Амплитудно частотные и фазочастотные характеристики. Построение ачх и фчх

H() – частотно-зависимая комплексная функция. Ее модуль называют амплитудно-частотной характеристикой (АЧХ), а арктангенс отношения мнимой и вещественной частей – фазо-частотной характеристикой (ФЧХ). На векторной диаграмме представлена геометрическая интерпретация передаточной функции. С ее помощью легко понять, как получаются выражения для АЧХ и ФЧХ.

Поскольку выражения для АЧХ и ФЧХ содержат частотно-зависимые компоненты, естественно, что обе эти характеристики частотно-зависимые (отсюда их названия). По сути, именно эту особенность мы и используем для фильтрации.

Рассмотрим выражения для АЧХ в двух крайних точках. При частоте = 0 на входе имеем постоянный ток, значение АЧХ стремится к нулю вследствие большой величины знаменателя. В другой крайней точке частотастремится к бесконечности, а значение АЧХ приближается к единице. Это дает нам представление о поведении АЧХ как функции частоты.

Еще одной важной точкой на графике АЧХ является «частота среза». Она задается как точка, в которой значение АЧХ падает до (1/
) от своей величины в полосе пропускания, и обычно называется «точкой 3 дБ». Ее можно рассчитать, используя выражение для АЧХ, после возведения в квадрат обеих частей равенства. Частота срезаf c = 1/2RC указывает на точку перегиба в ФЧХ фильтра. У ФВЧ, за частотой среза практически отсутствует затухание входного сигнала.

ФЧХ можно рассчитать по соответствующему выражению. ФЧХ начинается с 90-градусным опережением на низких частотах и падает до 45 о на частоте среза. За частотой среза и далее, в направлении более высоких частот, сдвиг фазы продолжает падать. Во всех реальных приложениях нас интересует поведение ФЧХ в полосе пропускания. В данном конкретном случае ФЧХ в полосе пропускания изменяется от 45 о (опережение фазы) до 0 о. Возможно, что это отвечает требованиям для ряда приложений, например таких, как низкокачественная запись речи.

      1. Фильтр нижних частот

Простой ФНЧ представляет собой RC-цепочку, состоящую из конденсатора и резистора. Характеристики ФНЧ очень похожи на характеристики ФВЧ, который мы только что рассмотрели. Единственная разница заключается в том, что они повернуты по частоте в обратном направлении (реверсируются), как и ожидалось. АЧХ опускается ниже единицы за частотой среза. Фаза выходного сигнала отстает от фазы входного сигнала на 45 о на частоте среза, и это отставание возрастает до 90 о на более высоких частотах.

Мы познакомились с двумя очень простыми фильтрами. Теперь мы знаем, что сигнал ослабляется на определенных частотах, а фаза выходного сигнала изменяется с частотой. Но как убедиться в том, что характеристики фильтра отвечают нашим целям? Что является критерием при сравнении характеристик фильтров?

Теперь определимся с терминологией и сформулируем некоторые требования к характеристикам фильтров.

      1. Ачх в дБ и частота в декадах

Диапазон возможных чисел будет больше, а количество нулей в записи числа меньше, если представлять числа в логарифмическом масштабе. Традиционно АЧХ фильтров представляется в децибелах (дБ). Децибел определяется следующим образом: АЧХ (дБ) = 20 lg (АЧХ).

Декада – это единица измерения, используемая для частоты, которая, аналогично децибелам, позволяет охватить больший диапазон частот нетривиальным способом. Например, спад 20 дБ/декада означает, что затухание фильтра увеличивается на 20 дБ за каждую декаду частоты ) .

3.3 Примеры расчета

Для звеньев, заданных передаточными функциями

, ,

построить частотные характеристики при различных значениях постоянных времени и коэффициента усиления.

Пример 1. Рассмотрим реальное дифференцирующее звено.

1. Передаточная функция реального дифференцирующего звена: , откуда

,

откуда .

Получили: .

3. Подставляя значения k = 2, T = 3 , строим амплитудно-фазовуючастотнуюхарактеристикупри w , изменяющемся от 0

до ¥ (рис. 2).

Рисунок 2. Амплитудно-фазовые частотные характеристики

5. Задаваясь значениями w из интервала от 0 до 6, с шагом 0,1, строим амплитудно-частотную характеристику (рис. 3).

Рисунок 3. Амплитудно-частотные характеристики

реального дифференцирующего звена

6. Фазовая частотная характеристика имеет вид:

7. Задаваясь значениями w из интервала от 0 до 6, с шагом 0,1, строим фазово-частотную характеристику рис. 4.

8. Изменяя значение k = 4 , при прежнем T = 3 , строим w , изменяющемся от 0 до ¥ (см. рис. 2).

9. Амплитудная частотная характеристика при w от 0 до 6, с шагом 0,1 рис. 3.

10. Так как фазовая частотная характеристика имеет вид: , т.е. не зависит от коэффициента усиления, то график фазово-частотной характеристики при изменении коэффициента усиления меняться не будет (см. рис. 4).

Рисунок 4. Фазовые частотные характеристики

реального дифференцирующего звена

11. Изменяя значение T = 1 , при первоначальном , k = 2 строим амплитудно-фазовую частотную характеристику при w , изменяющемся от 0 до ¥ (см. рис. 2).

12. Амплитудная частотная характеристика при w от 0 до 6, с шагом 0,1 (см. рис. 3).

13. Фазово-частотная характеристика при w от 0 до 6, с шагом 0,1 (см. рис. 4).

Пример 2. Рассмотрим апериодическое звено второго порядка.

1. Передаточная функция апериодического звена второго порядка: . Заменив р на , получим: амплитудно-фазовая частотная характеристика.

2. Освобождаемся от иррациональности в знаменателе. Для этого числитель и знаменатель домножаем на , получим:

откуда .

Получили:

, .

3. Подставляя значения k = 2, T 1 = 3, T 2 = 5 , строим амплитудно-фазовую частотную характеристику при w , изменяющемся от 0 до ¥ (рис. 5).

Рисунок 5. Амплитудно-фазовые частотные характеристики

апериодического звена второго порядка

4. Амплитудная частотная характеристика:


Задаваясь значениями w из интервала от 0 до 7 с шагом 0,1, строим амплитудно-частотную характеристику, (см. рис. 7).

5. Фазовая частотная характеристика имеет вид:

Задаваясь значениями w из интервала от 0 до 7 с шагом 0,1, строим фазово-частотную характеристику (рис. 6).

Рисунок 6. Фазово-частотные характеристики

апериодического звена второго порядка

Изменяя значение k = 4, при прежнем T 1 = 3, T 2 = 5, строим амплитудно-фазо-частотную характеристику при w , изменяющемся от 0 до ¥ (см. рис. 5).

6. Амплитудно-частотная характеристика при w от 0 до 7 с шагом 0,1 (рис. 7).

Рисунок 7. Амплитудно-частотные характеристики

апериодического звена второго порядка

7. Так как фазовая частотная характеристика имеет вид:

т.е. не зависит от коэффициента усиления, то фазово-частотная характеристика не изменится (см. рис. 6).

8. Изменяя значения T 1 = 1, T 2 = 2 ,припервоначальном , k = 2 строим амплитудно-фазо-частотную характеристику при w , изменяющемся от 0 до ¥ (см. рис. 5).

9. Амплитудная частотная характеристика при и задания

1. Назовите динамические характеристики объекта?

2. В каких формах может быть представлена частотная передаточная функция?

3. Как представляется частотная передаточная функции на комплексной плоскости?

4. Дать определение амплитудно-частотной характеристике.

5. Дать определение фазовой частотной характеристике.

6. Каков алгоритм построения частотных характеристик?

Эти характеристики полностью определяют структуру частотного спектра выходного напряжения. Амплитудно-частотная характеристика отражает усилительные свойства электрической цепи. Фазо-частотная характеристика определяет фазовый сдвиг выходного напряжения относительно входного.

В комплексной форме (3) выделяем вещественную P (ω ) и мнимуюQ (ω ) части

Амплитудно-частотная характеристика:

Фазо-частотная характеристика

(5)

Где параметр φ * подбирается так, чтобы обеспечить непрерывность функцииφ (ω ) при том значенииω к , при котором обращается в нуль знаменатель в аргументе арктангенса, т.е.

Рис. 6. Характеристики цепи: а – амплитудно-частотная; б–фазо-частотная

  1. Определение устойчивости

Условие устойчивости состояния покоя электрической цепи заключается в том, что после прекращения действия внешних возмущений цепь возвращается в исходное состояние. Для этого необходимо, чтобы возникающие в цепи при нарушении состояния покоя переходные токи и напряжения были затухающими. Энергия переходного процесса преобразуется в активных сопротивлениях цепи в теплоту, которая отводится в окружающую среду. Достаточное условие устойчивости электрической цепи: если корни числителя – нули и корни знаменателя – полюса передаточной функции HU(p) = A(p)/B(p) имеют отрицательную вещественную часть, то цепь устойчива.

Bнашем случае имеется двукратный корень числителя (2),p =0, что является нейтральным условием по отношению к устойчивости. Приравняв нулю знаменатель (2) и решив полученное уравнение

найдем два комплексно-сопряжённых его корня:

. (6)

Это полюса передаточной функции. Отобразим положение полюсов и нулей фнкции на комплексной плоскости. Т.к. полюса (их отмечают крестиком) расположены в левой полуплоскости комплексной плоскости корней (рис. 7), это означает, что переходные процессы в цепи затухают и цепь устойчивая.

Рис.7. Полюса и нуль функции H U (p ) на комплексной плоскости

  1. Определение реакции цепи на периодическое негармоническое входное воздействие

Фильтрующие свойства цепи во временной области проявляются в виде реакции цепи на периодическое несинусоидальное воздействие или воздействие более сложной формы. Разложение входного напряжения в бесконечный тригонометрический ряд Фурье имеет вид

Ограничим ряд Фурье первыми пятью гармониками.

Частоту внешнего воздействия подберем исходя из того условия, чтобы в диапазоне от ω 1 до 9ω 1 зависимостьH U (ω ) претерпевала существенное изменение. Для рассматриваемого варианта можно принятьf 1 =1000 Гц,T 1 =10 -3 c. Амплитуду воздействия выберемU m =1В.

У гармоник с нечётными номерами начальная фаза нулевая, с чётными – равная π. Занесём в таблицу характеристики первых пяти гармоник разложения входного сигнала:

№ гармоники

Цикл. частота, с -1

Амплитуда, В

Начальная фаза, рад

Построим амплитудный и фазовый частотные спектры входного воздействия. Амплитудный и фазовый спектры первых гармоник напряжения U 1 (t ) даны на рисунке:

a)б)

Рис.8. Амплитудный (а) и фазовый (б) частотные спектры входного воздействия.

Рис. 9. Первые гармоники входного напряжения (1-5) и их сумма (6)

Расчет и построение выходного напряжения. Сначала найдём реакцию цепи на каждую гармонику входного напряжения в отдельности. Результирующая реакция равна сумме составляющих реакций. Амплитуда n-й гармоники на выходе определяется выражением

,

а фаза – выражением

Вычисления по этим формулам сведены в таблицу:

№ гармоники n

Цикл. частота ω n , с -1

Амплитуда
, В

Начальная фаза
, град.

Построим амплитудный и фазовый частотные спектры выходной реакции.

Рис. 10. Амплитудный и фазовый спектры по частоте для выходного сигнала.

Выведем на график пять первых гармоник выходного сигнала и их сумму, аппроксимирующую отклик цепи на периодически повторяющийся прямоугольный импульс, подаваемый на вход. На графике хорошо заметны искажения формы сигнала. Понизился и интегральный уровень сигнала, хотя пиковые значения по-прежнему достигают 1 вольта. Поэтому для более качественной аппроксимации не следует ограничиваться всего пятью гармониками, т.к. при увеличении частоты AЧXне спадает, а даже растёт, и вклад высоких гармоник существенен.

Рис. 11. Пять гармоник на выходе и их сумма

H() – частотно-зависимая комплексная функция. Ее модуль называют амплитудно-частотной характеристикой (АЧХ), а арктангенс отношения мнимой и вещественной частей – фазо-частотной характеристикой (ФЧХ). На векторной диаграмме представлена геометрическая интерпретация передаточной функции. С ее помощью легко понять, как получаются выражения для АЧХ и ФЧХ.

Поскольку выражения для АЧХ и ФЧХ содержат частотно-зависимые компоненты, естественно, что обе эти характеристики частотно-зависимые (отсюда их названия). По сути, именно эту особенность мы и используем для фильтрации.

Рассмотрим выражения для АЧХ в двух крайних точках. При частоте = 0 на входе имеем постоянный ток, значение АЧХ стремится к нулю вследствие большой величины знаменателя. В другой крайней точке частотастремится к бесконечности, а значение АЧХ приближается к единице. Это дает нам представление о поведении АЧХ как функции частоты.

Еще одной важной точкой на графике АЧХ является «частота среза». Она задается как точка, в которой значение АЧХ падает до (1/
) от своей величины в полосе пропускания, и обычно называется «точкой 3 дБ». Ее можно рассчитать, используя выражение для АЧХ, после возведения в квадрат обеих частей равенства. Частота срезаf c = 1/2RC указывает на точку перегиба в ФЧХ фильтра. У ФВЧ, за частотой среза практически отсутствует затухание входного сигнала.

ФЧХ можно рассчитать по соответствующему выражению. ФЧХ начинается с 90-градусным опережением на низких частотах и падает до 45 о на частоте среза. За частотой среза и далее, в направлении более высоких частот, сдвиг фазы продолжает падать. Во всех реальных приложениях нас интересует поведение ФЧХ в полосе пропускания. В данном конкретном случае ФЧХ в полосе пропускания изменяется от 45 о (опережение фазы) до 0 о. Возможно, что это отвечает требованиям для ряда приложений, например таких, как низкокачественная запись речи.

      1. Фильтр нижних частот

Простой ФНЧ представляет собой RC-цепочку, состоящую из конденсатора и резистора. Характеристики ФНЧ очень похожи на характеристики ФВЧ, который мы только что рассмотрели. Единственная разница заключается в том, что они повернуты по частоте в обратном направлении (реверсируются), как и ожидалось. АЧХ опускается ниже единицы за частотой среза. Фаза выходного сигнала отстает от фазы входного сигнала на 45 о на частоте среза, и это отставание возрастает до 90 о на более высоких частотах.

Мы познакомились с двумя очень простыми фильтрами. Теперь мы знаем, что сигнал ослабляется на определенных частотах, а фаза выходного сигнала изменяется с частотой. Но как убедиться в том, что характеристики фильтра отвечают нашим целям? Что является критерием при сравнении характеристик фильтров?

Теперь определимся с терминологией и сформулируем некоторые требования к характеристикам фильтров.

      1. Ачх в дБ и частота в декадах

Диапазон возможных чисел будет больше, а количество нулей в записи числа меньше, если представлять числа в логарифмическом масштабе. Традиционно АЧХ фильтров представляется в децибелах (дБ). Децибел определяется следующим образом: АЧХ (дБ) = 20 lg (АЧХ).

Декада – это единица измерения, используемая для частоты, которая, аналогично децибелам, позволяет охватить больший диапазон частот нетривиальным способом. Например, спад 20 дБ/декада означает, что затухание фильтра увеличивается на 20 дБ за каждую декаду частоты ) .

Аббревиатура АЧХ расшифровывается как амплитудно-частотная характеристика. На английском этот термин звучит как «frequency response», что в дословном переводе означает «частотный отклик». Амплитудно-частотная характеристика цепи показывает зависимость уровня на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства. АЧХ может быть определена аналитически через формулы, либо экспериментально. Любое устройство предназначено для передачи (или усиления) электрических сигналов. АЧХ устройства определяется по зависимости коэффициента передачи (или коэффициента усиления) от частоты.

Коэффициент передачи

Что такое коэффициент передачи? Коэффициент передачи — это отношение на выходе цепи к напряжению на ее входе. Или формулой:

где

U вых — напряжение на выходе цепи

U вх — напряжение на входе цепи


В усилительных устройствах коэффициент передачи больше единицы. Если устройство вносит ослабление передаваемого сигнала, то коэффициент передачи меньше единицы.

Коэффициент передачи может быть выражен через :

Строим АЧХ RC-цепи в программе Proteus

Для того, чтобы досконально разобраться, что такое АЧХ, давайте рассмотрим рисунок ниже.

Итак, имеем «черный ящик», на вход которого мы будем подавать синусоидальный сигнал, а на выходе черного ящика мы будем снимать сигнал. Должно соблюдаться условие: нужно менять частоту входного синусоидального сигнала, но его амплитуда должна быть постоянной .


Что нам делать дальше? Надо измерить амплитуду сигнала на выходе после черного ящика при интересующих нас значениях частоты входного сигнала. То есть мы должны изменять частоту входного сигнала от 0 Герц (постоянный ток) и до какого-либо конечного значения, которое будет удовлетворять нашим целям, и смотреть, какая амплитуда сигнала будет на выходе при соответствующих значениях на входе.

Давайте разберем все это дело на примере. Пусть в черном ящике у нас будет самая простая с уже известными номиналами радиоэлементов.


Как я уже говорил, АЧХ может быть построено экспериментально, а также с помощью программ-симуляторов. На мой взгляд, самый простой и мощный симулятор для новичков — это Proteus. С него и начнем.

Собираем данную схему в рабочем поле программы Proteus


Для того, чтобы подать на вход схемы синусоидальный сигнал, мы кликаем на кнопочку «Генераторы», выбираем SINE, а потом соединяем его со входом нашей схемы.

Для измерения выходного сигнала достаточно кликнуть на значок с буквой «V» и соединить выплывающий значок с выходом нашей схемы:

Для эстетики, я уже поменял название входа и выхода на sin и out. Должно получиться как-то вот так:


Ну вот, пол дела уже сделано.

Теперь осталось добавить важный инструмент. Он называется «frequency response», как я уже говорил, в дословном переводе с английского — «частотный отклик». Для этого нажимаем кнопочку «Диаграмма» и в списке выбираем «frequency»

На экране появится что-то типа этого:


Кликаем ЛКМ два раза и открывается вот такое окошко, где в качестве входного сигнала мы выбираем наш генератор синуса (sin), который у нас сейчас задает частоту на входе.


Здесь же выбираем диапазон частоты, который будем «загонять» на вход нашей цепи. В данном случае это диапазон от 1 Гц и до 1 МГц. При установке начальной частоты в 0 Герц Proteus выдает ошибку. Поэтому, ставьте начальную частоту близкую к нулю.



и в результате должно появится окошко с нашим выходом


Нажимаем пробел и радуемся результату


Итак, что интересного можно обнаружить, если взглянуть на нашу АЧХ? Как вы могли заметить, амплитуда на выходе цепи падает с увеличением частоты. Это означает, что наша RC-цепь является своеобразным частотным фильтром. Такой фильтр пропускает низкие частоты, в нашем случае до 100 Герц, а потом с ростом частоты начинает их «давить». И чем больше частота, тем больше он ослабляет амплитуду выходного сигнала. Поэтому, в данном случае, наша RC-цепь является самым простейшим ф ильтром н изкой ч астоты (ФНЧ).

Полоса пропускания

В среде радиолюбителей и не только встречается также такой термин, как . Полоса пропускания — это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы.

Как же определить полосу пропускания? Это сделать довольно легко. Достаточно на графике АЧХ найти уровень в -3 дБ от максимального значения АЧХ и найти точку пересечения прямой с графиком. В нашем случае это можно сделать легче пареной репы. Достаточно развернуть нашу диаграмму на весь экран и с помощью встроенного маркера посмотреть частоту на уровне в -3 дБ в точке пересечения с нашим графиком АЧХ. Как мы видим, она равняется 159 Герц.


Частота, которая получается на уровне в -3 дБ, называется частотой среза . Для RC-цепи ее можно найти по формуле:

Для нашего случая расчетная частота получилась 159,2 Гц, что подтверждает и Proteus.

Кто не желает связываться с децибелами, то можно провести линию на уровне 0,707 от максимальной амплитуды выходного сигнала и смотреть пересечение с графиком. В данном примере, для наглядности, я взял максимальную амплитуду за уровень в 100%.


Как построить АЧХ на практике?

Как построить АЧХ на практике, имея в своем арсенале и ?

Итак, поехали. Собираем нашу цепь в реале:


Ну а теперь цепляем ко входу схемы генератор частоты, а с помощью осциллографа следим за амплитудой выходного сигнала, а также будем следить за амплитудой входного сигнала, чтобы мы были точно уверены, что на вход RC-цепи подается синус с постоянной амплитудой.


Для экспериментального изучения АЧХ нам потребуется собрать простенькую схемку:


Наша задача состоит в том, чтобы менять частоту генератора и уже наблюдать, что покажет осциллограф на выходе цепи. Мы будем прогонять нашу цепь по частотам, начиная от самой малой. Как я уже сказал, желтый канал предназначен для визуального контроля, что мы честно проводим опыт.

Постоянный ток, проходящий через эту цепь, на выходе будет давать амплитудное значение входного сигнала, поэтому первая точка будет иметь координаты (0;4), так как амплитуда нашего входного сигнала 4 Вольта.

Следующее значение смотрим на осциллограмме:

Частота 15 Герц, амплитуда на выходе 4 Вольта. Итак, вторая точка (15;4)


Третья точка (72;3.6). Обратите внимание на амплитуду выходного красного сигнала. Она начинает проседать.


Четвертая точка (109;3.2)


Пятая точка (159;2.8)


Шестая точка (201;2.4)


Седьмая точка (273;2)


Восьмая точка (361;1.6)


Девятая точка (542;1.2)


Десятая точка (900;0.8)


Ну и последняя одиннадцатая точка (1907;0.4)


В результате измерений у нас получилась табличка:

Строим график по полученным значениям и получаем нашу экспериментальную АЧХ;-)

Получилось не так, как в технической литературе. Оно и понятно, так как по Х берут логарифмический масштаб, а не линейный, как у меня на графике. Как вы видите, амплитуда выходного сигнала будет и дальше понижаться с увеличением частоты. Для того, чтобы еще более точно построить нашу АЧХ, требуется взять как можно больше точек.

Давайте вернемся к этой осциллограмме:


Здесь на частоте среза амплитуда выходного сигнала получилась ровно 2,8 Вольт, которые как раз и находятся на уровне в 0,707. В нашем случае 100% это 4 Вольта. 4х0,707=2,82 Вольта.

АЧХ полосового фильтра

Существуют также схемы, АЧХ которых имеет вид холма или ямы. Давайте рассмотрим один из примеров. Мы будем рассматривать так называемый полосовой фильтр, АЧХ которого имеет вид холма.

Собственно сама схема:


А вот ее АЧХ:


Особенность таких фильтров, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее K u max /√2.


Так как в дБ смотреть график неудобно, поэтому я переведу его в линейный режим по оси Y, убирая маркер


В результате перестроения получилась такая АЧХ:


Максимальное значение на выходе составило 498 мВ при амплитуде входного сигнала в 10 Вольт. Мдя, неплохой «усилитель») Итак, находим значение частот на уровне в 0,707х498=352мВ. В результате получились две частоты среза — это частота в 786 Гц и в 320 КГц. Следовательно, полоса пропускания данного фильтра от 786Гц и до 320 КГц.

На практике для получения АЧХ используются приборы, называемые характериографами для исследования АЧХ. Вот так выглядит один из образцов Советского Союза


ФЧХ расшифровывается как фазо-частотная характеристика, phase response — фазовый отклик. Фазо-частотная характеристика — это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.

Разность фаз

Думаю, вы не раз слышали такое выражение, как » у него произошел сдвиг по фазе». Это выражение не так давно пришло в наш лексикон и обозначает оно то, что человек слегка двинулся умом. То есть было все нормально, а потом раз! И все:-). И в электронике такое тоже часто бывает) Разницу между фазами сигналов в электронике называют разностью фаз . Вроде бы «загоняем» на вход какой-либо сигнал, а выходной сигнал ни с того ни с сего взял и сдвинулся по времени, относительно входного сигнала.

Для того, чтобы определить разность фаз, должно выполняться условие: частоты сигналов должны быть равны . Пусть даже один сигнал будет с амплитудой в Киловольт, а другой в милливольт. Неважно! Лишь бы соблюдалось равенство частот. Если бы условие равенства не соблюдалось, то сдвиг фаз между сигналами все время бы изменялся.

Для определения сдвига фаз используют двухканальный осциллограф. Разность фаз чаще всего обозначается буквой φ и на осциллограмме это выглядит примерно так:


Строим ФЧХ RC-цепи в Proteus

Для нашей исследуемой цепи


Для того, чтобы отобразить ее в Proteus мы снова открываем функцию «frequency response»


Все также выбираем наш генератор


Не забываем проставлять испытуемый диапазон частот:


Долго не думая, выбираем в первом же окошке наш выход out


И теперь главное отличие: в колонке «Ось» ставим маркер на «Справа»


Нажимаем пробел и вуаля!


Можно его развернуть на весь экран

При большом желании эти две характеристики можно объединить на одном графике


Обратите внимание, что на частоте среза сдвиг фаз между входным и выходным сигналом составляет 45 градусов или в радианах п/4 (кликните для увеличения)


В данном опыте при частоте более 100 КГц разность фаз достигает значения в 90 градусов (в радианах π/2) и уже не меняется.

Строим ФЧХ на практике

ФЧХ на практике можно измерить также, как и АЧХ, просто наблюдая разность фаз и записывая показания в табличку. В этом опыте мы просто убедимся, что на частоте среза у нас действительно разность фаз между входным и выходным сигналом будет 45 градусов или π/4 в радианах.

Итак, у меня получилась вот такая осциллограмма на частоте среза в 159,2 Гц


Нам надо узнать разность фаз между этими двумя сигналами


Весь период — это 2п, значит половина периода — это π. На полупериод у нас приходится где-то 15,5 делений. Между двумя сигналами разность в 4 деления. Составляем пропорцию:

Отсюда х=0,258п или можно сказать почти что 1/4п. Следовательно, разница фаз между двумя этими сигналами равняется п/4, что почти в точности совпало с расчетными значениями в Proteus.

Резюме

Амплитудно-частотная характеристика цепи показывает зависимость уровня на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства.

Фазо-частотная характеристика — это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.

Коэффициент передачи — это отношение на выходе цепи к напряжению на ее входе. Если коэффициент передачи больше единицы, то электрическая цепь усиливает входной ссигнал, если же меньше единицы, то ослабляет.

Полоса пропускания — это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы. Определяется по уровню 0,707 от максимального значения АЧХ.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: