Следящая система для солнечной батареи. Поворотное устройство слежения за солнцем? Система управления поворотом солнечных панелей на базе часового механизма

При строительстве загородных домов, домиков на дачных участках, теплиц, различных фермерских построек все чаще стали применяться автономные системы электрообеспечения. Солнечные батареи обеспечивают независимость от общих электрических сетей. Да и в городах в частном секторе нередко можно увидеть на крышах домов солнечные панели домашних электростанций.

Эти панели могут быть с моно- и поликристаллическими кремниевыми структурами, могут быть построены на базе батарей, выполненных по аморфной или микроморфной технологии, могут быть даже использованы солнечные батареи, выполненные по технологии «Moth Eye» («Глаз мотылька»). При этом каждое здание строится таким образом, чтобы солнечные панели были установлены в месте, максимально освещаемом солнцем.

Эффективность современных гелиевых систем в среднем не превышает 18% - 20%. У лучших образцов эффективность может достигать 25%. В 2014 году ученые Австралийского центра UNSW по усовершенствованию фотовольтаики сообщили, что им удалось добиться эффективности солнечных батарей в 40%.

При этом нужно понимать, что измерение величины эффективности производится, когда гелиевая панель освещается солнцем под прямым углом. Если солнечная батарея закреплена стационарно, то в течение дня, когда солнце перемещается по небосводу, период прямого освещения батареи солнцем будет относительно небольшим. И поэтому эффективность даже самых совершенных солнечных панелей будет снижаться.

Для того чтобы минимизировать снижение эффективности гелиевых систем, солнечные панели должны устанавливаться на поворотных модулях, которые позволят в течение всего светового дня ориентировать батареи на солнце. Такое поворотное устройство, на котором закреплена несущая конструкция с одной или несколькими солнечными панелями, называется трекером.

Он предназначен для того, чтобы следить за солнцем, и, в зависимости от его положения, ориентировать на него солнечную панель. Это устройство, в зависимости от исполнения, включает в себя один или два датчика слежения за солнцем, а также поворотный механизм. Трекер должен быть установлен в хорошо освещаемом солнцем месте на земле, на стационарной станине, либо на мачте, которая поднимет трекер на такую высоту, чтобы солнечная батарея всегда была освещена солнцем.

Трекер с четырьмя солнечными панелями на мачте

Даже простейшее поворотное устройство с системой слежения за солнцем позволяет получить максимальный коэффициент полезного действия от гелиевых батарей. Как показали исследования, при отсутствии должной ориентации солнечных панелей на солнце теряется до 35% мощности. Поэтому, чтобы выйти на запланированную мощность в случае неподвижного крепления фотоэлементов, приходится устанавливать большее количество панелей.

Принцип построения систем управления поворотом солнечных батарей

Промышленностью выпускается несколько видов систем управления поворотом солнечных батарей. Это достаточно дорогие (до 100000 рублей) устройства, которые могут управлять положением сразу нескольких гелиевых панелей.

Поскольку солнце в течение дня перемещается не только по горизонтали, но и по вертикали, то эти системы управления отслеживают оба изменения положения и, в соответствии с полученной информацией, выдают команды на поворот панели вокруг горизонтальной или вертикальной осей. В общем случае такая система управления состоит из солнечного датчика, преобразователя (П) сигнала с этого датчика, усилителя (У) сигнала, микроконтроллера (МК), устройства управления двигателем (УУД), самого двигателя и, наконец, непосредственно рамы, на которой крепится гелиевая панель.


Схема управления трекера

Характерно, что для управления поворотом в обеих осях используется одна и та же схема. Различны только датчики положения солнца и двигатели. Простейший датчик положения солнца состоит из двух фотодиодов, разделенных непрозрачной перегородкой.

В зависимости от того, за каким перемещением следит этот датчик, перегородка устанавливается горизонтально или вертикально, но обязательно направлена строго на солнце. Пока оба фотодиода освещаются одинаково, сигналы, поступающие с них, равны. Как только солнце переместится настолько, что один из фотодиодов окажется в тени перегородки, происходит разбаланс сигналов и система управления вырабатывает соответствующую команду на поворот солнечной батареи.


Схема датчика положения солнца

В качестве двигателей для поворотной платформы используются, как правило, шаговые двигатели или реактивно-вентильные двигатели. В таких системах управления датчики слежения установлены на этой же платформе и поворачиваются вместе с нею, обеспечивая тем самым точную ориентацию гелиевой панели на солнце. Для надежной работы датчика необходимо предусмотреть защиту его от загрязнения, налипания снега, затенения оптики случайными предметами.

Существуют системы управления, в которых датчики слежения удалены от несущей поворотной платформы и находятся в месте, защищенном от подобных воздействий. В этом случае сигнал с датчиков поступает на сельсин-передатчик. Ориентируя датчик слежения на солнце, сельсин-передатчик передает управляющее воздействие на сельсин-приемник, который и поворачивает несущую платформу, направляя ее точно на солнце.

Система управления поворотом солнечных панелей на базе часового механизма

Промышленные установки – полностью укомплектованные гелиевые электростанции с двухосными поворотными модулями – достаточно дорогое удовольствие. Например, промышленный трекер UST-AADAT стоит порядка полутора миллионов рублей. Естественное желание всех владельцев солнечных электростанций – повысить выходную мощность, но при этом сократить расходы. В результате появились самодельные устройства, оригинальные по своему решению, в которых используются подручные материалы. И эти устройства вполне успешно управляют ориентацией панелей на солнце.

Один из вариантов такого устройства – система управления ориентацией гелиевых панелей, построенная на базе часового механизма. Для слежения за солнцем вовсе не обязательно использовать светоприемные устройства. Для этого достаточно взять обычные настенные механические часы. Подойдут даже старые ходики. Известно, что за один час солнце проходит по небосводу с востока на запад путь, соответствующий угловому перемещению на 15°. Поскольку для гелиевой панели такое угловое смещение не особенно критично, то достаточно включать поворотный механизм один раз в час.


Слежение за перемещением солнца по часам

Устройство для поворота гелиевой панели вокруг вертикальной оси может выглядеть следующим образом. В циферблате на расстоянии длины минутной стрелки от центра, в месте, соответствующем 12-ти часам, устанавливается неподвижный контакт. Подвижный контакт – на острие минутной стрелки.

Таким образом, каждые 60 минут будет происходить замыкание контактов и включаться двигатель, поворачивающий солнечную панель. Отключение двигателя можно организовать различными способами, например, конечным выключателем или реле времени. Если на циферблате установить еще один неподвижный контакт в месте, соответствующем 6-ти часам, то коррекция положения панели будет производиться через каждые полчаса.

В этом случае устройства отключения двигателя должны быть настроены на поворот несущей платформы на угол 7,5°.

Кроме того, при желании здесь же, на этом механизме, с помощью еще одной контактной группы, но уже на базе часовой стрелки можно собрать схему автоматического возврата солнечной панели в исходное положение. На базе этой же часовой стрелки можно собрать систему управления поворотом панели и вокруг горизонтальной оси. Пока часовая стрелка двигается до 12-ти часов, несущая рама поднимается вслед за солнцем. После 12-ти часов двигатель горизонтальной оси реверсируется, и солнечная панель начинает вращаться в обратном направлении.

Принцип водяных часов в системе управления поворотом солнечных панелей

Эта система была придумана девятнадцатилетней студенткой Иден Фулл из Канады. Она предназначена для управления одноосным трекером. Принцип работы следующий. Вращение производится вокруг горизонтальной оси. Солнечная панель устанавливается в начальное положение таким образом, чтобы солнечные лучи были перпендикулярны плоскости панели.

На одну сторону панели подвешивается емкость с водой, на противоположную сторону подвешивается груз, равновесный с емкостью, наполненной водой. В нижней части емкости проделывается небольшое отверстие, чтобы вода по каплям вытекала из этого сосуда. Размер этого отверстия подбирается экспериментально. По мере вытекания воды сосуд становится легче, и противовес медленно поворачивает раму с панелью.


Трекер на «водяных часах»

Подготовка трекера к работе заключается в том, что в опустевшую емкость заливается вода и солнечная панель устанавливается в исходное положение.

Эти два примера далеко не исчерпывают возможные варианты построения поворотных модулей. При небольшой фантазии можно получить простое, но очень эффективное устройство, которое гарантированно сможет повысить эффективность домашней гелиевой электростанции.

Как известно, КПД солнечной панели максимально при попадании на нее прямых солнечных лучей. Но т.к. солнце постоянно движется по горизонту, то КПД солнечных батарей сильно падает, когда солнечные лучи падают на панель под углом. Чтобы повысить КПД солнечных панелей, применяются системы следящие за солнцем и автоматически поворачивающие солнечную панель для попадания прямых лучей.
В данной статье представлена схема устройства слежения за солнцем или по другому трэкер (Solar Tracker).

Схема трэкера проста, компактна и вы легко сможете собрать ее своими руками. Для определения позиции солнца, используются два фоторезистора. Мотор включен по схеме H-моста (H-bridge), который позволяет коммутировать ток до 500 мА при напряжении питания 6-15В. В темноте, устройство также работоспособно и будет поворачивать моторчик на наиболее яркий источник света.

Принципиальная схема устройства слежения за солнцем

Как видно на рисунке ниже, схема проста до безобразия и содержит микросхему операционного усилителя LM1458 (К140УД20), транзисторы BD139 (КТ815Г, КТ961А) и BD140 (КТ814Г,КТ626В), фоторезисторы, диоды 1N4004 (КД243Г), резисторы и подстроечные резисторы.

Из схемы видно, что мотор М приводится в движение при разных значениях на выходах ОУ IC1a и IC1b. Таблица истинности:

* или наоборот, зависит от подключения мотора

Транзисторы в схеме работают в паре, по диагонали, коммутируя +Ve или -Ve к мотору, и заставляя его вращаться вперед или назад.

Во время остановки мотора, он продолжает вращаться, т.к. присутствует вращающийся момент. Вследствие этого, мотор какое-то время генерирует мощность, которая может вывести транзисторы из строя. Для защиты транзисторов от противоЭДС в схеме моста используется 4 диода.

Входной каскад состоит из двух ОУ (IC1) и фоторезисторов LDR и LDR". Если количество света, попадающее на них одинаково, то сопротивления фоторезисторов также равны. Следовательно, если напряжение питания 12В, то в месте соединения фоторезисторов LDR LDR" будет напряжение в 6В. Если количество света попадающего на один фоторезистор будет больше, чем на другом фоторезисторе, то напряжение будет изменяться.

Ограничения (лимиты) от +V до 0V устанавливаются четырьмя последовательно соединенными резисторами и подстраивается 2-мя подстроечными резисторами. Если напряжение выйдет за пределы этих ограничений, то ОУ запустит мотор и он постоянно будет вращаться.
Подстроечный резистор 20K регулируют чувствительность, т.е. диапазон между лимитами. Подстроечник 100К регулирует то, насколько лимиты будут симметричны относительно +V/2 (точка баланса).

Настройка схемы:
1. Проверьте напряжение источника питания схемы
2. Подключите двигатель пост. тока
3. Установите фоторезисторы рядом, чтобы на них попадало одинаковое количество света.
4. Полностью выкрутите оба подстроечный резистора против часовой стрелки
5. Подайте питание на схему. Моторчик закрутиться
6. Вращайте подстроечник 100К по часовой стрелке до тех пор, пока он не остановится. Отметьте эту позицию.
7. Продолжайте вращать подстроечник 100К по часовой стрелке до тех пор, пока мотор не начнет вращаться в другую сторону. Отметьте эту позицию.
8. Разделите угол между двумя позициями пополам и установите там подстроечник (это будет точка баланса).
9. Теперь, вращайте подстроечник 20К по часовой стрелке до тех пор, пока мотор не начнет дергаться
10. Немного верните положение подстроечника назад (против часовой стрелки), чтобы мотор остановился (данный подстроечник отвечает за чувствительность)
11. Проверьте корректность работы схемы, поочередно заслоняя от света один и второй фоторезисторы.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Операционный усилитель

LM1458

1 Аналог: К140УД20 В блокнот
Биполярный транзистор

BD139

2 Аналоги: КТ815Г, КТ961А В блокнот
Биполярный транзистор

BD140

2 Аналоги: КТ814Г,КТ626В В блокнот
Выпрямительный диод

1N4004

4 Аналог: КД243Г В блокнот
Резистор 15 кОм 1 В блокнот
Резистор 47 кОм 1 В блокнот
Подстроечный резистор 100 кОм 1

Для начала, наверное, стоит рассказать, что в этой статье понимается под солнечным трекером. Коротко говоря, устройство представляет собой подвижную подставку под солнечную панель, нужную, чтобы в условиях наших умеренных широт панель собирала достаточное количество света, меняя своё положение вслед за солнцем.

В данном случае прототип солнечного трекера собирался на базе Arduino. Для вращения платформы в горизонтальной и вертикальной оси используются сервоприводы, угол поворота которых зависит от мощности падающего на фоторезисторы света. В качестве корпуса используется всеми любимый советский металлический конструктор.

Нелишним будет упомянуть, что всё это делалось как курсовой проект, поэтому я не стал заниматься приобретением и креплением собственно, самой солнечной панели и аккумулятора, так как их наличие не имеет отношения к работе трекера. В оправдание могу сказать, что возможности советского металлического конструктора необъятны, так что прикрутить к нему небольшую солнечную панель для зарядки телефона не составит особенного труда, если возникнет такое желание.

Итак, что использовалось при сборке:

  • Arduino MEGA 2560 R3
  • Сервопривод Tower SG90 - 2x
  • Фоторезистор MLG4416 (90mW; 5-10kOhm/1.0MOhm) - 4x
  • Звонок пьезоэлектрический KPR-G1750
  • Металлический конструктор
  • Резистор выводной 10 kOhm; 0,25W; 5% - 4x
  • Печатная макетная плата, корпус, шнуры для соединения
Mega использовалась исключительно по причине её наличия в шкафу на момент утверждения темы проекта, если учитывать покупку всех элементов с нуля, то в данном случае вполне себе хватит и Uno, но выйдет, конечно, дешевле.

Внезапно оказавшийся в списке спикер потребовался для пущего эффекта высокотехнологичности. Дело в том, что сервоприводы могут поворачиваться только на 180 градусов, да большего нам и не требуется, при учёте того, что следим мы за солнцем. Но при тестировании работы проекта, когда за солнцем в две минуты демонстрации особо не последишь, оказалось, что неплохо было бы сигнализировать, в какой момент стоит перестать размахивать фонариком, потому что сервопривод достиг мёртвой зоны. Для этого и был добавлен вышеупомянутый звонок.

Итак, начнём собирать трекер. Для начала разделим предстоящий фронт работ на условные четыре этапа: сборка подставки для солнечных панелей и крепление сервоприводов, крепление к собранной конструкции светочувствительных элементов, пайка и написание кода для Arduino.

Фигура первая: конструкторская

Путём интенсивного поиска была найдена парочка примеров конструкции подобных устройств. Наибольшего внимания удостоились два:
  • www.youtube.com/watch?v=SvKp3V9NHZY – победитель в номинации «Подача материала» проиграл в надёжности и практичности устройства: конструкция представляет собой соединение двух сервоприводов напрямую.
  • www.instructables.com/id/Simple-Dual-Axis-Solar-Tracker - собственно, отсюда и была взята основная идея моей конструкции, за исключением материала и общего внешнего вида поворотного корпуса.
Сборка из металлического конструктора была сопряжена с определёнными трудностями: пришлось подогнать дрелью отверстия для подключения сервоприводов, а также надёжно приклеить их к платформам в двух плоскостях. То, что получилось, показано на видео ниже.

Фигура вторая: схемотехническая

Главной задачей крепления фоторезисторов было даже не их подключение, а обеспечение разделения света для каждого из четырёх элементов. Понятно, что оставить их без каких-нибудь перегородок было нельзя, так как тогда значения, получаемые с фоторезисторов, были бы примерно одинаковы и поворота бы не получилось. Тут, к сожалению, возможности металлического конструктора подвели, главным образом из-за наличия во всех деталях отверстий. Найти подходящей металлической детали не получилось, поэтому мой солнечный трекер обзавёлся инновационной перегородкой из картона. Несмотря на достаточно убогонький вид, своё предназначение она выполняет отлично.

Фоторезисторы к корпусу прикреплены вполне надёжно, единственное, с чем стоило бы поработать – это с аккуратностью их расположения на платформе: сейчас они смотрят вверх недостаточно перпендикулярно, что может расстраивать перфекционистов и слегка портить точность поворота.

Немного схемотехники: подключение светочувствительных элементов осуществляется по схеме делителя напряжения, для чего потребовались указанные в списке элементов выводные резисторы. Все фоторезисторы припаяны к общему контакту, подключенному к пятивольтному выходу питания Arduino. Для удобства и эстетики ноги фоторезисторов припаяны к контактам двух трёхжильных изолированных проводов (один контакт остался неиспользуемым и спрятан). Все схемотехнические детали можно рассмотреть на схеме ниже.

Фигура третья: паяльная

Что-либо подробно описывать тут не несёт особого смысла, поэтому просто прилагаю фото используемых материалов и полученную в результате макетную плату.

Фигура четвёртая: с новым кодом!

Общий алгоритм работы заключается в обработке данных с фоторезисторов при помощи АЦП. Имеем 4 элемента, то есть 4 показания, находим среднее показание по левой стороне ((верхний левый + нижний левый) / 2), аналогично по правой, верхней и нижней сторонам. Если разница по модулю между левой и правой стороной больше порога, то осуществляем поворот в сторону с большим средним значением. Аналогично для верха и низа. Особые плюшки в коде: можно задавать вручную чувствительность срабатывания и максимальный и минимальный угол в двух плоскостях. Листинг рабочего кода приведён ниже.

Код

#include Servo horizontal; int servoh = 90; int servohLimitHigh = 180; int servohLimitLow = 0; Servo vertical; int servov = 45; int servovLimitHigh = 180; int servovLimitLow = 0; int ldrlt = A2; //LDR top left - BOTTOM LEFT int ldrrt = A3; //LDR top rigt - BOTTOM RIGHT int ldrld = A1; //LDR down left - TOP LEFT int ldrrd = A0; //ldr down rigt - TOP RIGHT int buzz_pin = 10; int buzz_tone = 20; int tol = 50; void setup() { Serial.begin(9600); pinMode(buzz_pin, OUTPUT); horizontal.attach(31); vertical.attach(30); horizontal.write(servoh); vertical.write(servov); } void loop() { int lt = analogRead(ldrlt); // top left int rt = analogRead(ldrrt); // top right int ld = analogRead(ldrld); // down left int rd = analogRead(ldrrd); // down rigt int avt = (lt + rt) / 2; // average value top int avd = (ld + rd) / 2; // average value down int avl = (lt + ld) / 2; // average value left int avr = (rt + rd) / 2; // average value right int dvert = abs(avt - avd); // check the diffirence of up and down int dhoriz = abs(avl - avr);// check the diffirence of left and right Serial.print("avt: "); Serial.print(avt); Serial.print(" "); Serial.print("avd: "); Serial.print(avd); Serial.print(" "); Serial.print("avl: "); Serial.print(avl); Serial.print(" "); Serial.print("avr: "); Serial.println(avr); Serial.print("h: "); Serial.print(servoh); Serial.print(" "); Serial.print("v: "); Serial.print(servov); Serial.print(" "); if (dhoriz > tol) { if (avl > avr) { if (servoh - 1 >= servohLimitLow) servoh--; else beep(150); } else if (avl < avr) { if (servoh + 1 <= servohLimitHigh) servoh++; else beep(150); } horizontal.write(servoh); } if (dvert > tol) { if (avt > avd) { if (servov + 1 <= servovLimitHigh) servov++; else beep(100); } else if (avt < avd) { if (servov - 1 >= servovLimitLow) servov--; else beep(100); } vertical.write(servov); } } void beep(unsigned char delayms){ analogWrite(buzz_pin, buzz_tone); delay(delayms); analogWrite(buzz_pin, 0); delay(delayms); }

Результат работы


Заключение – что бы я сейчас изменил в проекте

  1. Усовершенствование алгоритма работы: зависимость градуса поворота от разницы значений, получаемых с фоторезисторов, то есть поворот сразу на несколько градусов.
  2. Идеально перпендикулярное крепление фоторезисторов к платформе.
  3. Bluetooth для отсутствия проводов – конечно, идея неплоха, но потребует значительной доработки конструкции и приобретения второй ардуины.
  4. Использование сервоприводов с металлическими шестернями (надёжность и более уверенные повороты не помешают, особенно если таки добавить к конструкции солнечную панель и использовать её по назначению).

Общая дисперсия света солнца, которая использовалась ранее, не давала отменного результата. Точнее сказать, тот результат, который человечество получало, нельзя было при всех его показателях назвать идеальным. Солнечные батареи устанавливались стационарно и пребывали в одном зафиксированном положении. Система слежения за солнцем сняла эту проблему.

Максимальная энергия, которую можно получить, будет генерирована в случае перпендикулярного направления солнечных лучей на плоскость батарей. В обратном случае эффективность солнечных батарей крайне мала – приблизительно 10-15%. Если использовать систему автоматического наведения батарей на солнце, можно повысить результат на 40%.

Как это работает

Устройство слежения состоит из двух важных частей: механизма, который осуществляет поворот и наклон батарей в нужную сторону и электронной схемы, которая приводит в действие механизм.

Расположение батарей определяется географической широтой местности, где они должны быть установлены. К примеру, нужно установить батареи в местности, которая соответствует 330 северной широты. Это значит, что ось устройства должна быть повернута на 330 по отношению к горизонту земли.

Само вращение возможно благодаря двигателем, работа которого регулируется автоматикой. Автоматика «следит» за местом расположения Солнца на небоскребе и по мере его продвижения в западном направлении дает сигнал двигателю делать поворот всех батарей.

Интересным и любопытным выдается тот факт, что питание для двигателя идет от самих солнечных батарей. Слежение за солнцем делает само солнце, а это тоже экономия средств.

Особенности конструкции

Для детального восприятия приведем пример, как использовались солнечные лучи батареями ранее. Например, солнечная батарея выполнена из двух панелей, каждая из которых содержит три элемента. Элементы соединены параллельно. Панели монтируются таким образом, чтобы между ними был прямой угол. В таком случае минимум одна панель в любом случае будет «впитывать» солнечные лучи.

Панели образуют угол в 900, биссектриса которого направлена строго на солнце. Если всю конструкцию повернуть на 450 вправо или влево, одна панель будет работать, вторая – бездействовать. Такая позиция использовалась для того, чтобы улавливать солнечные лучи одной батареей в первую половину дня, а во второй половине за дело принимается вторая батарея.

Однако с применением поворотного устройства автоматического слежения, можно навсегда забыть о проблемах расположения батарей. Теперь все они без исключения будут иметь обращенные под углом 900 поверхности к солнцу.


Схема автоматического поворота должна также для большей эффективности работы учитывать наличие факторов, которые ограничивают энергию солнечных лучей. Нет смысла использовать питание в случае тумана, дождя или облачности, когда солнце спрятано полностью или частично.

Особенности устройства

Автоматические системы слежения промышленного производства более прогрессивны как в техническом плане, так и в эстетическом. Однако это вовсе не значит, что устройства, которые были изготовлены в домашних условиях, являются неполноценными. Они могут иметь некоторые недочеты, но в любом случае имеют высокий показатель.


За что покупают и чем привлекает вся конструкция:

  • Устройства не требуют компьютерной настройки и программного обеспечения;
  • GPS-приемник считывает данные о местном времени, а также о местоположении;
  • Легкий вес, что достигается использованием легких металлов (алюминий и его сплавы);
  • Наличие коммуникационного порта дает возможность вовремя диагностировать неполадки в работе;
  • Ременной привод, приводящий в действие механизм более надежный, чем шестеренный;
  • GPS-приемник всегда обновляет данные о времени, так что сбой исключен – например, работа в ночное время невозможна;
  • Любая конструкция требует минимального вмешательства со стороны человека;
  • Позволяют работать при любых возможных атмосферных влияниях, в том числе низких и высоких температур;

Возможность изготовления своими руками

Если есть возможности и желание, то всегда можно попробовать изготовить устройство самому. Конечно, это несколько тяжело, ведь потребуется не только глубокое знание и навыков в электромоделировании, но и дополнительные усилия для изготовления самой мачты, при монтаже солнечных батарей и т.п.


Внимательно изучив форумы, можно смело заявлять о том, что есть профессионалы не промышленного уровня. В разных регионах (где это целесообразно и рентабельно) уже давно не диковинкой стало использование солнечных батарей при наличии поворотной системы слежения.

Разные мастера предлагают свои схемы, наработки, делятся опытом. Так что, если возникла потребность усовершенствовать конструкцию солнечных батарей и повысить производительность, всегда есть возможность сделать это самостоятельно, не задействовав при этом максимума финансовых средств.

В наше время солнечные элементы и солнечные батареи часто используются как источники питания. Но солнечные панели производят гораздо больше энергии, если они направлены прямо на солнце все время, чем тогда, когда они находятся в фиксированном положении. Для этого нужен солнечный трекер — поворотный механизм, который меняет положение солнечной батареи в соответствии с положением солнца.

Этот материал является свободным переводом страницы Майка Дэвиса (Mike Davis) об изготовлении солнечного трекера своими руками. Майк Дэвис рассказывает.

Изготовить солнечный трекер своими руками можно. Вы тоже можете это сделать.

Вот мои солнечные батареи на солнечном трекере, для изготовления которого я использовал старый антенный ротатор, купленный мной за 15 $.

Вот коробка из-под антенного ротатора. Коробка потертая, но ротатор внутри был еще новый и завернутый в оригинальный пластик. Это старое изделие на основе технологий 1960-х годов. Человек купил блок новым, но никогда не использовал его. Он был в коробке в гараже в течение многих десятилетий, пока хозяин наконец решил избавиться от него и отдал в комиссионный магазин.

В основном я просто выбросил почти всю электронику блока, сохранил только то, что имело отношение к приводу двигателя, и присоединил свою систему управления. Подробнее об этом будет речь ниже.

Прежде всего нужно было придумать способ крепления приводного двигателя и солнечной батареи. Я решил сделать систему слежения, которая была бы простой, недорогой, и легко разбиралась для транспортировки. Это было сделано в основном из деревянных брусков 2×4 и стандартных фитингов, скрепленных болтами.

Конструкция солнечного трекера

Это устройство было разработано, чтобы быть портативным: легко разбираться и легко снова собираться с помощью нескольких инструментов. Ядро блока состоит всего из пяти основных частей: северная боковина, южная, вращающийся узел, и две скобки, чтобы держать все вместе.

Перед использованием в естественных условиях базовый блок трекера будет выровненным по оси восток-запад и оси север-юг (с помощью компаса).

Вот фото северной боковой стороны трекера солнечных батарей. Она имеет 48 дюймов в ширину у основания и 43 1/2 дюйма в высоту. Имейте в виду, что эти размеры правильны для использования на 34,6 градуса северной широты. Если вы значительно дальше на север или на юг, то вам нужно изменить размеры этой части. Подробнее об этом ниже. Боковина изготовлена ​​из брусков 2×4, нарезанных и склеенных. Обратите внимание, что есть две маленькие ножки внизу. Они помогают выровнять устройство при его установке. Промежуток между вертикальными брусками 2×4 равен толщине бруска (около 1 1/2 дюйма).

Вот фото южной стороны трекера солнечных батарей. Эта сторона имеет 24 дюйма в ширину и 13 1/2 дюйма в высоту. Она также сделана из брусков 2×4, приклеенных и прикрученных. Эта часть также имеет маленькие ножки, чтобы помочь в выравнивании всего блока при установке. Эта часть, вероятно, является более или менее универсальной и будет работать на разных широтах. Опять же, зазор между вертикальными брусками 2×4 равный толщине бруска 2×4 (примерно 1 1/2 дюйма).

Горизонтальная скоба 2х4, которая соединяет нижнюю часть северной боковины солнечного трекера с нижней частью южной боковины, составляет 48 дюймов в длину. Оно вписывается между стойками и крепится болтами через них. Это также нужно будет рассчитывать на вашей конкретной широте, так как расстояние между северной и южной опорами изменится при изменении угла оси север-юг.

Раскос (кусок 1×4) было добавлен, чтобы взять большую часть нагрузки от вращающегося узла (установлен на болты, удерживающие вращающийся узел на месте).

Вот сердце трекера солнечных батарей. Это приводной двигатель и вращающийся узел. Антенна двигателя и связанные с ним монтажные конструкции находятся слева. Однодюймовая стальная труба 4 фута длиной приводится в движение ротатором и будет нести солнечные батареи. Подшипники и крепления конструкции находятся на правом торце. Подробности ниже.

Показан двигатель крупным планом. Этот антенный ротатор предназначен быть закрепленным на неподвижной мачте и вращать более короткую мачту с антенной, прикрепленной к ней. Так что я создал псевдо фиксированную мачту, чтобы прикрепить его. Короткий кусок трубы в 1 дюйм вверху (под проводом) служит точкой крепления для ротатора. Короткий отрезок трубы крепится фланцем, который, в свою очередь, прикреплен болтами к 3 1/2 х 3 1/2 дюйма квадратного куска дерева, приклеенного прикрученного шурупами к куску бруска 2х4 в 12 дюймов длиной. Этот брусок 2х4 проходит между стойками северной боковины и удерживается на месте болтами.

Вот крупным планом показан подшипник на нижнем конце трубы длиной 4 фута, которая несет солнечные батареи. Переход сделан с помощью фланцев.

В первый раз, когда я собрал прибор, я зажал все части большими зажимами. Как только я получил правильный угол оси, зажимы были затянуты. Тогда я просверлил отверстия для длинных болтов, чтобы соединить все части вместе.

Я должен поговорить немного о том, как я определил угол оси (вращения трекера) север-юг. Устройство должно быть выставленным по широте местности, где будет эксплуатироваться. Я не делал его регулируемым. Это будет правильный угол весной и осенью, когда я обычно нахожусь на моей собственности. Это будет немного слишком высоко летом, и немного низко зимой. Тем не менее, солнечные батареи будут давать значительно больше энергии, чем тогда, когда они фиксированные.

Угол оси вращения относительно земли устанавливается в соответствии широте места, где будет использоваться солнечный трекер. Подумайте об этом таким образом. Если он был использован на экваторе, где широта 0, угол относительно земли будет 0, так что ось будет горизонтальной. При использовании на одном из полюсов, 90 или -90 градусов широты, угол относительно земли будет вертикальным. Из этого следует, что правильный угол всегда соответствует широте места, где трекер будет эксплуатироваться. Мой участок земли имеет около 34,6 градуса северной широты, так что этот угол я использовал.

Итак, ваш угол, может отличаться, но и размеры вашей базовой конструкции также будут отличаться. Размеры основания зависят от используемого угла. И высота вашей северной и южной сторон, и расстояние между южной и северной боковинами должны быть рассчитаны.

Регулируемые версии конструкции могут быть легко созданы, они позволят выставлять ниже угол летом и более высокий угол в зимний период. Однако пока я оставлю это в качестве упражнения для читателя, меня пока устраивает то, что есть.

Вот еще одна фотография установленной головки ротатора.

Эта фотография показывает, как нижний конец подшипника приводной трубы вписывается в южную боковину и удерживается болтами. Другой конец прикреплен к северной боковине. Нижний конец диагональной скобки также виден.

Вот крупным планом показано, как подшипник крепится с помощью фитингов.

Эта фотография показывает одну из алюминиевых рам, которые на трекере держат солнечные батареи. Она сделана из алюминиевого уголка, содержит 100W панель, и имеет 47 1/8 на 21 1/2 дюйма внутренних размеров. В основном, это немного больше, чем внешние размеры панели солнечных батарей. Панель фиксируется на месте с помощью винтов, которые проходят через рамки в стороны панели.

Можно увидеть надрезы в рамке для монтажа на трубу трекера.

Эта фотография показывает, как рама соединена по углам (сварка углов также возможна).

Вот крупным планом надрезы в раме для монтажа на трубу трекера. Выемки такой же глубины, что и хомуты, используемые для монтажа.

Вот крупным планом показано, как хомуты используются для крепления рамы на трубу трекера. Хомут действительно довольно плотно крепит раму на трубу. Я был удивлен тем, как хорошо он работал.

Во время первого тестирования в помещении я установил продольно только одну солнечную батарею на всю приводную трубу (в конечном варианте должен был установить две батареи). Если у вас есть или нужна только одна батарея, это способ установить ее.

Эта фотография показывает две алюминиевые рамы, зажатые на приводной трубе.

Эта фотография показывает две солнечные батареи на трекере. Винты удерживают батареи на месте, так что ветер не может сдуть их из рам.

Верхняя панель является коммерческой, этот 100 Вт блок я купил, потому что получил действительно очень большую скидку на него. Нижняя панель является одной из моих самодельных 60-ваттных солнечных панелей. Перейдите по ссылке, чтобы увидеть, как я делаю их.

160 Вт могут показаться не слишком мощными, но мои потребности в электроэнергии минимальны. Трекер и мой самодельный ветрогенератор дополняют друг друга, мои батареи сохраняют заряд и у меня есть достаточно электроэнергии.

Эта фотография показывает трубу противовеса. Это кусок дюймовой стальной трубы 30 дюймов длиной. Она ввинчивается в уголок на верхнем конце блока двигателя. Одна труба — больший противовес, чем нужно для одной панели. Для двух панелей я добавил стальной T-образный фитинг на конце трубы. Антенный ротатор был разработан, чтобы двигаться сбалансировано относительно вертикальной мачты. Противовесом уменьшается величина крутящего момента, который двигатель должен предоставлять для перемещения панелей, подвешенных почти горизонтально относительно мачты. Ваши панели, вероятно, имеют разный вес, и требуется различное расположение противовеса. Поэкспериментируйте с различными длинами труб и/или дополнительных фитингов, чтобы получить баланс ближе к идеалу, насколько это возможно, и предотвратить перегрузку двигателя или передач.

Для продолжения щелкните на кнопке с цифрой 2

Блок управления солнечного трекера

Вот оригинал принципиальной схемы антенного ротатора. Все абсолютно электромеханическое. Очень старая школа, почти примитивно. С другой стороны, он по-прежнему работает после десятилетий хранения. Одной из особенностей этого старого блока является то, что двигатель, вращающий головки, работает на 24 В переменного тока. Это сделало проектировании новой системы управления для него сложным. Я искал способы для изменения или автоматизации оригинального блока управления, но не мог придумать, как заставить ее работать. Поэтому я отказался от намерения использовать прежнее управление, разобрал его на части, и началось проектирование нового.

Я не смог повторно использовать многие из этих частей. Фактически головка ротатора используется. Но от блока управления я сохранил только трансформатор с 120V до 24V (# 110), и мотор конденсатор (# 107).

Вот схема контроллера электроники, которую я придумал после нескольких испытаний. Полноразмерная схема здесь. Схема основана на MBED, платформе быстрого прототипирования. Модуль MBED может быть запрограммирован на C с помощью онлайн IDE. MBED является достаточно мощным, есть множество возможностей IO. Это действительно слишком для этого проекта, но я был знаком с MBEDs, поскольку использовал их в проектах на работе. Вы можете легко заменить его на Arduino, Raspberry Pi, или другое, чтобы сделать то же самое.

Сердцем схемы является MBED. Он считывает значение напряжения (с помощью двух своих аналоговых входов) из двух небольших солнечных батарей, установленных под прямым углом друг к другу. Двигатель ротатора антенны перемещается так, что поддерживает напряжение от двух солнечных батарей почти равным, держа их направленными на солнце.

На двигатель подают энергию путем закрытия реле и включения инвертора переменного тока. Направление вращения двигателя регулируется другим реле. Я использовал 40 А автомобильные реле, потому что они дешевы, доступны везде, и у меня уже было несколько на руках. Реле возбуждается силовыми транзисторами TIP120 Дарлингтона управляемыми выходными линиями от MBED. Две кнопки были добавлены для ручного перемещения двигателя при тестировании и для устранения неисправностей. Нажатие PB1 перемещает двигатель на запад. Нажатие PB1 и PB2 вместе перемещает двигатель на восток.

Два конечные выключатели соединены с входными линиями MBED. Движение начинается только в заданном направлении, если конечный выключатель замкнут. Движение останавливается через прерывания, если конечные выключатели открыты.

Регулятор LM7809 с + 9В обеспечивает стабильное питание для MBED от источника 12В. MBED основано на логике 3,3, и имеет регулятор на борту и выходные линии на 3,3, для согласования использованы резисторы.

Список деталей блока управления солнечного трекера

C3 — NPО (взял из оригинальной коробки управления)

D1-D2 — 1N4001 или аналогичные диоды

ECell-WCell — тонкопленочные медь-индий-селенид (CIS) солнечные элементы

F1 — 2A инерционный предохранитель

IC1 — LM7809 + 9В регулятор напряжения

IC2 — NXP LPC1768 MBED

K1-K2 — 40A SPDT Bosch Automotive тип реле

LS1-LS2 — быстродействующий контакт NC коммутатор (см. ниже)

PB1-PB2 — быстродействующий контакт NO кнопки

Q1-Q2 — TIP120 NPN силовой транзистор Дарлингтона

R1-R6 — 1к 1/8 Вт резисторы

R7-R8 — 10K Trimpots

T1 — 120VAC к 24VAC 2A понижающий трансформатор

Инвертор AC — 200-250 Вт 12В постоянного тока до 120В переменного тока инвертор

Код (программное обеспечение) для этого проекта можно найти на http://mbed.org/users/omegageek64/code/suntracker/. Это достаточно простая программа. Как я уже сказал выше, MBED является чрезмерным для этого проекта. Однако его неиспользованный потенциал мог бы позволить добавляться новые функции в будущем (можно добавить вторую моторизованную ось, можно было бы добавить контроль заряда и температурную компенсацию).

Электроника блока управления расположена в старом ящике от боеприпасов, который я приобрел в комиссионном за $ 5 Это идеальный корпус, крепкий, защищенный от непогоды и просторный. В нем есть два 40 Amp автомобильных реле, инвертор, 120В / 24В понижающий трансформатор, макет, содержащий логику повода, держатель предохранителя и клеммные колодки для проводки.

Эта фотография была сделана на самом раннем этапе проекта солнечного трекера с ранней версией электроники на нем. Небольшой инвертор 100W, показанный на фото, был позже заменен более надежным. Маленький инвертор работал, но я считал, что это было слабое место. Поэтому я купил большой на 250W. Двигатель после этого перемещается быстрее и плавнее, не слышны странные звуки, словно от умирающего животного.

Здесь я начал монтаж электроники внутри ящика для патронов. Реле, трансформатор, клеммная колодка и одна из полос клемм были установлены.

Хотя, похоже, электроника солнечного трекера является последней вещью, о которой нужно говорить на этой веб-странице, она на самом деле была одной из первых вещей, над которыми я начал работать после приобретения антенного ротатора. Электроника прошла несколько различных версий, прежде чем я остановился на окончательном варианте.

Вот вид внутри коробки из-под патронов со всеми установленными компонентами электроники. Белый макет со всей логикой в ​​правом верхнем углу. Длинный черный прямоугольник является инвертором. Макет и инвертор удерживаются на месте липучкой промышленной прочности.

Приглядевшись, вы увидите, что кабель USB подключен к модулю MBED на плате и идет к моему нетбуку, едва заметному в верхней части фото. Эта фотография была сделана во время программирования/ тестирования/наладки приводной электроники.

Вот крупным планом плата с «мозгами» системы на ней. MBED компьютерный модуль находится справа. Слева от MBED есть два trimpots для регулирования сигналов от сенсорной головки. Ниже них силовые транзисторы для управления реле. Далее слева есть ручные кнопки коррекции (нажимаются для перемещения трекера вручную). В крайнем левом углу есть регулятор напряжения 9В.

Макет временный. Впоследствии я сделаю правильный печатную плату и установить ее.

Головка датчика состоит из двух небольших тонкопленочных Copper Indium di Selenide (CIS) солнечных элементов того же типа, который я использовал в моей самодельной складной 15-ваттной солнечной батарее. У меня осталось неиспользованными несколько таких элементов.

Два небольшие солнечные элементы установлены под углом 90 градусов по отношению друг к другу. Идея заключалась в том, что, когда один элемент или другой будут получать больше солнца, солнечный трекер будет двигаться, пока освещенность не выровняется.

Здесь показан вид законченной сенсорной головки солнечного трекера. Она установлена ​​на короткий кусок алюминиевой трубки, которая, в свою очередь, будет установлена ​​на приводе трубы слежения. Я показал некоторые размеры для тех, кто всегда просит меня, чтобы включить их. Головка датчика крепится хомутом.

Вот вид головки датчика, прикрепленного к солнечному трекеру. Она устанавливается на трубу, выходящую из верхней части поворотного устройства.

Два конечные выключатели установлены на алюминиевый уголок, прикрепленный к приводной трубе хомутом таким же образом, как и солнечные панели.

Лопатки переключателей контактируют с управляющими длинными винтами, выступающими из деревянной несущей конструкции приводного двигателя. Конечные выключатели останавливают движение электродвигателя с обоих (восточного и западного) концов хода. Переключатели нормально закрыты, и открываются, когда граница перемещения будет достигнута.

Тестирование, настройка и доработка солнечного трекера

Эта фотография была сделана во время сеанса отладки в моей мастерской в ​​последние выходные перед отъездом в Аризону. Мой нетбук подключен к MBED блока управления. Батарея большая, глубокого цикла, обеспечивает питание электроники и блок трекера (нет в кадре).

Еще одна фотография тестирования и отладки блока управления. Датчик работал хорошо в помещении моей мастерской.

После этого, уже в Аризоне, была обнаружена проблема. Гораздо более сильный естественный солнечный свет питал солнечные элементы датчика, даже если они были под достаточно острым углом к ​​солнцу. Это привело к тому, что трекер не следил за солнцем с нужной точностью.

Решение проблемы было найдено путем установки панели затемнения перед солнечными элементами и использованием черной изоленты для покрытия части солнечных элементов.

Это первый вариант панели затемнения, кусок металла вырезали из алюминиевой банки безалкогольного напитка, единственного тонкого листового металла, который был у меня на руках в то время.

Прототип панели затемнения работал так хорошо, что постоянная панель затемнения из 1/32 листа алюминия, купленного в хозяйственном магазине, была сделана на следующий день. Была сделана шире, чтобы она давала более широкую тень и я мог отказаться от изоленты на солнечных элементах.

Панель затемнения солнечного трекера установлена ​​на двух винтах, которые позволяют ей поворачиваться на восток и запад. Это нужно для тонкой настройки точности наведения трекера. С этой панелью трекер действительно начал работать хорошо.

На фото вы видите, как в тени большая часть восточного элемента. Когда различие в выходе тока между элементами превысит определенный предел, трекер начнет двигаться.

Вот фото финальной версии крепления затемнения с размерами.

Панель затемнения прекрасно работает. Вот это фото сделано поздно днем, и солнечный трекер преодолел почти весь свой путь до заката. Устройство работает очень хорошо. Я не мог быть более довольным.

Калибровка трекера достаточно проста. В ясный день подключите портативный компьютер к модулю MBED в трекере, откройте приложение, чтобы увидеть информацию по MBED. Отрегулируйте панель затемнения, чтобы она находилась по центру. Вручную позиционирует трекер, чтобы он был направлен на Солнце, затем выключите инвертор, чтобы трекер не двигался самостоятельно. Отрегулируйте trimpots, пока показатели востока и запада не будут примерно равны Получите их как можно более близкими. Делайте довольно быстро, потому что солнце движется. Вы можете всегда вручную повторно центрировать трекер на солнце и попробовать еще раз. После того, как вы отрегулируете, включите инвертор и посмотрите, насколько хорошо трекер отслеживает движение солнца.

Поскольку Солнце движется медленно, калибровка может занять некоторое время. Возможно, вам придется ждать час или два, или даже большую часть дня для внесения корректировки.

Здесь трекер направлен немного восточнее центра в пасмурный день. Даже через тонкие облака трекер работает хорошо. Трекер перестает отслеживать солнце, когда облака густые и яркость неба, как правило, достаточно равномерная.

Эта фотография сделана во временя тестирования в Аризоне. Мой самодельный контроллер заряда и инвертор для питания 120В переменного тока подсоединены с помощью оранжевого удлинителя. Впоследствии батарея и электроника будут в защищенном корпусе, под землей будут провода для 120В переменного тока и 12В постоянного тока, дистанционный переключатель мощности для инвертора и вольтметр батареи будут установлены в салоне. Это есть в плане.

На моем участке земли в Аризоне ветрено. В любой день мы можем видеть порывы до 35 миль в час. Еще хуже, если начинается буря. Эта фотография показывает деревянные колья на четырех углах базы солнечного трекера, чтобы удерживать его на месте. После того, как я решу, где на постоянно разместить трекер, я, вероятно, буду использовать стальные колышки, чтобы удерживать его на месте (они не будут гнить в земле).

UPDATE — Мне кажется, я нашел дешевый и легкий способ сделать всепогодной головку датчика. Я разрезал бутылку 2 литра пополам и положил ее на головку датчика. Пришлось сделать несколько прорезей в нижней части бутылки, чтобы она скользила вокруг квадратной трубы в нижней части головы. Я могу отрегулировать положение панели затемнения (при необходимости) через крышку отверстия.

UPDATE — Я сделал некоторые изменения в солнечном трекере. Во-первых, как вы можете видеть на этой фотографии, он был окрашен, чтобы защитить древесину от погоды. Он также в настоящее время установлен на кирпич, чтобы предохранить его от контакта с влажной землей.

Деревянные колья были заменены длинными стальными кольями, вбитыми глубоко в землю. Длинные винты идут через отверстия и надежно закрепляют трекер.

Было добавлено крепление, чтобы стабилизировать батареи и не допустить их хлопанья при сильном ветре.

Горизонтальная полоса поддержки была укреплена сваркой муфты 1/2 дюйма стальной трубы к главной однодюймовой несущей трубе. Два 24-дюймовые длинные куски 1/2 дюйма трубы затем образовали горизонтальную балку.

UPDATE — Старые конечные выключатели были заменены на новые герметичные для защиты от пыли и влаги.

UPDATE — Я сделал новую, защищенную от непогоды головку датчика для системы солнечного трекера. Теперь головка установлена ​​в прозрачную пластиковую банку.

Панель затемнения в настоящее время находится на внешней стороне контейнера для простоты тонкой настройки отслеживания и крепится на месте простым хомутом. После того, как новая головка датчика будет установлена ​​на системе слежения, силиконовый герметик по всему краю крышки банки защитит ее от влаги.

Вот вид головки датчика с удаленной банкой. Оригинальная головка имела два солнечных элемента, установленные под углом 90 градусов друг к другу. Такая конструкция не будет помещаться в этой банке, поэтому я установил элементы под более острым углом 60 градусов.

Эта фотография показывает нижнюю сторону головки датчика. Она также показывает, как монтажная опора навинчивается на крышку банки. Монтажная опора будет зажата на главном вале слежения с помощью хомута.

Солнечный трекер Radiofishka

Как известно, КПД солнечной панели максимально при попадании на нее прямых солнечных лучей. Но т.к. солнце постоянно движется по горизонту, то КПД солнечных батарей сильно падает, когда солнечные лучи падают на панель под углом. Чтобы повысить КПД солнечных панелей, применяются системы следящие за солнцем и автоматически поворачивающие солнечную панель для попадания прямых лучей.

В данной статье представлена схема устройства слежения за солнцем или по другому трэкер (Solar Tracker).

Схема трэкера проста, компактна и вы легко сможете собрать ее своими руками. Для определения позиции солнца, используются два фоторезистора. Мотор включен по схеме H-моста (H-bridge), который позволяет коммутировать ток до 500 мА при напряжении питания 6-15В. В темноте, устройство также работоспособно и будет поворачивать моторчик на наиболее яркий источник света.

Принципиальная схема устройства слежения за солнцем

Как видно на рисунке ниже, схема проста до безобразия и содержит микросхему операционного усилителя LM1458 (К140УД20), транзисторы BD139 (КТ815Г, КТ961А) и BD140 (КТ814Г,КТ626В), фоторезисторы, диоды 1N4004 (КД243Г), резисторы и подстроечные резисторы.

Из схемы видно, что мотор М приводится в движение при разных значениях на выходах ОУ IC1a и IC1b. Таблица истинности:

Низк. Выс. Вперед Выс. Выс. Остановлен Выс. Низк. Назад

или наоборот, зависит от подключения мотора

Транзисторы в схеме работают в паре, по диагонали, коммутируя +Ve или -Ve к мотору, и заставляя его вращаться вперед или назад.

Во время остановки мотора, он продолжает вращаться, т.к. присутствует вращающийся момент. Вследствие этого, мотор какое-то солнечный трекер своими руками время генерирует мощность, которая может вывести транзисторы из строя. Для защиты транзисторов от противоЭДС в схеме моста используется 4 диода.

Входной каскад состоит из двух ОУ (IC1) и фоторезисторов LDR и LDR’. Если количество света, попадающее на них одинаково, то сопротивления фоторезисторов также равны. Следовательно, если напряжение питания 12В, то в месте соединения фоторезисторов LDR LDR’ будет напряжение в 6В. Если количество света попадающего на один фоторезистор будет больше, чем на другом фоторезисторе, то напряжение будет изменяться.

Ограничения (лимиты) от +V до 0V устанавливаются четырьмя последовательно соединенными резисторами и подстраивается 2-мя подстроечными резисторами. Если напряжение выйдет за пределы этих ограничений, то ОУ запустит мотор и он постоянно будет вращаться.

Подстроечный резистор 20K регулируют чувствительность, т.е. диапазон между лимитами. Подстроечник 100К регулирует то, насколько лимиты будут симметричны относительно +V/2 (точка баланса).

1. Проверьте напряжение источника питания схемы

2. Подключите двигатель пост. тока

3. Установите фоторезисторы рядом, чтобы на них попадало одинаковое количество света.

4. Полностью выкрутите оба подстроечный резистора против часовой стрелки

5. Подайте питание на схему. Моторчик закрутиться

6. Вращайте подстроечник 100К по часовой стрелке до тех пор, пока он не остановится. Отметьте эту позицию.

7. Продолжайте вращать подстроечник 100К по часовой стрелке до тех пор, пока мотор не начнет вращаться в другую сторону. Отметьте эту позицию.

8. Разделите угол между двумя позициями пополам и установите там подстроечник (это будет точка баланса).

9. Теперь, вращайте подстроечник 20К по часовой стрелке до тех пор, пока мотор не начнет дергаться

10. Немного верните положение подстроечника назад (против часовой стрелки), чтобы мотор остановился (данный подстроечник отвечает за чувствительность)

11. Проверьте корректность работы схемы, поочередно заслоняя от света один и второй фоторезисторы.

Список радиоэлементов

Скачать список элементов (PDF)

Поворотное устройство для солнечной батареи своими руками

Солнечный трекер своими руками! Пелинг Инфо солнечные

Устройство слежения за солнцем — Сайт Паяльник

Двухосевой солнечный трекер на Arduino / Geektimes

Солнечный трекер Radiofishka

10 способов необычно упаковать подарок своими руками Женский журнал

MC Church My City Church

Солнечный трекер своими руками

Общая дисперсия света солнца, которая использовалась ранее, не давала отменного результата. Точнее сказать, тот результат, который человечество получало, нельзя было при всех его показателях назвать идеальным. Солнечные батареи устанавливались стационарно и пребывали в одном зафиксированном положении. Система слежения за солнцем сняла эту проблему.

Максимальная энергия, которую можно получить, будет генерирована в случае перпендикулярного направления солнечных лучей на плоскость батарей. В обратном случае эффективность солнечных батарей крайне мала – приблизительно 10-15%. Если использовать систему автоматического наведения батарей на солнце, можно повысить результат на 40%.

Как это работает

Устройство слежения состоит из двух важных частей: механизма, который осуществляет поворот и наклон батарей в нужную сторону и электронной схемы, которая приводит в действие механизм.

Расположение батарей определяется географической широтой местности, где они должны быть установлены. К примеру, нужно установить батареи в местности, которая соответствует 330 северной широты. Это значит, что ось устройства должна быть повернута на 330 по отношению к горизонту земли.

Само вращение возможно благодаря двигателем, работа которого регулируется автоматикой. Автоматика «следит» за местом расположения Солнца на небоскребе и по мере его продвижения в западном направлении дает сигнал двигателю делать поворот всех батарей.

Интересным и любопытным выдается тот факт, что питание для двигателя идет от самих солнечных батарей. Слежение за солнцем делает само солнце, а это тоже экономия средств.

Особенности конструкции

Для детального восприятия приведем пример, как использовались солнечные лучи батареями ранее. Например, солнечная батарея выполнена из двух панелей, каждая из которых содержит три элемента. Элементы соединены параллельно. Панели монтируются таким образом, чтобы между ними был прямой угол. В таком случае минимум одна панель в любом случае будет «впитывать» солнечные лучи.

Однокоординатный солнечный трекер ED-5000

Панели образуют угол в 900, биссектриса которого направлена строго на солнце. Если всю конструкцию повернуть на 450 вправо или влево, одна панель будет работать, вторая – бездействовать. Такая позиция использовалась для того, чтобы улавливать солнечные лучи одной батареей в первую половину дня, а во второй половине за дело принимается вторая батарея.

Однако с применением поворотного устройства автоматического слежения, можно навсегда забыть о проблемах расположения батарей. Теперь все они без исключения будут иметь обращенные под углом 900 поверхности к солнцу.

Схема устройства

Схема автоматического поворота должна также для большей эффективности работы учитывать наличие факторов, которые ограничивают энергию солнечных лучей. Нет смысла использовать питание в случае тумана, дождя или облачности, когда солнце спрятано полностью или частично.

Особенности устройства

Автоматические системы слежения промышленного производства более прогрессивны как в техническом плане, так и в эстетическом. Однако это вовсе не значит, что устройства, которые были изготовлены в домашних условиях, являются неполноценными. Они могут иметь некоторые недочеты, но в любом случае имеют высокий показатель.

Двухкоординатный солнечный трекер

За что покупают и чем привлекает вся конструкция:

  • Устройства не требуют компьютерной настройки и программного обеспечения;
  • GPS-приемник считывает данные о местном времени, а также о местоположении;
  • Легкий вес, что достигается использованием легких металлов (алюминий и его сплавы);
  • Наличие коммуникационного порта дает возможность вовремя диагностировать неполадки в работе;
  • Ременной привод, приводящий в действие механизм более надежный, чем шестеренный;
  • GPS-приемник всегда обновляет данные о времени, так что сбой исключен – например, работа в ночное время невозможна;
  • Любая конструкция требует минимального вмешательства со солнечный трекер своими руками стороны человека;
  • Позволяют работать при любых возможных атмосферных влияниях, в том числе низких и высоких температур;

Возможность изготовления своими руками

Если есть возможности и желание, то всегда можно попробовать изготовить устройство самому. Конечно, это несколько тяжело, ведь потребуется не только глубокое знание и навыков в электромоделировании, но и дополнительные усилия для изготовления самой мачты, при монтаже солнечных батарей и т.п.

Самодельный трекер

Внимательно изучив форумы, можно смело заявлять о том, что есть профессионалы не промышленного уровня. В разных регионах (где это целесообразно и рентабельно) уже давно не диковинкой стало использование солнечных батарей при наличии поворотной системы слежения.

Разные мастера предлагают свои схемы, наработки, делятся опытом. Так что, если возникла потребность усовершенствовать конструкцию солнечных батарей и повысить производительность, всегда есть возможность сделать это самостоятельно, не задействовав при этом максимума финансовых средств.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: