимость устройства и усложняет его настройку.
  • Дискретные входы (выходы) используются для ввода команд управления и выхода сообщений о событиях (например, о перегреве), цифровые – для ввода сигналов цифровых (высокочастотных), аналоговые – для ввода сигналов обратной связи.

  • Шина управления подключаемого оборудования должна совпадать с возможностями схемы частотного преобразователя по количеству входов и выходов. Лучше иметь небольшой запас для модернизации.
  • Перегрузочные способности. Оптимален выбор устройства с мощностью на 15% больше мощности используемого двигателя. В любом случае нужно прочесть документацию. Производители указывают все основные параметры двигателя. Если важны пиковые нагрузки, следует выбрать преобразователь с показателем пикового тока на 10% больше указанного.

Сборка преобразователя частоты для асинхронного двигателя своими руками

Собрать инвертор или преобразователь можно самостоятельно. В настоящее время в сети находится множество инструкций и схем такой сборки.

Основная задача – получить «народную» модель. Дешёвую, надёжную и рассчитанную на бытовое применение. Для работы оборудования в промышленных масштабах, конечно, лучше отдать предпочтение устройствам, реализуемым магазинами.
Порядок действий по сборке схемы частотного преобразователя для электродвигателя

Для работы с домашней проводкой, с напряжением 220В и одной фазой. Примерная мощность двигателя до 1кВт.

На заметку. Длинные провода нужно снабдить помехоподавляющими кольцами.

Регулировка вращения ротора двигателя вмещается в диапазон частоты 1:40. Для малых частот необходимо фиксированное напряжение (IR компенсация).

Подключение частотного преобразователя к электродвигателю

Для однофазной проводки на 220В (использования в домашних условиях) подключение осуществляется по схеме «треугольник». Выходной ток не должен превышать 50% от номинального!

Для трёхфазной проводки на 380В (промышленного использования) подключение двигателя к частотному преобразователю осуществляется по схеме «звезда».

Преобразователь (или ) имеет соответствующие клеммы, помеченные буквами.

  • R, S, T– сюда подключаются провода сети, очерёдность не имеет значения;
  • U , V , W – для включения асинхронного двигателя (если двигатель вращается в обратную сторону, нужно поменять местами любой из двух проводов на этих клеммах).
  • Отдельно предусмотрена клемма для заземления.

Для продления срока эксплуатации преобразователя необходимо соблюдать следующие правила:

  1. Регулярно очищать внутренности устройства от пыли (лучше выдувать её небольшим компрессором, так как пылесос с загрязнением не всегда справится – пыль уплотняется).
  2. Своевременно заменять узлы. Электролитические конденсаторы рассчитаны на пять лет, предохранители на десять лет эксплуатации. А вентиляторы охлаждения на два-три года использования. Внутренние шлейфы следует заменять раз в шесть лет.
  3. Контролировать внутреннюю температуру и напряжение на шине постоянного тока.
  4. Повышение температур приводит к засыханию термопроводящей пасты и разрушению конденсаторов. На силовых компонентах привода её следует менять ни реже одного раза в три года.

  5. Придерживаться условий эксплуатации. Температура окружающей среды не должна превышать +40 градусов. Недопустима высокая влажность и запылённость воздуха.

Управление асинхронным мотором (например, ) – довольно сложный процесс. Преобразователи, изготовленные кустарно, дешевле промышленных аналогов и вполне подходят для использования в бытовых целях. Однако для применения на производстве предпочтительнее установить инверторы, собранные в заводских условиях. Обслуживание таких дорогих моделей под силу только хорошо обученному техническому персоналу.

Асинхронные двигатели – устройства, наиболее часто применяемые в промышленности.

{ ArticleToC: enabled=yes }

Для плавного запуска пользуются частотными преобразователями, способными контролировать ток пусковой и позволяющие регулировать скорость вращения. Но, важно понимать, что частотный преобразователь для однофазного электродвигателя отличается от того, который требуется трехфазному.

Асинхронные моторы в сравнении с иными электрическими машинами более мощные и производительные, но имеющие такой недостаток, как необходимость оснащения дополнительными элементами, отвечающими за скорость вращения ротора.

Также обстоят дела с пусковым током, который в 5-7 раз превышает номинальный, из-за чего ударные нагрузки приводят к потере энергии и все вместе сокращает его срок службы.

Для борьбы с этими проблемами существует класс приборов, автоматически контролирующий пусковые токи. Называются они частотными преобразователями.

С их помощью удается в 5 раз уменьшить пусковые токи, осуществив плавный запуск.

Кроме этого, регулируя частоты с напряжением, управляют ротором.

Помимо этих достоинств, применение таких приборов имеет следующие:

  • во момент пуска экономится до 50% энергии;
  • с их помощью осуществляется между смежными проводниками обратная связь. Их
  • можно назвать генераторами трехфазного напряжения нужного значения и частоты.

В их основе лежит инвертор двойного преобразования.

Принцип функционирования заключен в следующем:

  • вначале входной ток входной синусоидальный 220 или 380в выпрямляется, проходя диодный мостик;
  • после этого, он поступает на конденсаторную группу, где сглаживается; пройдя через конденсаторы, он подается на управляющие микросхемы и биполярный БТИ транзистор, точнее мостовые ключи, где из него формируют заданных параметров широтно-импульсную трехфазную последовательность;
  • полученные импульсы, имеющие форму прямоугольника, под воздействием индуктивности обмоток превращаются на выходе в синусоидальное напряжение.

Ниже приведена схема, позволяющая понять, как работает частотный преобразователь:



Выбор преобразователей частотных

Для производителей этих устройств, чтобы завоевать рынок, важна цена, как и для любого электронного оборудования. Чтобы ее снизить, ими создаются приборы, у которых набор функций минимален, т.е. чем дороже стоит частотный преобразователь, тем прибор универсальнее, что важно для потребителя, желающего продлить срок службы двигателя.

Основные критерии выбора

К ним относятся:

  • управление . По этому показателю преобразователи частотные подразделяются на скалярные и векторные, которые чаще встречаются, но стоят дороже. Объясняется это тем, что они способны обеспечить более высокоточную регулировку, которую не могут дать первые. Скалярные же могут только удерживать заданное соотношение напряжения на выходе и частоты. Их поэтому ставят в приборы с невысокой нагрузкой на мотор;
  • мощность. Понятно, что чем этот параметр больше, тем лучше. Но, помимо цифры, важен производитель: оборудование, находящееся в «близком родстве» работает намного эффективнее.Помимо этого, использование однобрендовых преобразователей важен для взаимозаменяемости;
  • напряжение сети. Чтобы защитить устройства от скачков напряжения, которые нередко случаются в отечественных сетях, желательно, чтобы напряжение имело большой рабочий диапазон;
  • диапазон регулировки частоты. Здесь исходят из требований конкретного устройства. На практике применяют преобразователи с частотой 10-100 Герц; дискретные входы. Они предназначены для передачи команд. Также благодаря им обеспечивается запуск двигателя и остановка, вращение в обратном направлении и торможение;
  • аналоговые входы. Благодаря им осуществляют контроль при рабочем двигателе и настройку привода;
  • цифровые. Их назначение – передача высокочастотных сигналов, которые генерируются датчиками угла поворота. Чем входов больше, тем это лучше, но дороже прибор;
  • помимо входов , важны дискретные выходы, с которых сигнал сообщает о возникших неисправностях (перегреве, авариях, отклонении напряжения на входе от нормы и пр.);
  • выходы аналоговые отвечают за передачу обратной связи. Их выбирают по выше описанному принципу;
  • у шины управления число входов и выходов совпадать должно со схемой преобразователя. Но, лучше, если у нее будет запас, который может понадобиться при усовершенствовании устройства;
  • перегрузочная способность. Нормальным считается, когда мощность частотного преобразователя больше на 10-15%, чем у двигателя. Выше, чем номинальный, должен быть у него и ток.

Их выпускают мощностью 5-10 Вт. Этого достаточно для работы центрифуг, бытовых холодильников, стиральных машин, станков обрабатывающих и пр. Характеристики технические у них хуже, в сравнении с трехфазными:

Мощность составляет всего 70% от трехфазного, ниже и перегрузочная способность.

На статоре АД расположены обмотки — основная и пусковая. Последнюю используют при запуске короткозамкнутого ротора «беличье колесо».

Чтобы понять, зачем необходима обмотка пусковая, обратимся к примеру: мотор соединен лишь с рабочей обмоткой (220В).

В ней I1(однофазный ток) создает магнитное пульсирующее поле. Его можно разложить на два – с одинаковой амплитудой и скоростями вращения, но противоположно направленных — Фа и Фв. При неподвижном роторе эти поля создают моменты крутящие М1 и М2 отличные по знаку, но равные по величине.

Результирующий пусковой момент равен нулю (Мn= M1 – M2), т.е. мотор не сможет вращаться без приложения к валу нагрузки.

Поэтому и требуется пусковая обмотка. Создаваемое ею поле заставляет вращаться мотор. Направление вращения определяет пусковой начальный момент.

Электрический двигатель — это машина, преобразующая электрическую энергию в механическую, благодаря которой в движение приводятся механизмы. При обратном преобразовании энергии эти устройства выступают в роли генератора. Ротор (вращающийся) и статор (неподвижный) — основные компоненты электродвигателей.

Для создания вращающегося поля требуется две обмотки на статоре, смещенные в пространстве под определенным углом. Пусковая укладывается на статор в соответствие с этим со смещением относительно рабочей в 90 градусов. Чтобы обеспечить сдвиг токов, при подключении ее к сети используют фазосдвигающий элемент – катушку, конденсатор или активный резистор.

Когда по проводнику течет ток, создается магнитное поле, действующее на него с силой F. Если проводник изогнуть в рамку и поместить в магнитное поле, две стороны, находящиеся под углом 90 градусов к полю, испытают действие такой же силы, но направленной в противоположную сторону, которые и создают крутящий момент.

Нужен малогабаритный однофазный частотный преобразователь, чтобы осуществлять управление мотором асинхронными с конденсаторным пуском (АИРЕ, АВЕ и пр.)

Устанавливают такие моторы в вентиляторах электрических, моечных машинах, холодильниках и т.д.

На сайте http://xn--80aqahnfuib9b.xn--p1ai/esq_A200.html можно посмотреть все характеристики устройства. Здесь же его можно купить, определившись по таблице с моделью.

Модель Ток, А Мощность, кВт Габариты (ВхШхГ) Вес, кг Цена, руб с НДС
Серия ESQ-А200, однофазные 1/1 фаза, 200-260 В (для однофазных электродвигателей)
Преобразователь частоты ESQ-A200-2S0007 для однофазного двигателя 0,75 кВт 4,7 0,75 141x85x113 1,1 14 338
Преобразователь частоты ESQ-A200-2S0015 для однофазного двигателя 1,5 кВт 7,5 1,5 141x85x113 1,2 13 874
Преобразователь частоты ESQ-A200-2S0022 для однофазного двигателя 2,2 кВт 10 2,2 170x125x113 2 19 007

В интернет-магазине http://npf-oberon.com.ua/index.php?route=product/product&path=59_63_65&product_id=62/ его стоимость 170 долларов . Там же ознакомиться можно с характеристиками.

Используют его для управления моторами, установленными в сельскохозяйственном оборудовании, транспортерах, миксерах, мощных насосах.

Огромный выбор одно- и трехфазных преобразователей разных производителей на сайте https://chastotnik.com.ua/preobrasovateli//p5 .

Чтобы сказать лучше ли однофазный преобразователь частотный или трехфазный, нужно четко знать для чего он требуется. В однофазных моторах они нужны для управления и регулирования. Переменное напряжение такими преобразователями частотными преобразуется в импульсное, у которого частота 0-1000 колеб./сек. Скорость, с которой вращается ротор асинхронного мотора, получающий напряжение синусоидальное, при этом, меняется пропорционально частоте такого питания.

Отличается частотный преобразователь для электродвигателя 380 от моторов, работающих от бытовой сети, напряжением, подаваемым на инвертор. Частота трехфазного напряжения на выходе лежит в диапазоне 0-1 кГц.

От него в дальнейшем питается мотор, т.е. такой преобразователь позволяет привод запитывать от бытовой сети, одновременно регулирует его характеристики.

Сегодня такие приборы используют редко, поскольку на смену им пришли трехфазные преобразователи частотные, у которых намного шире возможности. Трехфазный частотный преобразователь для трехфазного электродвигателя способен преобразовывать промышленное напряжение сети (трехфазное).

Их к асинхронному двигателю подключают «звездой», а однофазные – «треугольником», т.е регулируют они большее число параметров, что дает возможность выбрать оптимальный режим.

У них значительно меньше габариты и большие функциональные возможности, высокие показатели долговечности и надежности, вполне приемлемая стоимость.

Видео: Частотный преобразователь. Подключение трехфазного двигателя в однофазную сеть 220В.

Частотное управление электроприводами активно развивается и все чаще можно услышать о новом методе управления, или улучшенном частотнике, или о внедрении частотного электропривода в какой-то сфере, где ранее никто и подумать не мог что это возможно. Но это факт!

Если мы внимательно рассмотрим электродвигатели, к которым применяют частотное регулирование – то это асинхронные или синхронные трехфазные двигатели. Существует несколько Но ведь есть и однофазные асинхронные машины, почему прогресс не касается их? Почему частотное управление не применяют так активно к однофазным машинам? Давайте рассмотрим.
Содержание:

Принцип работы однофазной асинхронной машины

При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

Основные виды однофазных электроприводов

Как упоминалось однофазный двигатель не может развивать пусковой момент, следствием чего становится невозможность его самостоятельного запуска. Для этого придумали несколько способов компенсации магнитного поля противоположного по знаку основному.

Двигатели с пусковой обмоткой

В данном способе пуска кроме основной обмотки Р, имеющей фазную зону 120 0 , на статор наматывают еще и пусковую П, которая имеет фазную зону 60 0 . Также пусковая обмотка сдвигается относительно рабочей на 90 0 электрических. Для того, чтоб создать фазовый сдвиг между токами обмоток I р и I п последовательно в пусковую обмотку подключают элемент, приводящий к сдвигу фаз ψ (фазосдвигающее сопротивление Z п):

Где: а) схема подключения машины, б) векторные диаграммы при использовании различных сопротивлений.

Наилучшими условиями для пуска будет включения конденсатора в пусковую обмотку. Но поскольку емкость конденсатора довольно велика, соответственно и его стоимость и габариты тоже возрастают. Зачастую его применяют для получения повышенного момента для пуска. Пуск с помощью индуктивности имеет наихудшие показатели и в настоящее время не используется. Довольно часто могут применять запуск с помощью активного сопротивления, при этом пусковую обмотку делают с повышенным активным сопротивлением. После запуска электродвигателя пусковая обмотка отключается. Ниже показаны схемы включений и их пусковые характеристики:

Где: а,б) двигатели с пусковой обмоткой, в,г) конденсаторные

Конденсаторный двигатель

Данный тип электродвигателя имеет две рабочие обмотки, в одну из которых подключают рабочую емкость С р. Данные обмотки сдвинуты относительно друг друга на 90 0 электрических и имеют фазные зоны тоже 90 0 . При этом мощности обеих обмоток равны, но их токи и напряжения различны, также различны количества витков. Иногда величины конденсатора рабочего не достаточно для формирования нужного пускового момента, поэтому параллельно ему могут вешать пусковой, как это показано на рисунке выше. Схема приведена ниже:

Где: а) схема конденсаторного электродвигателя, б) его векторная диаграмма

В данном типе однофазных машин коэффициент мощности cosφ даже выше чем у трехфазных. Это объясняется наличием конденсатора. КПД такого электродвигателя выше, чем однофазного электродвигателя с пусковой обмоткой.

Частотное регулирование однофазных асинхронных электродвигателей

Итак, все чаще появляются предложения частотных преобразователей, которые могут управлять однофазными асинхронными машинами. В силу того что частотники предназначены для работы с трехфазными машинами, то для регулирования оборотов однофазной машинами необходим особый вид частотного преобразователя. Это обусловлено тем, что трехфазные и однофазные машины имеют немного разный принцип работы. Давайте рассмотрим схему включения, которую предоставляет один из официальных производителей частотных преобразователей для однофазных машин:

Это схема прямого подключения. Где: Ф-фаза питающего напряжения, N-нейтральный проводник, L1, L2 – обмотки двигателя, Ср – рабочий конденсатор.

А вот схема подключения преобразователя:

Как мы можем видеть, конденсатор при включении данной схемы отключается. Обмотка L1 переключается к выходу преобразователя фазы А, а L2 к В. Общий провод подключается к выходу С. Тем самым мы фактически получили двухфазную машину. Фазовый сдвиг теперь будет реализовывать частотный преобразователь, а не конденсатор. На выходе преобразователя будет обычное трехфазное напряжение.

Данный способ частотного регулирования трудно назвать однофазным, так как при питания двигателя от сети напрямую необходимо опять восстанавливать схему с конденсатором. Более того, этот способ регулирования частоты НЕ ПОДХОДИТ для машин с пусковой обмоткой, так как сопротивление рабочей и пусковой обмотки не равны, появится асимметрия.

Можем сделать вывод, что данный вид частотного регулирования подходит не всем электродвигателям, а только конденсаторным. Более того, при такой схеме подключения необходимо провести переподключение обмоток внутри электродвигателя (в коробке выводов электродвигателя), что после переподключения не позволит работать ему от сети напрямую. Поэтому если вы собираетесь питать электродвигатель от однофазной сети через частотник, то, может быть стоит купить преобразователь, который питается от однофазной сети, а двигатель обычный, трехфазный. Это лучше с точки зрения работы самой машины, также отсутствуют переделки внутри электрической машины. Если вы собираетесь таким образом модернизировать систему, то внимательно изучите характеристики электродвигателя, преобразователя, чтоб избежать пустой траты средств или выхода из строя элементов системы.


Простой преобразователь частоты для асинхронного электродвигателя.

Первым был ресторан - зимой холодный воздух должен строго дозировано дуть на разгорячённых посетителей, а летом наоборот -замерзших от холодного мороженого плавно согревать жарким воздухом с улицы. Без инвертора никак не обойтись.
Второй хочет стричь лохматых овец, но вот беда машинка трехфазная. А в поле только одна да и та не 220в. Опять нужен инвертор.
Третий вообще наждачный камень, сверлильный станок и намоточный -захотел прицепить к двигателю.
В конце концов оглядевшись по сторонам я увидел - все…все делают инверторы японцы, французы, немцы …. , только я ещё не имею своего точила для отверток. И мало того все приличные фирмы уже написали, как это делать.

Итак коль уж асинхронный двигатель так распространён и трехфазная система напряжения созданная М. О. Доливо-Добровольским так удобна. А современная элементная база так хороша. То сделать преобразователь частоты -это лишь вопрос личного желания и некоторых финансовых возможностей. Возможно кто то скажет « Ну, зачем мне инвертор, я поставлю фазосдвигающий конденсатор и все решено» . Но при этом обороты не покрутишь и в мощности потеряешь и потом это не интересно.

Возьмём за основу - в быту есть однофазная сеть 220в, народный размер двигателя до 1 кВт. Значить соединяем обмотки двигателя треугольником. Дальше -проще, понадобится драйвер трехфазного моста IR2135(IR2133) выбираем такой потому, что он применяется в промышленной технике имеет вывод SD и удобное расположение выводов. Подойдёт и IR2132 , но у неё dead time больше и выхода SD нет. В качестве генератора PWM выберем микроконтроллер AT90SPWM3B - доступен, всем понятен, имеет массу возможностей и недорого стоит, есть простой программатор -https://real.kiev.ua/avreal/. Силовые транзисторы 6 штук IRG4BC30W выберем с некоторым запасом по току - пусковые токи АД могут превышать номинальные в 5-6 раз. И пока не ставим "тормозной" ключ и резистор, будем тормозить и намагничивать перед пуском ротор постоянным током, но об этом позже.... Весь процесс работы отображается на 2-х строчном ЖКИ индикаторе. Для управления достаточно 6 кнопок (частота +, частота -, пуск, стоп, реверс, меню).
Получилась вот такая схема.

Я вовсе не претендую на законченность конструкции и предлагаю брать данную конструкцию за некую основу для энтузиастов домашнего электропривода. Приведённые здесь платы были сделаны под имеющиеся в моём распоряжении детали.

Конструктивно инвертор выполнен на двух платах - силовая часть (блок питания, драйвер и транзисторы моста, силовые клеммы) и цифровая часть (микроконтроллер + индикатор). Электрически платы соединены гибким шлейфом. Такая конструкция выбрана для перехода в будущем на контроллер TMS320 или STM32 или STM8.
Блок питания собран по классической схеме и в комментариях не нуждается. Микросхема IL300 линейная опто развязка для управления током 4-20Ма. Оптроны ОС2-4 просто дублируют кнопки «старт, стоп, реверс» для гальванически развязанного управления. Выход оптрона ОС-1 «функция пользователя» (сигнализация и пр.)
Силовые транзисторы и диодный мост закреплены на общий радиатор. Шунт 4 витка манганинового провода диаметром 0.5мм на оправке 3 мм.
Сразу замечу некоторые узлы и элементы вовсе не обязательны. Для того что бы просто крутить двигатель, не нужно внешнее управление током 4-20 Ма. Нет необходимости в трансформаторе тока, для оценочного измерения подойдёт и токовый шунт. Не нужна внешняя сигнализация. При мощности двигателя 400 Вт и площади радиатора 100см 2 нет нужды в термодатчике.

ВАЖНО! - имеющиеся на плате кнопки управления изолированы от сети питания только пластмассовыми толкателями. Для безопасного управления необходимо использовать опторазвязку.

Возможные изменения в схеме в зависимости от микропрограммы.
Усилитель DA-1 можно подключать к трансформатору тока или к шунту. Усилитель DA-1-2 может быть использован для измерения напряжения сети или для измерения сопротивления терморезистора если не используется термодатчик PD-1.
В случае длинных соединительных проводов необходимо на каждый провод хотя бы надеть помехоподавляющие кольцо. Имеют место помехи. Так например -пока я этого не сделал у меня «мышь» зависала.
Так же считаю важным отметить проверку надёжности изоляции АД -т.к. при коммутации силовых транзисторов выбросы напряжение на обмотках могут достигать значений 1,3 Uпит.

Общий вид.

Немного про управление.

Начитавшись книжек с длинными формулами в основном описывающих как делать синусоиду при помощи PWM. И как стабилизировать скорость вращения вала двигателя посредством таходатчика и ПИД регулятора. Я пришёл к выводу -АД имеет достаточно жёсткую характеристику во всём диапазоне допустимых нагрузок на валу.
Поэтому для личных нужд вполне подойдет управление описанное законом Костенко М.П. или как его ещё называют скаляроное. Достаточное для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40. Т.е. грубо говоря мы в самом простом случае делаем обычную 3-х фазную розетку с переменной частотой и напряжением меняющимися в прямой зависимости. С небольшими «но» на начальных участках характеристики необходимо выполнять IR компенсацию т.е. на малых частотах нужно фиксированное напряжение. Втрое «но» в питающие двигатель напряжение замешать 3 гармонику. Всё остальное сделают за нас физические принципы АД. Более подробно про это можно прочесть в документе AVR494.PDF
Основываясь на моих личных наблюдениях и скромном опыте именно эти методы без особых изысков чаще всего применяются в приводах мощностью до 15 кВт.
Далее не буду углубляться в теорию и описание мат моделей АД. Это и без меня достаточно хорошо изложили профессора ещё в 60-х.

Но ни в коем случае не стоит недооценивать сложности управления АД. Все мои упрощения оправданны только некоммерческим применением инвертора.

Плата силовых элементов.

В программе V-1.0 для AT90SPWM3B реализовано
1- Частотное управление АД.Форма напряжения синусоида с 3 гармоникой.
2- Частота задания 5 Гц -50 Гц с шагом 1 Гц. Частота ШИМ 4 кГц.
3- Фиксированное время разгона -торможения
4- Реверс (только через кнопку СТОП)
5- Разгон до заданной частоты с шагом 1 Гц
6 - Индикация показаний канала АЦП 6 (разрядность 8 бит., оконный фильтр апертура 4 бита)
я использую этот канал для замера тока шунта.
7 - Индикация режима работы START,STOP,RUN,RAMP, и Частота в Гц.
8- Обработка сигнала авария от мс IR2135



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: