Пассивное охлаждение hdd. Система охлаждения жесткого диска

Вы хотите продлить жизнь своему жесткому диску? Вы готовы потратить лишние 5-10 долларов на систему охлаждения для него? Давайте разберёмся, какие вообще варианты есть.

Типов охлаждения не так много:

  • В первую очередь это, конечно же, воздушное охлаждение . Подавляющее большинство подобных систем представляют собой пластиковую или металлическую рамку с вентилятором, которая прикручивается к жесткому диску снизу. А питаниена вентилятор берется при помощи спецпереходникаот свободного разъема блока питания. Также встречается вариант с установкой в гнездо 5,25 (это куда DVD-привод умещается) специального переходника для крепления винчестера, а вентилятор (или вентиляторы) ставится вместо заглушки на «фасаде»
  • Во вторую очередь, это пассивные системы охлаждения . То есть просто специально сконструированный радиатор, который крепится к жесткому диску, соприкасаясь с греющимися частями «винчестера» и отводит тепло в окружающую среду «самотёком», за счет большой площади теплоотдачи.
  • Ну и в третью очередь можно упомянуть о жидкостных системах охлаждения . Но это — малоинтересная экзотика, практическое применение которой практически отсутствует. К достоинствам жидкостных систем можно отнести очень хорошую теплоэффективность и равномерность отвода тепла (Исключение составляют моддеры, оверклокеры и пр. «самоделкины»)

Охлаждение жесткого диска

С появлением жестких дисков со скоростями вращения магнитных дисков 7200 оборотов в минуту пользователи на практике смогли ощутить сильное тепловыделение во время их работы. В основном, источником нагрева служат не микросхемы на плате контроллера, а система позиционирования магнитных головок и шпиндельный двигатель, находящиеся в герметичном блоке. К повышенной температуре наиболее чувствительны магнитные диски, т.к. размагничивание и, следовательно, потеря информации при нагревании происходит быстрее. Выражается это в прямой зависимости количества часов наработки на отказ.

Рисунок 2.2 - Работа SMARTHDD

Датчик температуры не был включен в обязательный минимум атрибутов SMART, вследствие чего производители стали использовать различные номера атрибутов SMART, содержащих информацию о температуре, и системы отсчета температуры (шкала Цельсия или Фаренгейта). "SMARTHDD" умеет автоматически обнаруживать различия в реализации устройств и приводить к единому формату значения температуры.

Для лучшего охлаждения жесткий диск не должен быть прижат к корпусу сверху или снизу, т.к. это затрудняет циркуляцию воздуха, необходимую для эффективного охлаждения. По этой же причине не стоит располагать переплетения проводов вблизи накопителя. Снижению температуры способствует уменьшение уровня AAM и APM. С точки зрения надежности эксплуатировать жесткий диск при температуре выше 55°C не рекомендуется. При высокой температуре необходимо установить в компьютере дополнительный вентилятор, обеспечивающий активное (принудительное) охлаждение жесткого диска. Причина, по которой пользователь может отказаться от дополнительного охлаждения - шум от некачественного вентилятора или высокая стоимость качественной системы охлаждения, хотя обычно шум от дополнительного вентилятора, особенно на фоне других вентиляторов (процессор, видео, блок питания), практически не слышен.

Варианты охлаждения

Основным методом охлаждения современных ЖД 3.5? остаётся принудительный обдув с помощью вентилятора. Другие варианты теплоотвода - пассивные радиаторы, тепловые трубки, жидкостные системы и др. - не получили распространения, хотя ряд фирм (в частности, Zalman и Scythe) в разное время предлагал подобные решения. Они были бесшумны, долговечны, но отличались громоздкостью и высокой ценой, что предопределило узкую нишу на рынке (сборка особо тихих компьютеров и т.п.).

Подбор кулера для дисков имеет свою специфику. Прежде всего, общее тепловыделение ЖД и особенно его плотность сравнительно малы, поэтому достаточно легкого ветерка, чтобы снять перегрев. Вспомним также, что оптимальная температура диска под нагрузкой составляет 35-40? (примерно на 10? выше окружающей среды) и что все его поверхности следует охлаждать равномерно.

В подобных условиях лучшим выбором станет тихоходный крупногабаритный вентилятор, дующий в торец корзины с ЖД, но не касающийся её во избежание вибраций. Именно так устроен обдув корзины в современных качественных корпусах. Вентилятор крепится к вырезу передней панели, а декоративная крышка снабжена воздухозаборниками. Вытяжка через заднюю панель, которая часто встречается в корпусах среднего класса, также достаточно эффективна (конечно, при должной герметизации остальных мест).

Практика показала, что 120-мм вентилятор способен охлаждать до пяти ЖД, так что нужды обычных пользователей покрываются полностью. Для одного-двух дисков обдув даже избыточен, так что в целях снижения шума можно уменьшить скорость вращения до 600-1000 об./мин. Не лишним будет защититься от вездесущей пыли, поставив воздушный фильтр из тонкого поролона.

Значительная часть тепла ЖД может рассеиваться на корзине, которая служит пассивным радиатором. Здесь важна толщина металла и плотный равномерный прижим боковин (качественные корпуса имеют преимущество, также хорошо себя зарекомендовало крепление ЖД шестью винтами). При эффективном теплоотводе всё шасси во время работы ощутимо нагревается. Если же диск крепится на салазках или через амортизирующие элементы (силиконовые, хуже резиновые втулки), то этот путь охлаждения практически блокируется, и вся надежда остаётся на обдув.

Ситуация осложняется, когда штатное гнездо под вентилятор отсутствует. Можно заняться моддингом, сменить корпус на более подходящий или переставить ЖД в более прохладное место. Неплохо себя зарекомендовало размещение в пятидюймовом отсеке: его габариты позволяют установить вентилятор среднего размера (40-60 мм), а крепящие диск скобы не препятствуют обдуву и конвекции. Советуем использовать готовый монтажный комплект - в продаже есть как простые, так и улучшенные модели (с виброшумоизоляцией, пассивными радиаторами, индикацией температуры).

Выпускаются также недорогие (5-10$) кулеры, крепящиеся прямо на корпус ЖД. Следует предостеречь от их использования: мало того, что высокооборотный вентилятор, или даже два, обдувает практически одну только плату, покрывая её при этом пылью, растёт риск замыканий, так ещё диску передаются все вибрации крыльчатки. Особенно они возрастают через несколько месяцев эксплуатации, когда разбалтывается некачественный подшипник скольжения (других там и не ставят). В этом состоянии кулер приносит больше вреда, чем пользы и обязателен к замене.

В заключение напомним, что все обсуждение этого раздела касалось дисков для настольных компьютеров. Ноутбучные и серверные накопители имеют свою специфику, отражающуюся и на подходе к охлаждению.

Первые потребляют всего 0.4-0.9 Вт в покое и 2-3.2 Вт при активной работе, греются сравнительно слабо и не нуждаются в особых мерах. Максимум, что встречается в ноутбуках - П-образная пластина, привинченная к боковинам для лучшего теплоотвода. Для еще более миниатюрных дисков (типоразмеры 1.8?, 1.3?, 1? и даже 0.85?) нагрев и вовсе можно не учитывать: энергопотребление у них даже в пике не превышает одного ватта.

Вторые, напротив, очень горячи из-за высокооборотного шпинделя (чаще всего 15000 об./мин) и постоянной нагрузки, и для них обязателен активный обдув. Продуманная система охлаждения в серверах включает массивные салазки и корзины, раздельные воздуховоды, дублированные вентиляторы горячей замены и т.п. Благодаря этому серверные диски работают в стабильном тепловом режиме и служат заметно дольше бытовых сородичей.

Сегодня в Интернете можно найти огромное количество материалов, посвященных проблемам воздушного охлаждения жестких дисков и подавления производимого ими шума. Найти можно практически все кроме последовательного систематизированного подхода к решению этой проблемы.

И решается она по-разному:

  • одни считают, что главное – охладить и обвешивают весь винчестер радиаторами, окружают мощнейшими воющими и ревущими вентиляторами, а шум считается побочным явлением, не заслуживающим внимания;
  • других раздражает подобный шум, и они пытаются каждый по своему бороться с ним, причем нередко в ущерб охлаждению;
  • а многие и вовсе не представляют последствий перегрева и не обращают внимания ни на запредельные температуры, ни, тем более, на шум.

реклама

Почему так?

Дело, скорее всего в том, что мало кто в достаточном объеме знаком с путями решения проблем как эффективного охлаждения и подавления шума производимого жестким диском (да и компьютерной системой в целом).

Такое состояние дел и обусловило появление данной статьи. Основная цель ее – оказать посильную помощь в уяснении, осмыслении и систематизации общих принципов и путей комплексного решения проблем, как охлаждения жесткого диска, так и подавления производимого им шума.

В данной статье:

  • по возможности кратко, популярно или даже вовсе аксиоматично изложены сведения и минимальные основы, необходимые для понимания рассматриваемого материала и подходов к выбору конкретных конструктивных решений;
  • приведена попытка не только анализа и классификации методов и способов воздушного охлаждения жесткого диска и снижения производимого им шума, но и анализа эффективности решений используемых в типовых устройствах охлаждения и снижения шума жестких дисков;
  • показан пример комплексного подхода к решению проблемы охлаждения и снижения шума жесткого диска, как при выборе конкретного готового устройства, так и при практической разработке и изготовлении самодельной конструкции.

Хочется надеяться, что статья будет полезной всем желающим получить наиболее сбалансированное решение по охлаждению жесткого диска, производящее минимум шума и не допускающее перегрева диска даже при экстремальных условиях эксплуатации и нагрузках. Причем как тем, кто ориентируется на готовое решение, так и тем, кто для наиболее эффективного решения задач по данной теме готов проявить смекалку в доработке готовых решений, смастерить что-нибудь свое.

реклама

Примечания

Многие используемые в статье термины в настоящее время имеют достаточно много толкований. Поэтому в таких случаях будем особо оговаривать их смысл и содержание, используемые в статье.

Для акцентирования внимания читателей используются следующие знаки:

ОСНОВЫ ОХЛАЖДЕНИЯ

Жесткий диск нагревается как элементами электроники, так и элементами электромеханики. Причем больше тепла выделяют, пожалуй, элементы механики, например, такие как катушка позиционера в банке с механикой (гермоблоке) или электродвигатель. Электроника тепла выделяет меньше, но отдельные микросхемы из-за малых размеров обычно разогреваются до большей температуры, чем гермоблок.

От повышенных температур медленно деградируют не столько электронные компоненты контроллера или поверхность пластин, сколько элементы механики. Срок службы жесткого диска сокращается. Повышенная температура губительно действует на подшипники, места соединения движущихся частей и, особенно, на головки чтения-записи. Очень же сильный нагрев может привести к немедленному отказу жесткого диска.

А каковы же должны быть рабочие температуры?

Мнений тут много, но многие сходятся к тому, что с точки зрения срока службы жесткого диска оптимальной температурой банки можно считать (35…45)°С, а рабочая температура для большинства современных микросхем согласно документации на них значительно больше и может достигать 125 °С

Конечно, если имеются уж очень сильно греющиеся чипы, то срок службы электроники может значительно сокращаться. Но это явление достаточно редкое и скорее относится к просчетам разработчиков.

Кроме того, производители дисков, как правило, ограничивают еще и скорость изменения температуры окружающей среды или скорость изменения температуры охлаждающего воздуха, что при воздушном охлаждении фактически одно и то же, значениями не более (15…20) °С/час. В документации на жесткие диски различных производителей эта скорость изменения обычно обозначается как “temperature gradient” или “перепад температур”. См., например, п. 7.2.1 Temperature and humidity или п. 2.8.2 Temperature gradient , или п. Перепад температур .

Обычно вовсе не трудно ограничить нагрев банки и микросхем электроники жесткого диска на указанных выше уровнях. А вот не превысить указанную скорость изменения температуры окружающей среды посложнее. Особенно в первые (10…15) минут после включения системного блока, когда скорость нагрева воздуха в нем весьма высока. Изменение температуры воздуха вокруг жесткого диска за такое время не должно превышать (3…5) °С. Хотя на первый взгляд это и немного "лишка". Но….

Превышение рассмотренных параметров часто проявляется там, где в угоду минимизации общих шумов системного блока необдуманно сокращается количество вентиляторов и их скорость вращения. Нередко в корпусах, у которых площадь воздухозаборников для организации охлаждения жестких дисков недостаточна или же их и вовсе нет, жесткие диски оставляют “вариться в собственном соку” вовсе не задумываясь об их охлаждении.

Вывод. В общем случае необходимо не только достойно охлаждать как банку с механикой, так и электронику диска, но и не допускать превышения температурного градиента охлаждающего воздуха. Т.е. создавать некоторое устройство или систему охлаждения, выполняющую эти (и не только) задачи.

Система – нечто целое, представляющее собой единство закономерно расположенных и находящихся во взаимной связи частей.

реклама

Как же вообще можно отобрать тепло у HDD?

Из теории известно, что количество тепла за единицу времени или тепловой поток q, отбираемый от любой охлаждаемой поверхности (чипа, жесткого диска и т.д.), описывается формулой Ньютона:

q=α*S*ΔT (1)

  • q - количество теплоты за единицу времени (единица измерения Дж/c или Вт),
  • α - коэффициент теплоотдачи, Вт/м²К,
  • S - площадь поверхности теплообмена, м²,
  • ΔT=Т-Твозд - перегрев или перепад температур между температурой охлаждаемой поверхности Т и температурой теплоносителя Твозд (температура воздуха при воздушном охлаждении), К.

Проще говоря, формула гласит, что количество тепла, отбираемое от любой охлаждаемой поверхности, прямо пропорционально:

  • разнице температур между температурой охлаждаемой поверхности и температурой воздуха;
  • площади охлаждаемой поверхности;
  • коэффициенту теплоотдачи.

реклама

Выводы:

Улучшить охлаждение винчестера (увеличить количество отводимого тепла), можно всего-то только тремя методами:

  • уменьшением температуры охлаждающего воздуха;
  • увеличением площади поверхности теплообмена;
  • увеличением коэффициента теплоотдачи.

Комбинированное использование этих методов резко повышает эффективность системы охлаждения жесткого диска.

А как это выглядит на практике?

Увеличение площади поверхности теплообмена

реклама

Площадь теплообмена обычно увеличивают с помощью радиаторов.

Из видно, что теоретически для увеличения скажем вдвое теплового потока (или, что то же самое, двукратного уменьшения перегрева), необходимо так же вдвое увеличить площадь теплообмена.

Практически же из-за того, что как свойства самих радиаторов, так и передача тепла от диска к радиатору неидеальны, требуется более чем двукратное увеличение площади теплообмена для двукратного уменьшения перегрева.

Кроме того, у HDD почти нет ровных поверхностей пригодных для установки толковых радиаторов.

реклама

Хотя вроде нет. Практически у всех жестких дисков имеется плоская поверхность, образованная тонкой жестянкой – крышкой гермоблока, на которую можно лихо приспособить солидный радиатор.

Но так как все греющиеся элементы закреплены на литом массивном основании, то отвод тепла от него по тонюсенькой жестянке с наклеенной бумажкой к радиатору сразу выглядит неперспективно. Путь же через воздух внутри банки и жестяную крышку тоже особо не прельщает.

Но выглядит это куда перспективнее, чем охлаждение через тонкую жестяную крышку. Особенно если не жалеть термопасты между радиатором и боковой поверхностью жесткого диска.

реклама

На практике отвод тепла от боковых поверхностей HDD наиболее распространен.

Можно, конечно, выровнять и отшлифовать боковые поверхности винчестера (потеря гарантии!!!). Потом установить на них вполне приличные радиаторы.

При таком раскладе охлаждение диска через боковые поверхности происходит довольно эффективно, но не оптимально:

  • улучшение теплообмена наблюдается только через боковые поверхности, общая площадь которых составляет менее 1/6 части от общей площади поверхности банки;
  • неравномерное охлаждение механики, т.к. не лучшим образом охлаждаются элементы, расположенные в середине банки вдали от радиаторов (боковых стенок);
  • без дополнительного охлаждения остается электроника (хотя? на наиболее горячие чипы так же можно, а в некоторых случаях и нужно приспособить радиаторы).

Ну, а установка еще и на нижнюю, как правило, весьма кривую поверхность множества мелких радиаторов достаточно трудоемко.

реклама

Однако в последнее время получили распространение мягкие теплопроводные прокладки. Они легко деформируются и позволяют передавать тепло от неровных поверхностей жесткого диска к радиатору.

Примером такой конструкции служит HDD кулер CoolerMaster DHC-U43 CoolDrive 3 . Его конструкция отличается от конструкций «бескорпусных» охладителей наличием алюминиевого кожуха-воздуховода. ? Он служит еще и радиатором, увеличивающим площадь теплообмена.

Для охлаждения сразу нескольких винчестеров служат устройства типа LIAN LI EX-332 HDD Mount Kit, устанавливаемые в свободные 5,25” отсеки.

Такого типа “корзины” имеют увеличенный зазор между дисками, закрыты сверху и снизу и позволяют обеспечить воздушный поток равномерно “облизывающий” практически всю площадь поверхности жестких дисков и позволяют организовать толковое охлаждение, как электроники, так и равномерное охлаждение банки с механикой.

Кроме того, такого типа “корзины” нередко оснащаются воздушными фильтрами и резиновыми амортизаторами для борьбы с шумами жестких дисков.

Формирование воздушного потока

В только что рассмотренных системах охлаждения жестких дисков вентиляционные решетки, воздухозаборники, сами жесткие диски и т.д. всегда являются препятствиями на пути движения воздушного потока, формируемого вентилятором, которому приходится создавать некоторое давление для преодоления сопротивления воздушному потоку.

Причем чем больший воздушный поток необходим для отвода тепла, и чем больше степень турбулентности этого потока, тем больше система охлаждения противодействует прохождению этого потока воздуха, тем большую работу приходится совершать вентилятору создающему этот поток. И тем более мощный требуется вентилятор для преодоления сопротивления. Соответственно растет создаваемый шум.

А поскольку сами вентиляторы (независимо от скорости вращения) формируют воздушный поток с высокой степенью турбулентности, то сопротивление системы с “нагнетающим” вентилятором на входе оказывается больше сопротивления системы с “ вытяжным” вентилятором на выходе.

В результате охлаждающие системы жестких дисков с “вытяжным” вентилятором по сравнению с системами с “нагнетающим” вентилятором имеют следующие преимущества:

  • при одинаковых оборотах одинаковых вентиляторов несколько большую величину воздушного потока и, следовательно, несколько лучшее охлаждение;
  • при одинаковом охлаждении требуются меньшие обороты одинаковых вентиляторов и, следовательно, получается меньший шум.

Толщина воздушного потока

Суммарная толщина воздушного потока с использованием “вытяжной” вентиляции в системе охлаждения HDD не должна быть слишком большой, так как слои воздуха наиболее удаленные от охлаждаемой поверхности мало участвуют в процессе охлаждения.

одной стороны, тут при неизменном расходе воздуха, чем тоньше воздушный поток, тем выше его скорость и, следовательно, лучше охлаждение диска (см. п. ). Но в этом случае с уменьшением площади поперечного сечения воздушного потока растет сопротивление воздушному потоку, требуется более мощный вентилятор, растет шум.

другой стороны, если воздух нагревается в основном вблизи поверхности жесткого диска, то средняя температура избыточно толстого воздушного потока, прошедшего через систему охлаждения винчестера, возрастет весьма незначительно, и такой воздушный поток можно будет использовать для охлаждения других компонентов системного блока. Но прокачка избыточного воздуха опять же источник избыточного шума.

Практика показала, что в большинстве случаев оптимальная толщина потока вокруг типовых 3,5” дисков составляет 8-12 миллиметров. Со стороны тонкой жестяной крышки гермоблока эта величина может быть уменьшена до 5-8 миллиметров.

Для 2,5” дисков ввиду меньшего тепловыделения толщины потоков могут быть меньше. Конкретные значения оптимальной толщины потока вокруг 2,5” дисков автор дать не может, т.к. экспериментов с такими дисками не проводил.

При использовании “нагнетающей” вентиляции воздушный поток получается с очень высокой степенью турбулентности по всему поперечному сечению, и толщина его может быть в несколько раз больше. Но опять же прокачка избыточного воздуха - источник избыточного шума.

Да, а сколько ж надо этого воздуха для охлаждения диска?

Расход воздуха

Существует простая формула, которая позволяет с достаточной точностью рассчитать поток воздуха Q в кубических футах в минуту CFM (cubic feet per minute), требуемый для отвода от винчестера тепловой мощности W в Ваттах при допустимом перегреве ΔT в градусах Цельсия:

Q = 1,76*W /ΔT (2)

Данное соотношение однозначно показывает, какой производительностью Q должна обладать система охлаждения для отвода с помощью конвективного теплообмена требуемой тепловой мощности W при заданном перегреве ΔT.

Другие виды теплообмена - теплообмен теплопроводностью (передача тепла через непосредственный контакт с корзиной или, например, стенками корпуса) и лучистый теплообмен (перенос тепла излучением) здесь во внимание не принимаются. Тем более что при наличии прокладок и шайб, специальных амортизирующих, виброизолирующих креплений или мягкого подвеса жесткого диска для уменьшения шума, вклад этих двух механизмов в процесс теплообмена становится и вовсе мизерным. Поэтому их и можно не учитывать.

Для примера прикинем значение воздушного потока, необходимого для отвода среднестатистических (7…15) Вт тепла от жесткого диска с перегревом в зависимости от поставленных задач (5..15) °С.

Расчетное значение составляет

Q = 1,76 * (7…15) / (5..15) = (1…5) CFM.

На основании найденного значения подбираются соответствующие вентиляторы, и конструируется воздушный тракт охлаждающей системы. Однако сразу надо сказать, что в правильной системе охлаждения величину воздушного потока для охлаждения одного диска может обеспечить практически любой вентилятор даже при пониженном питании.

Правда из-за худшего прогрева удаленных от охлаждаемой поверхности слоев воздуха и прокачки излишнего воздуха вовсе мимо жесткого диска, как правило, требуется несколько большее значение воздушного потока. Причем чем толще воздушный поток, тем больше прокачивается излишнего воздуха. Турбулентный поток прогревается равномернее, поэтому он экономнее ламинарного потока.

Уменьшение температуры охлаждающего воздуха

Здесь все просто.

На сколько градусов уменьшается температура охлаждающего воздуха, настолько же уменьшается температура винчестера.

Таким образом, обычные варианты с охлаждением винчестера воздухом, нагретым внутри корпуса, не являются оптимальными, хотя иногда они реализуются попроще.

Если исключить такую “экзотику”, как, например, установку системного блока в холодильник или использование зимой уличного воздуха для охлаждения, то для охлаждения винчестера оптимально воспользоваться забортным воздухом, т.е. воздухом, взятым снаружи системного блока, а не изнутри его, где воздух по определению теплее.

Системы, обеспечивающие приток свежего и холодного воздуха внутрь системного блока

Для создания притока воздуха для охлаждения диска обычно используются вентиляторы общей системы охлаждения в блоке питания, на задней или верхней стенке корпуса и т.д.

Такие решения используются сейчас во многих современных корпусах.

При “вытяжной” вентиляции, т.е. создающей в корпусе некоторое разряжение воздуха, часть воздуха засасываемого через вентиляционные отверстия направляется на жесткий диск.

При “нагнетающей” вентиляции, создающей в корпусе некоторое избыточное давление воздуха для обдува диска обязательно должен использоваться отдельный дополнительный вентилятор, расположенный перед диском.

Одновременно этот же вентилятор используется и в общей системе охлаждения для нагнетания воздуха в корпус.

Иногда используются специальные лотки-переходники для установки 3,5-дюймовых жестких дисков в 5-дюймовые отсеки корпуса.

На передней панели у них имеется вентилятор для обдува диска забортным воздухом.

Существуют такие устройства и для установки нескольких дисков .

Использование для охлаждения забортного воздуха позволяет не только автоматически выполнить требования по , но и на несколько градусов уменьшить температуру диска.

Системы, обеспечивающие передачу тепла на наружную поверхность корпуса, охлаждаемую забортным воздухом

Такие решения используются сейчас довольно редко. В основном в безвентиляторных системах охлаждения, например, в корпусе Zalman TNN500A.

Здесь винчестер имеет тепловой контакт с боковой стенкой играющей роль радиатора, охлаждаемого забортным воздухом.

Однако на практике такое решение ввиду быстрого нагрева воздуха в корпусе после включения, как правило, не позволяет выполнить требования по .

Вот что вспомнилось из того, что волей-неволей придется учитывать при разработке действительно эффективной и малошумящей системы охлаждения. Вот и поговорим о шуме.

Продолжение следует...

Ваш компьютер стал часто "тормозить" и намертво "виснуть"? Вы слышите странные звуки, которые напоминают скрежет металла по стеклу и эти звуки раздаются из недр вашего системного блока?

Поздравляю: у вас начались проблемы с жестким диском!
Проблемы с жесткими дисками отнюдь редкость: здесь играют роль несколько факторов. Например, время, количество включений-отключений "жести", а также температурный баланс. Особенно важен последний фактор и о нем мы поговорим.

Итак!
Чем грозит перегрев жесткого диска? Как чем? Поломкой, естественно. Нагрев корпуса диска приводит к тому, что на поверхности вращающихся "болванок" начинают происходить некоторые негативные процессы, в частности - начинает "слетать" магнитная головка. Эта магнитная головка - очень чувствительное устройство, которое изначально очень тонко настроено: головка передает и принимает информацию (файлы), которую вы и записываете на вашу "жесть".

В итоге, если головка будет подвергаться ежедневному перегреву, ваш жесткий диск очень быстро выйдет из строя. И учтите: максимально допустимая температура жесткого диска +50*С (да и то, при этой температуре "жесть" уже начинает "выёживаться"). Вот так всё просто!
Теперь рассмотрим момент охлаждения "жести". Как её можно охладить? Естественно, с помощью кулера. Хотя, если у вас много времени и сил, то можете обмахивать жесткий диск веером!

А что: очень даже эффективно. Но если с головой у вас всё в порядке, то так делать не надо: могут не правильно понять. А как же надо? Необходимо механическое охлаждение, то есть - кулер. Но бывают "форс-мажорные" обстоятельства. Например, ваш системный блок просто не приспособлен для установки дополнительного кулера, который вы бы могли поставить для охлаждения жесткого диска. Также у вас может отсутствовать дополнительный слот (розетка) для подключения разъема дополнительного кулера. А самостоятельно пытаться что-то там припаять - довольно опасное занятие.

Так что же? Так и оставить жесткий диск в состоянии постоянного перегрева? Нет, не надо. Есть выход и он настолько прост, что вы очень удивит. Смотрите сюда: блок питания оснащен внутренним и довольно мощным кулером, верно? А почему бы вам не использовать мощь этого кулера в нужном направлении, то есть для охлаждения жесткого диска?! Делается это очень просто. Снимаете блок питания с его обычного места, ставите на пол, поворачиваете его "лицом" в сторону жесткого диска. (Внимание: открывать блок питания и снимать оттуда кулер не надо - всё должно остаться целостным.

Эта информация - для "полных чайников", которые, иногда, не "догоняют" суть совета и проявляют глупую инициативу). Естественно, что далеко не каждый кулер можно просто так взять и повернуть. Но если включите мозги, то у вас все получится. Главное: обратите внимание на провода, которые могут вам помешать в повороте и направлении кулера. На самом деле эти провода - не помеха: просто они могут быть запутанны и поэтому мешают вам развернуть блок питания. Распутайте провода и выберите угол поворота БП (БП - блок питания). Как установите - не забудьте, подключить кабеля питания.

Всё, запускайте систему. Теперь поставьте руку под жесткий диск: чувствуете воздушный поток? То-то!
Как видите, всё просто и не надо ничего покупать, или паять.
Понятное дело, что для богатых пользователей эта тема будет неинтересна. Зато для более скромных - это то, что надо!
Всего вам доброго и до новых встреч!

Давно занимаюсь вопросом охлаждения HDD.
Первые два жёстких диска, которые были у меня - обходились без оного, были сами по себе не слишком горячими, да и я особо в железных внутренностях компьютера не разбирался. Потом начал железом интересоваться, собрал второй системник уже своими руками, озаботился нагревом HDD, ибо при долгой работе он становился довольно горячим, иногда почти обжигающим.
После перебора решений, представленых на рынке, была отброшена 5"-панель с мелким кулером спереди, перебраны многие варианты "набрюшных" кулеров.
На некоторое время я успокоился, и просто ставил на каждый хард по кулеру, запитанному от +5 вольт вместо +12 - так достигалась тихая работа при хорошей эффективности.
В последнее время основной мой компьютер становился всё мощнее и при этом всё тише. На фоне остальных охлаждающих элементов стали слышны втулки и движки вентиляторов на хардах. К тому же через мои руки уже прошло довольно большое количество таких кулеров, и часто даже на +5 вольтах они продолжали шуметь - то двигло обмотками тарахтит, то крыльчатка воздухом гудит... Лоторея, в общем. Плюс обнаружилась проблема загрязнения (правда, у кулеров в 5"-отсек с 40мм вентилятором на "морде" с этим ещё хуже) - кулер при своих небольших оборотах умудрялся довольно много забивать пыли под ножки микросхем, не думаю что хардам это приносило пользу.

Задумался, чем можно заменить эти "жужжалки"... На передней панели большинства АТХ-корпусов сейчас есть вентилятор, в большинстве полноразмерных АТХ - 120 миллиметровый. Зачем лишние кулеры на HDD, когда рядом уже есть кулер? Попробовал снять с хардов вентиляторы... "Банки" оставались довольно горячими, но руку держать можно было (мониторинг показывал 40...47 градусов при комнатной +25), но вот микросхемы на платах было крайне жалко. Сейчас обычно на платах самые греющиеся элементы - это процессор и драйвер двигателя/голов. Иногда ещё какой-нибудь стабилизатор питания. Для интереса померял температурные режимы микросхем... У типичного современного HDD в покое процессор нагревается до 40...55 градусов, т.е. руке уже достаточно горячо (у меня болевой порог примерно на 45 градусах), драйвер шпинделя ещё горячее - в покое обычно 45...60, а при случайном поиске температура быстро подпрыгивает выше и спокойно уходит за 70...80 градусов (мерял цифровым термометром). Термодатчик же обычно установлен на плате вне микросхем и/или в "банке" и его температура ниже.

Алюминиевый радиатор можно легко купить в магазине, если его размеры немного не подходят - легко обрезать лишнее. Термопрокладки в продаже не видел (не искал ), но их легко найти в сломаных CD/DVD-приводах (через них отводится тепло с микросхем драйверов двигателей на корпус устройства) или на видеокартах (между радиаторами и микросхемами памяти). Если толщины одной не хватает - можно набрать несколько.
Материалы довольно доступные.

Заехав как то раз за деталями в известный магазин радиодеталей вспомнил, что надо подобрать радиатор для этого проекта. Подобрал. Называется "HS 530-100". Рёбра невысокие, с дополнительными канавками для увеличения площади теплообмена, основание толще чем рёбра, на один HDD по ширине - выше крыши, на глаз прикинул в магазине - может и на два харда хватит... То что надо, купил. Дома примерил радиатор к хардам - на всех нашедшихся HDD он накрывал все "горячие точки", при этом был короче самого HDD. По ширине на два HDD хватало с большой натяжкой... Но всё же решил распилить его в расчёте на два харда.

Потом распотрошил несколько сломаных CD-ROM"ов, вытащил из них термопрокладки.

По случаю установки нового HDD, решил опробовать проект в деле. Харды были разложены на столе, с них скручены старые "набрюшные" кулеры. Рядом расположились радиаторы и термопрокладки с термопастой.
Радиатора, после распилки на два, хватало с трудом - края уже висели между серединами крепёжных отверстий, винты с трудом цеплялись за радиатор.

Как это было.
Берём хард, ищем "горячие" места. Можно прикинуть даже у выключенного HDD - это обычно микросхемы, они довольно крупные. Если плата перевёрнута (HDD WD или последние "плоские" Seagate), то по нагреву или нелакированным плошадкам - с другой стороны к таким площадкам "брюхом" припаиваются микросхемы для организации теплоотвода через плату. Между площадками несколько переходных отверстий для улучшения теплопроводности.

На найденые области кладём термопрокладки, прикидывая расстояние между элементом и поверхностью радиатора. Если толщины не хватает - делаем "бутерброд". Стараемся сделать так, чтобы сильного давления на плату не было, но и чтобы термопрокладки не болтались. Если термопрокладка липкая - кладём как есть, если гладкая - мажем соприкасаемые поверхности термопастой.

Кладём сверху радиатор, стараясь им не елозить, чтобы не свезти термопрокладки, и прикручиваем. Резьба у винтов та же, что и у тех, которыми харды обычно прикручиваются к корзине.

Проверяем на просвет, на месте ли термопрокладки.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: