Что такое процессор? Особенности и характеристики. Архитектура микропроцессоров

В процессе работы процессор обрабатывает данные, которые находятся в его регистрах, в оперативной памяти и внешних буферных устройствах процессора. Всего существует 3 информационных потока, обрабатываемых процессором:

  1. Данные подлежащие обработки

Совокупность разнообразных команд, которые может выполнить процессор над данными, образует систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах, тем дольше средняя продолжительность выполнения команд процессора. Процессоры Intelнасчитывают более 1000 команд и относятся к процессорам с расширенной системой команд (CISC).

Архитектурный облик IBMPC-совместимого компьютера определяется рядом свойств, обеспечивающих возможность функционирования программного обеспечения, управляющего подключенным оборудованием. Программы могут взаимодействовать с устройствами разными способами:

    Используя вызовы функций операционной системы(прерывания DOS,APIWindowsи т.д.);

    Используя вызовы функций базовой системы ввода-вывода (BIOS);

    Непосредственно взаимодействуя с известным им «железом» - портами и памятью устройств или контроллеров интерфейсов.

Такое разнообразие существует благодаря изначальной открытости архитектуры первых IBMPCи сохранения имеющихся решений (пускай иногда и не самых лучших) в последующих моделях, обрастающих новыми узлами.

Облик PC-совместимого компьютера в значительной степени определяется разработчиками из фирмMicrosoftиIntel. Для этих фирм стало уже традицией выпускать объемистый документ, диктующий разработчикам аппаратуры требования для получения желаемого логотипа “DesignedforMicrosoftWindows”.

В спецификациях определяются требования к функциональности и производительности всех подсистем компьютера, включая и периферийные устройства.

В настоящее время выделяют следующие типы архитектур процессора:

    RISC – возможность выполнения меньшего количества команд, но с большой скоростью Команды состоящие из более простых команд, выполняются более производительно и с большой скоростью. Недостатки: сложные алгоритмы не всегда можно разбить на последовательность простых команд.

    CISC – процессоры универсальны и могут использоваться в любых компьютерных системах.

    MISC – промежуточный тип архитектуры. Имеет внутреннее ядро микропроцессора, выполненное поRISC-архитектуре и внешнее выполненное по структуреCISC.

Слоты расширения предназначены для установки карт различного назначения, расширяющих функциональные возможности компьютера. На слоты выводятся стандартные шины расширения ввода-вывода, а также промежуточные интерфейсы, наподобие AMRиCNR. Стандартизованные шины расширения ввода-вывода обеспечивают основу функциональной расширяемостиPC-совместимого персонального компьютера, который с самого рождения не замыкался на выполнении сугубо вычислительных задач.

Шины расширения является средствами подключения системного уровня: они позволяют адаптерам и контроллерам непосредственно использовать системные ресурсы PC– пространства памяти и ввода-вывода, прерывания, каналы прямого доступа к памяти. Как следствие, изготовителям модулей расширения приходится точно следовать протоколам шины, включая жесткие частотные и нагрузочные параметры, а также временные диаграммы. Отклонения приводят к несовместимости с некоторыми системными платами. Если при подключении к внешним интерфейсам это ведет к неработоспособности только самого устройства, то некорректное подключение к системной шине может блокировать работу всего компьютера. Следует также учитывать ограниченность ресурсовPC. Самые дефицитные из них – линии запросов прерываний, проблема прерываний, известная по шинеISA, так и не была радикально решена с переходом наPCI. Другой дефицит – каналы прямого доступа шиныISA, используемые и для прямого управления шиной, - в шинеPCIисчез. Доступное адресное пространство памяти и портов ввода-вывода, в котором было тесновато абонентам шиныISA, вPCIсущественно расширено. Проблемы распределения ресурсов на шинах решаются по-разному, но чаще всего применяется технологияPnP.

В современных настольных компьютерах основной шиной расширения является PCI, портAGPприсутствует практически повсеместно, шинаISA, несмотря на рекомендации отойти от нее, сохраняется как средство подключения старых карт расширений.

Выделяют 3 вида шин:

    Шина данных

    Адресная шина

    Шина команд

Шина данных – происходит копирование данных из оперативной памяти, в регистре процессора и наоборот. 64 разрядная.

Адресная шина – данные, которые передаются, трактуются как адреса ячеек оперативной памяти. С помощью этой шины процессор считывает адреса команд, которые надо выполнить, а также данные, которыми оперируют команды. 32-разрядная.

Шина команд (управления)– поставляет команды, которые выполняет процессором. Простые команды укладываются в один байт, более сложные в 2,3 байта. 32-разрядная.

Магистрально-модульный принцип построения компьютера

Шины на материнской плате используют не только для связи с процессором, все остальные устройства ЭВМ тоже подключаются с помощью шин.

    ISA – позволяет связать между собой все устройства в системном блоке, а так же обеспечить подключение новых устройств через стандартные слоты. Пропускная способность составляет 5,5 Мб в секунду. Сейчас используют только для подключения внешних устройств, которые не требуют большой пропускной способности (звук, модемы).

    EISA - 32-битная шина средней производительности, применяемая в основном для подключения контроллеров дисков и адаптеров локальных сетей в серверах. В настоящее время вытеснена шинойPCI. Раньше применялась в серверных платформах, где необходимо устанавливать множество дополнительных плат расширения. В слотEISAможно устанавливать картыISA(но не наоборот). Пропускная способность до 32-Мб-в секунду.

    VLB – локальная шина, которая представляет собой соединение процессора с оперативной памятью в обход основной магистральной шины. Эта шина работает на более высокой частоте и позволяет увеличить скорость передачи данных. Эта шина имеет интерфейс для подключения видео адаптера необходимого для подключения монитора в состав вычислительного комплекса. Пропускная способность до 130 Мб в секунду. Рабочая тактовая частота – 50 МГц. Зависит от типа устройств подключаемых к этой шине.

    PCI – стандарт подключения внешних устройств который введен дляPentium. По своей сути это интерфейс - локальные шины с разъемами для подключения внешних компонентов вычислительных систем. Тактовая частота - до 166 МГц и обеспечивает передачу информации со скоростью 264 Мб в секунду независимо от количества подключенных устройств. С введением этого стандарта появилась возможность для подключения технологии “Plug&Play”: после физического подключения устройства обеспечивается автоматическая конфигурация в составе вычислительной системы.

    FSB – шина, которая используется для связи процессора с оперативной памятью компьютера, эта шина работает на частоте 133-МГц и выше. Пропускная способность до 800 Мб/сек. Частота работы шиныFSBявляется основным параметром, который указывается в спецификации материнской платы.

    AGP – специальный шинный интерфейс, который предназначен для подключения видео адаптера. Этот интерфейс необходим в современных вычислительных устройствах, потому что параметры шиныPCIне отвечают требованиям видеоадаптера по быстродействию. Пропускная способность 1066 Мб/сек. В отличие от шиныPCIдля портаAGPвозникают проблемы совместимости карт акселераторов с типом системной платы (чипсета) и процессора даже при формальном соответствии их параметров.

    USB – стандарт универсальной последовательной шины, который определяет способ взаимодействия компьютера с современным периферийном оборудованием. Этот порт разрешает подключать 256 различных устройств с последовательным интерфейсом, причем устройства могут подключаться последовательно (цепочкой). Преимущество этого стандарта в том, что периферийное устройство можно подключать. Во время текущего сеанса работы без перезагрузки. Этот порт позволяет соединять компьютеры в сеть без использования специальной аппаратуры и программного обеспечения.

Конфигурирование шин расширения предполагает в основном настройку их временных параметров:

    Для шины PCIзадается частота синхронизации, кроме того, сCMOSSetupдля этой шины могут определяться некоторые её возможные режимы – конкурентные обращения, слежение за палитрами.

    Для порта AGPзадается частота, поддерживаемые режимы, а также апертурыAGP.

    Для шин ISAиPCIиногда настройкамиCMOSSetupприходится распределять системные ресурсы (главным образом, линии запросов прерываний).

    Для шины ISAкроме частоты (которая должна быть порядка 8 МГц) задают время восстановления для 8- и 16-битных обращений к памяти и вводу-выводу. Неустойчивая работа адаптеров может потребовать замедления шиныISA, но в настоящее время понижение её производительности не сильно отражается на производительности компьютера в целом.

В данной статье мы расскажем о том, что такое центральный процессор и как он работает.

Центральный процессор или процессор – один из самых важных компонентов, который мы можем найти практически во всех современных высокотехнологичных устройствах.

Однако у большинства из нас есть довольно плохие представления о том, что они делают и как они это делают, о том, как они стали сложными технологическими чудесами, каковы основные современные типы.

Итак, сегодня мы попытаемся подробно рассказать о самых важных аспектах различных компонентов, которые дают жизнь всем тем устройствам, которые помогают нам наслаждаться более высоким качеством жизни.

Что такое центральный процессор?

Хотя нельзя сказать, что в компьютере есть одна самая важная часть, так как более одного из них абсолютно необходимы для его работы, центральный процессор или процессор можно считать краеугольным камнем этих машин. И именно этот компонент отвечает за вычисления, упорядочивание или обработку, концепции, которые определяют современные компьютеры и ноутбуки.

В настоящий момент они представляют собой сложные технологии, разработанные с использованием микроскопических архитектур, большинство из которых представлены в виде одного чипа, довольно небольшого, оттуда они назывались микропроцессорами несколько десятилетий назад.

Сегодня процессоры находятся практически в каждом объекте, который мы используем в наши дни: телевизоры, смартфоны, микроволновые печи, холодильники, автомобили, звуковое оборудование и, конечно же, персональные компьютеры. Тем не менее, это были не всегда чудеса технологий, которыми они являются сейчас.

История возникновения процессоров

Было время, когда процессоры состояли из огромных арматов, которые вполне могли заполнить комнату. Эти первые шаги компьютерной инженерии в основном состояли из пустых трубок, которые, хотя в то время были значительно более мощными для альтернатив, образованных электромеханическими реле, сегодня 4 МГц, которые, по большей мере, они достигали, казались нам смехом.

С появлением транзисторов в 50-х и 60-х годах началось создание процессоров, в дополнение к меньшим и более мощным, а также намного более надежным, поскольку машины, созданные вакуумными трубами, как правило, имели средний отказ каждые 8 ​​часов.

Однако, когда мы говорим о сокращении, мы не имеем в виду, что они вписываются в ладонь. И все еще большие процессоры состояли из десятков печатных плат, которые были связаны друг с другом, чтобы обеспечить жизнь одному процессору.

После этого появилось изобретение интегральной схемы, которая в основном связывала все в одной печатной плате или пластине, что стало первым шагом к достижению современного микропроцессора. Первые интегральные схемы были очень простыми, поскольку они могли группировать только несколько транзисторов, но на протяжении многих лет получилось добиться экспоненциального роста числа транзисторов, которые можно было бы добавить в интегральную схему, к середине шестидесятых годов. Мы уже имели первых сложные процессоры, которые состояли из одной пластины.

Первый микропроцессор как таковой будет представлен на рынке уже в 1971 году, это был Intel 4004, а с тех пор остальное – история. Благодаря быстрой эволюции этих небольших чипов и их большой гибкости они полностью монополизировали компьютерный рынок, поскольку, за исключением очень специфических приложений, требующих высокоспециализированного оборудования, они являются ядром практически всех современных компьютеров.

Как работает центральный процессор (ЦП)?

Упрощение до крайности и в дидактических терминах работа процессора дается четырьмя фазами. Эти фазы необязательно всегда раздельны, но обычно перекрываются и всегда происходят одновременно, но не обязательно для конкретной функции.

На первом этапе процессор отвечает за загрузку кода из памяти. Другими словами, прочитайте данные, которые необходимо обработать позже. В этой первой фазе существует общая проблема в архитектуре процессоров и заключается в том, что существует максимум данных, которые могут считываться по периоду времени и обычно уступают тем, которые могут быть обработаны.

Во второй фазе происходит первый этап обработки как таковой. Информация, прочитанная на первом этапе, анализируется в соответствии с набором инструкций. Таким образом, в пределах прочитанных данных будут описательные фракции для набора инструкций, которые укажут, что делать с остальной информацией. Чтобы привести практический пример, есть код, который указывает, что данные пакета должны быть добавлены вместе с данными другого пакета, причем каждый пакет представляет собой информацию, которая описывает число, посредством чего получается общая арифметическая операция.

Затем идет фаза, которая продолжается со свободной обработкой, и отвечает за выполнение команд, декодированных на второй фазе.

Наконец, процесс завершается фазой записи, где снова загружается информация, только на этот раз от процессора к памяти. В некоторых случаях информация может быть загружена в память процессора, которая будет повторно использована позже, но как только обработка конкретной работы будет завершена, данные всегда заканчиваются записью в основную память, где она может быть записана в блок хранения, в зависимости от приложения.

Основные современные архитектуры процессоров

Как мы уже говорили, функция процессора заключается в интерпретации информации. Данные загружаются из разных систем памяти в виде двоичного кода, и именно этот код должен быть преобразован процессором в полезные данные приложениями. Указанная интерпретация реализуется с помощью набора инструкций, что и определяет архитектуру процессора.

В настоящее время в основном используются две архитектуры RISC и CISC. RISC дает жизнь процессорам, разработанным британской фирмой ARM, которая с ростом мобильных устройств значительно выросла. Кроме того, PowerPC, архитектура, которая дала жизнь компьютерам Apple, серверам и консолям Xbox 360 и PlayStation 3, основана на RISC. CISC – это архитектура, используемая в процессорах AMD Intel и X86-64 X86.

Что касается архитектуры, которая лучше, то всегда говорилось, что быть более чистым и оптимизированным RISC будет будущее вычислений. Тем не менее, Intel и AMD никогда не поддавались на изгибе и сумели создать очень прочную экосистему вокруг своих процессоров, которые, хотя и сильно загрязнены устаревшими элементами обратной совместимости, всегда поддерживали своих конкурентов.

В целом, благодаря своей гибкости и относительной простоте производства, в течение нескольких лет больше процессоров останется центральным элементом современных вычислений. Но мы всегда должны помнить, что с течением лет развиваются параллельные технологии, которые помогают децентрализовать нагрузку, и сегодня более чем когда-либо графические процессоры, более мощные, но менее гибкие, начали приобретать почти такое же значение.

Видео: Что такое CPU [Центральный Процессор, ЦП] – Быстро и Понятно!

В аспекте прикладной деятельности.

С точки зрения программиста - совместимость с определённым набором команд (например, процессоры, совместимые с командами Intel х86), их структуры (например, систем адресации или организации регистровой памяти) и способа исполнения (например, счетчик команд).

С точки зрения аппаратной составляющей вычислительной системы - это некий набор свойств и качеств, присущий целому семейству процессоров (иначе говоря - «внутренняя конструкция», «организация» этих процессоров). Имеются различные классификации архитектур процессоров, как по организации (например, по количеству и скорости выполнения команд: RISC , CISC), так и по назначению (например, специализированные графические).

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Архитектура процессора" в других словарях:

    Архитектура процессора - Базовый набор ключевых возможностей того или иного поколения процессоров. По названиям архитектур специалисты отличают тот или иной подвид чипов. Например, Pentium III и Pentium 4. Современные процессоры для мобильных ПК изготавливаются с… … Глоссарий терминов бытовой и компьютерной техники Samsung

    архитектура процессора с изменяемой вычислительной мощностью - Разработана в фирме Sun. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN scalable processor architectureSPARC …

    архитектура контроллера Справочник технического переводчика

    архитектура контроллера - Архитектурой контроллера называют набор его основных компонентов и связей между ними. Типовой состав ПЛК включает центральный процессор, память, сетевые интерфейсы и устройства ввода вывода. Типовая… … Справочник технического переводчика

    Архитектура современного персонального компьютера это схема его чипсета, которую можно найти на сайтах производителей Intel и AMD.Чипсет это набор микросхем материнской платы для обеспечения работы процессора с памятью и внешними устройствами.… … Википедия

    Для улучшения этой статьи желательно?: Добавить иллюстрации. Викифицировать статью. Архитектура вычислительной машины (Архитектура … Википедия

    ARM процессор производства Conexant, ставится в основном в маршрутизаторах (ранее Advanced RISC Machine усовершенствованная ARM Limited. Эта архитектура широко используется в разработке встраиваемых систем. Это связанно с тем, что данные… … Википедия

    - … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Архитектура персонального компьютера компоновка его основных частей, таких как процессор, ОЗУ, видеоподсистема, дисковая система, периферийные… … Википедия

    Эту страницу предлагается объединить с Система команд. Пояснение причин и обсуждение на странице Википедия:К объединению/6 ноября 2011. Обсуждение длится одну неделю (или дольш … Википедия

Книги

  • Цифровая схемотехника и архитектура компьютера , Харрис Д.М.. Это дополнительный тираж книги с добавленным Предметным указателем, напечатанный черным и синим цветом как оригинальное американское издание! Также в новом издании исправлены неточности,…
  • Архитектура ЭВМ и вычислительные системы. Учебник , В. В. Степина. Рассмотрены информационно-логические основы электронно-вычислительной техники, типовые логические элементы и устройства ЭВМ, структура и функционирование процессора, принципы организации и…

Что общего у микроволновки и суперкомпьютера, у калькулятора и марсохода? Микропроцессор. Эта маленькая, но архиважная деталь – неотъемлемая часть любого электронного устройства, какую бы функцию оно ни выполняло, ведь именно микропроцессор отвечает за «мышление» прибора. Конечно, процессор не думает в полном смысле этого слова, однако он способен делать то, что не может человек – очень-очень быстро считать. И если дать процессору необходимую информацию и «объяснить», что с ней делать, то есть запрограммировать его, – мы получим очень полезного железного друга. Можно без преувеличения сказать, что микропроцессоры изменили наш мир.

Современные микропроцессоры сильно отличаются от тех, что разрабатывались в 1950-60-х годах. Например, первоначально процессор разрабатывался для небольшого количества уникальных компьютеров, а порой и вовсе единственного компьютера. Это был довольно дорогостоящий процесс, почему неудивительно, что от него отказались. Сегодня подавляющее большинство процессоров представляют собой серийные универсальные модели, подходящие для большого числа компьютеров.

Другое отличие многих современных ЦП в том, что они представляют собой микроконтроллеры – более универсальные схемы, в которых процессор соединен с дополнительными элементами. Это может быть память, различные порты, таймеры, контроллеры внешних устройств, модули управления интерфейсами и т.д.

SoC-процессоры

Большинство современных процессоров так или иначе основаны на принципах, заложенных еще в 1940-х годах американо-венгерским ученым Джоном фон Нейманом, хотя, конечно, они прошли очень длинный путь развития по меркам технологий. Одна из главных на сегодняшний день процессорных архитектур называется SoC, или система на чипе (англ. system on a chip). Это тоже микроконтроллерная архитектура, но еще более плотная. Здесь целый ряд компонентов помещаются на одном полупроводниковом кристалле. Это как бы не процессор, а целый компьютер. Такой подход позволяет упростить и удешевить сборку и процессоров, и целых устройств.

Именно SoC-процессоры используются в подавляющем большинстве современных смартфонов и планшетов. Например, SoC-процессорами являются чипы британской фирмы ARM, на которой работает большинство Android-устройств , а также смартфоны iPhone и планшеты iPad. ARM-процессоры используются и в чипсетах MediaTek , где их число доходит до десяти.

RISC-процессоры

Технология RISC означает упрощенный набор команд (англ. reduced instruction set computer), ее впервые предложили в компании IBM. В основу RISC положена идея максимального повышения быстродействия посредством упрощения инструкций и ограничения их длины. Благодаря этому подходу стало возможным не только повысить тактовую частоту, но и сократить так называемый процессорный конвейер – очередь из команд на выполнение, а также снизить тепловыделение и потребление энергии.

Первые RISC-процессоры были настолько простыми, что не имели даже операций деления и умножения, однако они быстро прижились в мобильных технологиях. На архитектуре RISC основано большинство современных процессоров. Это, во-первых, уже упоминавшиеся процессоры ARM, а также PowerPC, SPARC и многие другие. Популярнейшие процессоры Intel уже много лет основаны на RISC-ядре, начиная с 1990-х годов. Можно сказать, что технология RISC сегодня является доминирующей, хотя у нее существует множество вариантов реализации.

CISC-процессоры

Это более традиционный вид микропроцессоров, которые отличаются от предыдущих полным набором команд, отсюда и название: компьютер с полным набором команд (англ. complex instruction set computer). Такие процессоры не имеют фиксированной длины команды, а самих команд больше. CISC-процессорами были все процессоры архитектуры x86, которая доминирует в компьютерной индустрии уже не одно десятилетие, до появления Intel Pentium Pro, который впервые отошел от CISC-концепции и сегодня представляет собой гибрид – CISC-чипсет на базе RISC-ядра.

Классическая CISC-архитектура используется все реже из-за пониженной тактовой частоты и высокой стоимости сборки. Однако она по-прежнему востребована в серверах и рабочих станциях, то есть системах, стоимость которых менее критична по сравнению с чисто потребительскими устройствами.

ARM и x86

Как уже упоминалось, процессоры фирмы ARM используются в большинстве мобильных устройств, тогда как архитектура x86 давно господствует в настольных компьютерах и ноутбуках. Отчего такое разделение? Когда-то ARM-процессоры считались сугубо «телефонными» – это были очень маломощные чипы с невысокими возможностями, идеально «заточенные» под мобильную технику. Они не грелись, не требовали много энергии и умели делать то немногое, что нужно делать на телефоне или смартфоне.

С другой стороны, семейство x86, разработанное Intel, начиная с легендарного процессора Intel 8086 (откуда и пошло название) образца 1978 года, всегда было уделом компьютеров мощных, «настоящих». Куда уж до них ARM, говорили многие эксперты. Но времена меняются, и сегодня архитектуры ARM и x86 яростно конкурируют друг с другом во всей компьютерной индустрии, которая все больше зависит от мобильных технологий.

Сама компания ARM, в отличие от Intel, не производит процессоры, но лицензирует их сторонним производителям, среди которых практически все гранды: Apple, Samsung, IBM, NVIDIA, Nintendo, Qualcomm и даже, вот так ирония, Intel (и ее вечный конкурент AMD). Такой подход привел к тому, что ARM-процессоры буквально завалили рынок – сегодня их выпускается не один миллиард каждый год.

Поскольку сегодня все больше людей предпочитают планшеты традиционным компьютерам, продажи которых пошли на спад, сложилась ситуация, очень неприятная для Intel и AMD и немыслимая еще лет десять назад. Intel неожиданно оказалась в роли догоняющей и начала активно развивать собственные низковольтные решения, и не сказать, что совсем безуспешно – современные модели Intel Atom и Core M обладают вполне конкурентоспособными характеристиками по ряду параметров.

В новой для себя ситуации оказалось и сообщество разработчиков, которым пришлось быстро адаптироваться под требования рынка. Сначала интернет-революция привела к тому, что пользователи стали гораздо реже работать в традиционных программах на традиционном компьютере и чаще – в веб-браузере. Затем еще одна, мобильная революция породила новую реальность: массовый пользователь вообще отложил компьютеры и перешел на мобильные устройства, где работают в основном в мобильных приложениях. А мобильные приложения – это опять-таки ARM, с которой Intel пока не может совладать.

big.LITTLE

Одной из перспективных технологий ARM является big.LITTLE – технология оптимизации потребления энергии за счет объединения более высокопроизводительных ядер с менее производительными, но более энергоэффективными. Например, это может быть Cortex-A15 и Cortex-A7. Это как бы две передачи на автомобиле: когда нужно выполнить более сложную и ресурсоемкую задачу, включается более мощный чип, а для фоновых задач больше подходит более экономичный. В результате такого подхода последнее поколение платформы big.LITTLE позволяет снизить потребление энергии чипом на 75% и одновременно поднять производительность на 40%.

У big.LITTLE есть свои разновидности. Например, в 2013 году компания MediaTek представила платформу CorePilot на базе big.LITTLE, в которой впервые был реализован принцип разнородной (гетерогенной) множественной обработки данных (HMP). Специальное ПО автоматически распределяет рабочие потоки между разными ядрами исходя из их требований. Осуществляется интерактивное управление потреблением энергии и температурными режимами, а специальный алгоритм планировщика в сочетании с трехкластерной архитектурой позволяет еще больше снизить потребление энергии чипом.

Такую платформу иначе называют Device Fusion, и разработчики обещают внушительный, в разы, рост производительности при отсутствии дополнительного нагрева устройства. Облегчена и жизнь программистов, которых освободили от необходимости решать, для каких задач какие ядра использовать. Назначение ядер происходит в полностью автоматическом режиме. Технология, фактически, следит за тем, чтобы каждое ядро использовалось эффективно и не простаивало. Каждая задача исполняется на оптимальном ядре (или ядрах) либо центрального, либо графического процессора вне зависимости от архитектуры.

Почему кластерные архитектуры эффективнее?

Но тайваньская компания MediaTek – это не только CorePilot. Производитель произвел настоящий фурор со своей трехкластерной технологией Tri-Cluster. Чтобы понять, что это такое и как работает, вспомним, как работает процессор смартфона или планшета в самом общем случае.

Современный мобильный процессор, а также чипсет (окружающий его набор микросхем), состоит из нескольких ядер, число которых сегодня растет, как на дрожжах. Это позволяет распределить задачи между ядрами и таким образом выполнять несколько дел одновременно. Телефон пытается перераспределять нагрузку на ядра динамически, решая, какие ядра и когда использовать.

Но как происходит это распределение? Иногда – по решению разработчика ПО, иногда –полностью автоматически, и тут все зависит от алгоритмов, которые могут быть более или менее эффективны. В технологии big.LITTLE эту задачу выполняет специальный модуль – планировщик. Например, он может перенести выполнение какого-то процесса с одно ядра на другое, если первому не хватает производительности.

Технология big.LITTLE сделала большой шаг в сторону эффективности за счет двух процессорных кластеров – групп ядер (англ. cluster – скопление). Если нужно поиграть в трехмерную игру, включаем мощный кластер; если нужно, скажем, почитать книгу или вообще убрать телефон в карман, включается слабый кластер, направленный на максимальную экономию энергии. Вот почему кластерная архитектура столь перспективна. В традиционных однопроцессорных архитектурах, а также многопроцессорных однокластерных, нет такого пространства для маневра и такой гибкости при распределении нагрузок.

Три кластера против двух

Но и здесь возникла проблема: задачи средней сложности, наиболее распространенные на телефонах, часто направляются на кластер с мощными ядрами. Например, мы работаем с электронной почтой. Задача не ахти какая ресурсоемкая, но двухкластерная платформа может включить для нее мощный кластер. У нее просто нет выбора – кластера всего два, а никакой «золотой середины» нет. Результат – ускоренный расход энергии и нагрев устройства при отсутствии очевидных преимуществ для пользователя от быстрого кластера.

Именно эту задачу решает архитектура Tri-Cluster в сочетании с CorePilot 3.0. Она работает не с двумя, а с тремя кластерами, которые в ней получили названия минимум (Min), медиум (Med) и максимум (Max). Для большинства повседневных задач используется средний кластер – та самая золотая середина. Максимальный кластер включается относительно редко и только тогда, когда это действительно нужно: игры, обработка графики и т.д. Ну а сверхэкономичный кластер Min управляет фоновыми приложениями, сводя энергопотребление к минимуму.

Такой подход наиболее сбалансирован с точки зрения производительности и экономии. Мобильное устройство как бы получает третью передачу. В MediaTek даже говорят, что позаимствовали эту идею у автомобильной индустрии. В компании отмечают, что он позволяет сократить энергопотребление на треть и одновременно поднять производительность на 12–15% в зависимости от ресурсоемкости задачи.

Helio X20

Типичный образец технологий Tri-Cluster и CorePilot – новейший 20-нанометровый десятиядерный чип MediaTek Helio X20 на базе ARM Cortex. Кластер Max в нем представлен группой из двух ядер Cortex-A72 с тактовой частотой 2,5 ГГц, в Med работают четыре ядра Cortex-A53 с частотой 2 ГГц, ну а Mini выполнен в виде опять-таки четырех ядер Cortex-A53 на 1,4 ГГц. Helio X20 стал первым в мире мобильным процессором с технологией Tri-Cluster и десятью ядрами (Deca-core).

В MediaTek провели исследование, которое доказывает, что данный чип способен проработать на 30% дольше времени, чем аналоги с сопоставимыми характеристиками. Выполнялись тесты даже для конкретных сценариев. Например, при работе в Facebook удается снизить расход энергии на 17–40%, голосовое общение в Skype позволяет сэкономить 41%, работа Gmail – 41%, игра Temple Run – 17%. Самая впечатляющая экономия достигается в ситуации, когда телефон просто показывает домашний экран – 48%. В этой ситуации работает именно кластер Min, и энергопотребление составляет всего 0,026 Вт.

Если верить тайваньскому ресурсу DigiTimes, производители мобильной техники буквально выстраиваются в очередь за новейшим чипом Helio X20. Летом этого года ресурс писал, что чип планируют использовать , HTC, Sony, Lenovo, Huawei, Xiaomi и ZTE. Новый чип оказался на 40% быстрее и на столько же экономичнее предыдущей модели семейства, X10. Первые устройства с таким процессором появятся на рынке в начале 2016 года, поэтому пока придется запастись терпением.

Возможности трехкластерных SoC-процессоров MediaTek

Процессоры MediaTek относятся к классу SoC, то есть таких, в которых на одной кремниевой пластинке собран целый мини-завод. Тут и память, и графика, и камера с видеокодеками, и контроллеры дисплея, модема и других интерфейсов. Некоторые особенности чипсета выглядят следующим образом:

  • Универсальный модем WorldMode LTE Cat-6 от MediaTek поддерживает LTE и одновременно допускает агрегацию частот, что позволяет использовать его практически в любой сети.
  • Новейший видеочип ARM Mali обеспечивает высочайшую производительность графики в двумерном и трехмерном режимах.
  • Дополнительный встроенный процессор Cortex-M4 работает в фоновом режиме с крайне низким энергопотреблением, обеспечивая работу фоновых приложений.
  • Контроллер двух камер со встроенным 3D-движком не только быстро работает, но и эффективно генерирует сложные объемные изображения, а встроенная технология шумоподавления доводит картинку до практически идеальной.
  • Дисплей может работать с частотой обновления 120 Гц вместо стандартных 60 Гц, что дает изумительно четкое изображение и отзывчивый интерфейс.

Процессор комплектуется новейшим видеочипом ARM Mali-T800, который, помимо прочего, обеспечивает работу дисплеев высокой четкости вплоть до WQXGA на частоте до 120 Гц. Другими словами, устройство можно комплектовать дисплеем разрешением вплоть до 2560×1600 пикселов.

Весьма впечатляет реализация камеры: скорость декодирования получаемого изображения может доходить до 30 кадров в секунду при разрешении 25 мегапикселов (либо 24 к/с при 32 Мп), при этом встроенный чип сразу же, на лету, осуществляет одновременно шумоподавление, повышение четкости и 3D-конверсию. При воспроизведении видео поддерживается 10-битная глубина цвета и кодеки VP9 HW и HEVC.

Встроенный модем Helio X20 поддерживает большой арсенал мобильных сетей, такие как LTE FDD/TDD R11 Cat-6 (до 300 Мбит/с), CDMA2000 1x/EVDO Rev.A. Здесь же есть Wi-Fi 802.11ac, Bluetooth, GPS, российская система навигации ГЛОНАСС и даже китайская BeiDou.

Независимые тесты Helio X20, в частности GeekBench 3, показывают явное превосходство по сравнению с предыдущей и тоже очень популярной моделью X10. В тесте AnTuTu результат X20 на 40% выше, чем у X10, что в целом подтверждает внутренние тесты MediaTek. Helio X20 также явно превосходит чип Exynos 7420.

Helio X20 – процессор очень новый, поставки начались совсем недавно, но уже известны некоторые подробности об устройствах, которые его получат. Так, Acer будет устанавливать его на свой флагманский планшетофон Predator 6. Целых 4 гигабайта оперативной памяти, дисплей Full HD, 4 динамика, аккумулятор на 4000 мА*ч, необычный агрессивный дизайн – не смартфон, а зверь! Другая ожидаемая новинка с этим чипом – новый флагман HTC One A9, в котором незадачливый тайваньский производитель постарается исправить провал модели One M9. 2016 год обещает быть очень интересным.

MediaTek вокруг нас


Мы начинали с того, что микропроцессоры сегодня окружают нас повсюду, как воздух, и продукция MediaTek в полной мере подтверждает этот тезис. Вообще, диапазон интересов тайваньцев поражает: Интернет вещей , нательная электроника, медицинские устройства, навигация, автономные автомобили и вездеходы, умный дом , умный город, дистанционное управление приборами, 3D-печать и даже домашнее виноделие. Вот лишь часть сфер, в которых MediaTek совместно с партнерами выпускает специализированные чипсеты.

Некоторые из них очень оригинальны. Например, энтузиастам всех мастей понравится миниатюрная копия марсохода Curiosity, напичканная очень серьезными технологиями: камерой с собственным Wi-Fi-роутером и сервером для отправки изображения, шестью колесами (все – ведущие), манипулятором с тремя степенями свободы. Таким вездеходом можно управлять по Bluetooth, он может двигаться со скоростью до 3 км/ч, разворачиваться в любом месте и вести видеосъемку с непрерывной трансляцией сигнала.

Другой пример использования процессоров MediaTek – компактный домашний 3D-принтер со скоростью печати 150 мм в секунду при точности 0,01 мм. Такой принтер поддерживает больше 10 различных материалов, может печатать объекты диаметром 180 мм и высотой 200 мм и работать без остановки до 36 часов. Здесь используется микросхема MediaTek LinkIt ONE. Такой принтер очень доступен, легок и помещается на стол.

Еще больше поражает воображение Smart Brewer – целая домашняя система для виноделия. Если при этих словах вы представили себе систему из чанов, с трудом помещающуюся на кухне, то зря: речь идет о компактном стакане с насадкой и трубкой, которая благодаря той же микросхеме LinkIt ONE полностью управляет всем процессом брожения, при этом контролировать процесс можно со смартфона через Bluetooth. Это настоящая винная бочка XXI века!

Многие изобретения, возможные благодаря полупроводниковым решениям MediaTek, еще ждут своих инноваторов и разработчиков. Кстати, MediaTek очень любит разработчиков и старается сотрудничать с ними как можно плотнее. Для этой цели был создан сайт MediaTek Labs (labs.mediatek.com) – онлайн-площадка, на которой начинающие (и не только) разработчики могут получить все необходимое для создания гаджетов в категориях нательной техники и Интернета вещей . Интересные проекты будут поощряться и развиваться совместно с компанией. Менее чем за год существования в Labs зарегистрировалось больше 6000 участников, из которых русскоязычных больше 16%. И это только начало!

Антон Чивчалов

Эта глава посвящена архитектурным особенностям микропроцессоров. В ней приведены общие сведения о микропроцессорах, рассматриваются принципы структурно - функциональной организации) типы данных, регистровая память, спо-собы адресации и система команд микропроцессоров. Излагаемый материал ил-люстрируется на простейших 8- и 16-разрядных процессорах.

Основные понятия

Микропроцессор — это программно-управляемое устройство в виде интегральной микросхемы (БИС или СБИС), предназначенное для обработки цифровой информации. Поскольку все современные микро-процессоры имеют интегральное исполнение, синонимом микропроцессора стал термин процессор.

Микроконтроллер — это специализированный процессор, предназначен-ный для реализации функций управления (control— управление).

{xtypo_quote}Цифровой сигнальный процессор(Digital Signal Processor — DSP) — это специа-лизированный процессор, предназначенный для обработки цифровых сигналов. {/xtypo_quote}
Микропроцессорная система представляет собой функционально законченное изделие, состоящее из нескольких цифровых устройств, включая процессор. Это понятие объединяет широкий набор законченных изделий, начиная с микроконтроллеров, выполненных на интегральных микросхемах, и кон-чая компьютерными системами, представляющими собой набор отдельных конст-руктивно оформленных устройств (системный блок, клавиатура, монитор и др.). В дальнейшем рассматриваются простейшие (однокристальные) микропроцес-сорные системы, содержащие помимо процессора основную память и устройства ввода/вывода. Такие микропроцессорные системы можно отнести к классу микро-процессоров.

Под организацией процессора понимают совокупность его узлов (устройств, блоков, модулей), связи между узлами и их функциональные характе-ристики. Организация определяет аппаратную организацию процессора, т. е. состав и взаимодействие его аппаратных средств. Выделяют два уровня организации:

● физическую организацию в виде принципиальной схемы;

● логическую организацию в виде структурно-функциональной схемы.

В дальнейшем рассматривается организация микропроцессоров на логиче-ском уровне, или структурно-функциональная организация процессоров.

Под архитектурой процессора будем понимать совокупность его программно-аппаратных средств, обеспечивающих обработку цифровой инфор-мации (выполнение программы), т. е. совокупность всех средств, доступных про-грамме (или пользователю). Это более общее понятие по сравнению с понятием организация включает в себя набор программно-доступных регистров и операци-онных устройств, систему основных команд и способов адресации, объем и орга-низацию адресуемой памяти, виды и способы обработки данных (обмен, преры-вания, примой доступ к памяти и др.).

{xtypo_quote}Например, современные 32-разрядные процессоры х86 с архитектурой IA-32 (Intel Architecture — 2 bit) имеют стандарт-ный набор регистров, общую систему основных команд, одинаковые способы организации и адресации памяти, защиты памяти и обслуживания прерываний. Отметим, что понятие архитектуры в большей степени характеризует свойства системы, чем устройства. {/xtypo_quote}

Основные виды архитектур

По форматам используемых команд (инструкций) можно выделить:

● CISC-архитектуру, которая относится к процессорам (компьютерам) с полным набором команд (Complete Instruction Set Computer— CISC). Она реализова-на во многих типах микропроцессоров (например Pentium), выполняющих большой набор разноформатных команд с использованием многочисленных способов адресации.

Система команд процессоров с CISC-архитектурой может содержать не-сколько сотен команд разного формата (от 1 до 15 байт), или степени слож-ности, и использовать более 10 различных способов адресации, что позволя-ет программисту реализовать наиболее эффективные алгоритмы решения различных задач.

Развитие традиционных CISC

Архитектур микропроцессоров по пути рас-ширения функциональных возможностей и снижения затрат на программиро-вание привело к увеличению числа команд в наборе и числа микрокоманд в команде. Следствием этого явилось усложнение интегральных схем и сни-жение быстродействия выполнения программ. Один из возможных путей уст-ранения указанных недостатков состоит в использовании сокращенного набо-ра команд, организация которого подчинена увеличению скоростей их выпол-нения;

● RISC-архитектуру, которая относится к процессорам (компьютерам) с сокра-щенным набором команд (Reduced instruction Set Computer — RISC). Появле-ние RISC -архитектуры продиктовано тем, что многие CISC -команды и спо-собы адресации используются достаточно редко. Основная особенность RISC-архитектуры проявляется в том, что система команд состоит из неболь-шого количества часто используемых команд одинакового формата, которые могут быть выполнены за один командный цикл (такт) центрального процес-сора. Более сложные, редко используемые команды реализуются на про-граммном уровне. Однако за счет значительного повышения скорости испол-нения команд средняя производительность RISC-процессоров может оказать-ся выше, чем у процессоров с CISC-архитектурой.

{xtypo_quote}Большинство команд RISC -процессоров связано с операцией регистр-регистр. Для обращения к памяти оставлены наиболее простые с точки зре-ния временных затрат операции загрузки в регистры и записи в память. {/xtypo_quote}

Современные RISC -процессоры реализуют около 100 команд, имеющих фиксированный формат длиной 4 байта, и используют небольшое число наи-более простых способов адресации (регистровую, индексную и некоторые другие).

Для сокращения количества обращений к внешней оперативной памяти RISC -процессоры содержат десятки-сотни регистров общего назначения (РОН), тогда как в CISC -процессорах всего 8-16 регистров. Обращение к внешней памяти в RISC-процессорах используется только в операциях за-грузки данных в РОН или пересылки результатов из РОН в память. За счет со-кращения аппаратных средств, необходимых для декодирования и выполне-ния сложных команд, достигается существенное упрощение интегральных схем RISC-процессоров и снижение их стоимости. Кроме того, значительно повышается производительность. Благодаря указанным достоинствам во многих современных
CI SC -процессорах (последние модели Pentium и К7) ис-пользуется RISC-ядро. При этом сложные CI SC-команды предварительно преобразуются в последовательность простых RISC-операций и быстро вы-полняются RISC-ядром;

● VLIW-архитектуру, которая относится к микропроцессорам с использованием очень длинных команд (Very Large Instruction Word— VLIW). Отдельные поля команды содержат коды, обеспечивающие выполнение различных операций. Одна VLIW -команда может выполнить сразу несколько операций одновремен-но в различных узлах микропроцессора. Формирование «длинных» VLIW - koманд производит соответствующий компилятор при трансляции программ, написанных на языке высокого уровня.

{xtypo_quote}VLIW -архитектура реализована в неко-торых типах современных микропроцессоров и является весьма перспектив-ной для создания нового поколения сверхвысокопроизводительных процес-соров. {/xtypo_quote}

По способу организации выборки команд и данных различа-ют два вида архитектур:

● принстонская архитектура, или архитектура фон-Неймана, особенностью которой является (рис. 2.1.1) использование:

Общей основной (оперативной) памяти для хранения программ и данных, что позволяет оперативно и эффективно перераспределять ее объем в за-висимости от решаемых задач в каждом конкретном случае применении микропроцессора;

Общей шины, по которой в процессор поступают команды и данные, а в опе-ративную память записываются результаты, что значительно упрощает отладку, тестирование и текущий контроль функционирования системы, повышает ее надежность. Чтобы отделить команду от данных, первым из памяти всегда поступает код выполняемой операции, а затем следуют данные. По умолчанию код операции загружается в регистр команд, а дан-ные — в блок регистров (рис. 2.1.1). Из-за ограниченного числа внешних выводов общая шина обычно работает в режиме временного мультиплек-сирования, т. е. противоположные направления обмена данными между микропроцессором, памятью или другими внешними устройствами разде-лены во времени.

Недостаток принстонской архитектуры

Использование общей шины для пе-редачи команд и данных ограничивает производительность цифровой системы;

● гарвардская архитектура (создатель Говард Айкен), особенностью которой является физическое разделение памяти команд (программ) и памяти данных (рис. 2.1.2). Это обстоятельство вызвано постоянно возрастающими требова-ниями к производительности микропроцессорных систем. Память команд и память данных соединяются с процессором отдельными шинами. Благодаря разделению потоков команд и данных, а также совмещению операций их вы-борки (и записи результатов обработки) обеспечивается более высокая про-изводительность, чем при использовании принстонской архитектуры.

Недостатки гарвардской архитектуры

Усложнение конструкции из-за ис-пользования отдельных шин для команд и данных; фиксированный объем па-мяти для команд и данных; увеличение общего объема памяти из-за невоз-можности ее оптимального перераспределения между командами и данными. Гарвардская архитектура получила широкое применение в микроконтрол-лерах — специализированных микропроцессорах для управления различными объектами, а также во внутренней структуре современных высокопроизводи-тельных микропроцессоров в кэш-памяти с раздельным хранением команд и данных.

В то же время во внешней структуре большинства микропроцессор-ных систем реализуются принципы принстонской архитектуры.

Отметим, что архитектура микропроцессора тесно связана с его структурой. Реализация тех или иных архитектурных особенностей требует введении в струк-туру микропроцессора соответствующих устройств и обеспечения механизмов их совместного функционирования.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: