Линейный раскрой материалов. Графический метод составления поставов

Программа предназначена для оптимизации раскроя профиля и других длинномерных материалов (брус, бревно, труба, подоконник).
Использован алгоритм "плотной укладки", то есть взятое изделие укладывается на самый короткий остаток заготовки, на который она помещается. Если никуда не помещается, берется новая заготовка. Задачей оптимизации является нахождение последовательности изделий, при которой будет использовано меньше заготовок и будет больше длина деловых обрезков. На первом такте, изделия размещаются на хлыстах в случайном порядке. Возникает "начальная популяция". В процессе решения, популяция мутирует и размножается, неудачные экземпляры погибают, а лучшие продолжают эволюцию. Всё, как в животном и растительном мире + искусственный отбор.

Живое демо на сайте

Пример ниже - не статическая картинка, а работоспособное веб - приложение.
Вы можете запустить раскрой профиля кнопкой Старт , задать свои размеры изделий и заготовок, изменить настройки оптимизации и оценить решение.
Конечно, оптимизатор в браузере работает медленнее, чем нативная программа, но позволяет бесплатно получить пригодные для работы результаты без необходимости что либо скачивать и устанавливать на компьютер.

Преимущества

  • Окнософт:cutting обеспечивает карты распила высокого качества. Многочисленные внедрения подтверждают реальный коэффициент обрези не более 1% при оптимизации партий от 30 контуров (~120 отрезков)
  • Для чтения исходных данных и записи результатов раскроя, программа использует простые форматы текстовых файлов, что упрощает интеграцию с учетными системами, внедренными у заказчика
  • При необходимости, раскрой может выполняться под Linux или OS X в браузере или Node.js с передачей параметров через url, web-socket или объекты javascript

Алгоритмы линейного оптимизатора

В окнософт:каттинге использован генетический алгоритм. Суть его вот в чем:
Назовем каждое распределение изделий по хлыстам решением. Определим целевую функцию, позволяющую сравнивать качество решений. Сформируем несколько произвольных решений, назовем их поколением. Определим правила получения следующего поколения. Экземпляры с лучшей целевой функцией передают большую часть своего "генофонда", это наш "искусственный отбор". Теперь остается предоставить систему самой себе, пусть мутирует и оптимизирует результаты раскроя
В процессе разработки испытывался метод "Монте-Карло", когда наши "экземпляры" являются случайными и не зависят друг от друга и "Муравьиные алгоритмы"(ACO- ant colony optimisation). Все методы показали себя вполне работоспособным, но генетический алгоритм оказался чуть более эффективным

Варианты поставки

Есть два варианта поставки модуля раскроя Окнософт:cutting - в составе комплексного решения Управление позаказным производствм и в виде отдельного исполняемого файла. Взаимодействие с раскройной программой при первом сценарии, полностью скрыто от пользователя. Оператор работает со стандартными документами 1С:

  • На основании заказов покупателей формируется план производства
  • На основании плана - сменные задания со списком продукции и необходимых материалов
  • Внутри задания на производство происходит оптимизация раскроя
  • В процессе оптимизации, программа забирает из незавершенного производства деловую обрезь и помещает в ячеистый склад вновь образовавшиеся деловые обрезки
  • Сменное задание умеет печатать бланки раскроя при ручном производстве или формировать файлы для станков с ЧПУ
  • Так же, из сменного задания печатаются этикетки для отрезаемых изделий и схемы раскладки в телеги и пирамиды
  • На основании заданий на производство формируются требования - накладные для передачи материалов в цех с учетом потребности и нормоупаковок

Программный интерфейс (API линейного раскроя)

Файл входных данных - setup.ini, помещается в папку с исполняемым файлом.
Файлы выходных данных - result.txt, resultproduct.txt и resultstick.txt - формируются в той же папке.
Скачать файлы с демо-данными Окнософт:cutting можно по ссылке в конце страницы. В файлх используются следующие теги:

  • Outputvariant - структура выходного файла файла. Возможные значения: tab, oknosoft, по умолчанию oknosoft
    • В варианте "oknosoft", формируются файлы resultproduct.txt и resultstick.txt с информацией о размещении изделий на заготовках и образовавшейся обрези
    • В варианте "tab" выводятся пять значений, разделенных символами "tab": длина изделия, номер хлыста, длина хлыста, номер реза и остаток заготовки
  • Algorithm - используемый алгоритм. Возможные значения: random, conservative, genetic, по умолчанию genetic
    • Random- случайный перебор вариантов
    • Conservative- экземпляры следующей итерации происходят от одного "родителя"
    • Genetic- от двух родителей
  • Variation - изменчивость, параметр алгоритмов "conservative" и "genetic". Чем выше, тем меньше потомство "похоже" на родителей. По умолчанию 1.
  • Generations - количество итераций алгоритма, по умолчанию 40000
  • Persons - количество "экземпляров" в "популяции", количество решений используемых в одной итерации. В алгоритме "random" просто делается generations*persons итераций с одним экземпляром(решением)
  • KnifeWidth - ширина пилы
  • StickLength - длина нового хлыста
  • Products - длина изделия
  • Scraps - длина обрезка, используемого в раскрое
  • Wrongsnipmin – минимальная длина «плохого» образка
  • Wrongsnipmax – максимальная длина «плохого» обрезка
    В результатах оптимизации не будет обрезков с длиной между Wrongsnipmin и Wrongsnipmax

Парный раскрой

Используется при подготовке данных для станков, поддерживающих парный распил. В этом случае, в станок помещают сразу два хлыста профиля и за один такт отрезания, образуется два одинаковых полуфабриката

Задача парного раскроя решается группировкой данных перед их передачей в программу оптимизации и последующего дублирования результатов раскроя на пары изделий и заготовок. При работе раскроя внутри УПзП, система учитывает свойства номенклатуры и использует одиночный или парный раскрой в зависимости от возможностей отрезных станков

Раскрой большого числа изделий

С одной стороны, для достижения высокого качества оптимизации, на вход программы должно поступать значительное количество изделий разной длины, чтобы оптимизатору было "что сортировать". С другой, при очень больших партиях, снижается вероятность нахождения максимума при фиксированном числе итераций перебора. Эксперименты показали, что оптимальной является партия в 60 – 120 заготовок (что соответствует такту производства 30-60 изделий при парном раскрое). Если необходимо оптимизировать более 120 заготовок, лучших результатов можно добиться, разделив задачу на N частей и выполнив последовательные оптимизации для каждой части. Обработка формирования пачек заданий на производство умеет группировать продукции по видам профиля и подбирать в сменные задания изделия с максимальной дисперсией, избавляя оператора от рутинной работы по составлению производственных документов

Скачать примеры раскроя и документацию

  • Демо карт одинарного и двойного распила: 60.01 Листы раскроя
  • Документация и примеры файлов:

Большинство материалов, используемых в промышленности, поступает на производство в виде стандартных форм. Непосредственное использование таких материалов, как правило, невозможно. Предварительно их разделяют на заготовки необходимых размеров. Это можно сделать, используя различные способы раскроя материала. Задача оптимального раскроя состоит в том, чтобы выбрать один или несколько способов раскроя материала и определить, какое количество материала следует раскраивать, применяя каждый из выбранных способов. Задачи такого типа возникают в металлургии и машиностроении, лесной и лесообрабатывающей, легкой промышленности.

Различаются два этапа решения задачи оптимального раскроя. На первом этапе определяются рациональные способы раскроя материла. Способ раскроя называется рациональным, если увеличение числа заготовок одного вида возможно только за счет сокращения числа заготовок другого вида. На втором этапе решается задача линейного программирования для определения интенсивности использования рациональных способов раскроя.

Определение рациональных способов раскроя материла.

В задачах оптимального раскроя рассматриваются так называемые рациональные (парето-оптимальные) способы раскроя. Предположим, что из единицы материала можно изготовить заготовки нескольких видов. Способ раскроя единицы материала называется рациональным (парето-оптимальным) если увеличение числа заготовок одного вида возможно только за счет сокращения числа заготовок другого вида.

k - индекс вида заготовки,

i

a ik k , полученных при раскрое единицы материала способом i .

Приведенной выше определение рационального способа раскроя может быть формализовано следующим образом.

Способ v раскроя называется рациональным (парето-оптимальным), если для любого другого способа раскроя i из соотношений , следуют соотношения ,

Пример

Требуется определить все рациональные способы раскроя деревянного бруса длиной 600 см на заготовки длиной 500, 300 и 200 см.


Способы раскроя 500 см 300 см 200 см Отходы
-
- -
- -
-

Определение интенсивности использования рациональных способов раскроя.

Обозначения:

j - индекс материала,

k - индекс вида заготовки,

i - индекс способа раскроя единицы материала,

a jik - количество (целое число) заготовок вида k , полученных при раскрое единицы j - го материала способом i ;

b k - число заготовок вида k в комплекте, поставляемом заказчику;



d j - количество материала j -го вида;

x ji - количество единиц j -го материала, раскраиваемых по i -му способу (интенсивность использования способа раскроя);

с ji - величина отхода, полученного при раскрое единицы j -го материала по i -му способу;

y - число комплектов заготовок различного типа, поставляемом заказчику.

Модель A раскроя с минимальным расходом материалов.

(1)

(2)

(1) - целевая функция - минимум количества используемых материалов;

(2) - система ограничений, определяющих количество заготовок, необходимое для выполнения заказа;

(3) - условия неотрицательности переменных.

Модель позволяет обеспечить требуемое количество заготовок каждого типа с минимальными затратами материала. Специфическими для данной области приложения модели линейного программирования являются ограничения вида (2).

Пример

Переменная Способ раскроя 500 см 300 см 200 см Отходы
x 1
x 2
x 3
x 4
x 5
x 6

x 1-4 - 1-й вид материала длиной 600 см

x 5-6 - 2-1 вид материала длиной 500 см

Получаем, что

Округление всегда делается в большую сторону.

Модель Б раскроя с минимальными отходами

(4)

(5)

Алгоритм оптимального раскроя материалов для автоматизированного производства

Павел Бунаков

Задача рационального раскроя плитных материалов на исходные заготовки прямоугольной формы имеет большое практическое значение при проектировании изделий корпусной мебели. По своему характеру она является задачей дискретно-непрерывной структуры, относящейся к классу так называемых NP-полных задач, нахождение точного решения которых возможно только методом полного перебора всех возможных вариантов.

Математическая постановка задачи заключается в размещении плоских геометрических объектов (исходный набор заготовок) на листах заданных размеров (полноформатных листах) с минимальными отходами материала и учетом существующих ограничений. Ограничения первого типа - геометрические - являются классическими и определяются условиями принадлежности заготовок к области размещения, их взаимного непересечения, а также изотропным или анизотропным характером среды размещения (наличием или отсутствием направленного рисунка на поверхности объектов - текстуры).

Условия автоматизированного производства расширяют этот список ограничениями второго типа - технологическими, которые определяются характеристиками раскройного оборудования и организационно-технологическими особенностями производства:

  • максимальная и минимальная ширина отрезаемой полосы;
  • необходимость и размер предварительной обрезки края листа;
  • ресурс непрерывной работы режущего инструмента;
  • ширина режущей части инструмента;
  • максимальная длина сквозного реза;
  • вектор первых резов (продольный или поперечный раскрой);
  • количество одновременно раскраиваемых листов (размер пакета);
  • максимальное количество поворотов пакета;
  • минимальное расстояние между пилами в многопильных станках;
  • направление укладки заготовок на листе;
  • операционные припуски на сторону заготовки для последующей обработки.

Как видно, количественно технологические ограничения значительно превосходят геометрические. Кроме того, они могут варьироваться в широком диапазоне в зависимости от специфики конкретного предприятия.

Автоматизация производства меняет и само понятие оптимального раскроя, выдвигая на первый план требование технологичности карт раскроя. В отличие от строгого математического описания критерия минимизации отходов материала при раскрое

где S i - площадь i -го обрезка материала, технологические критерии оптимизации имеют множественный и нередко эмпирический характер. В общем виде их можно объединить понятием «трудоемкость физической реализации раскроя», которая включает такие параметры, как общее количество и общая длина выполняемых резов, количество карт раскроя, количество поворотов пакета листов и переустановок ограничительных упоров на станке, геометрические параметры получаемых обрезков.

Структура потребительского спроса на современном мебельном рынке определяется стремлением к индивидуальности (эксклюзивности) изделий, что приводит к качественному и количественному усложнению их конструкции. Очевидно, что в таких условиях при большом количестве элементов потребуются сложные процедуры обработки геометрической информации. Даже при использовании мощных компьютеров время решения подобных задач будет неприемлемым в условиях реального производства, поэтому для их решения применяются различные эвристические алгоритмы, дающие близкое к оптимальному решение за приемлемый промежуток времени.

Рассмотрим функционирование алгоритма, основанного на переходе от площадного раскроя к линейному раскрою, с элементами эвристик, полученных экспериментальным путем.

Как известно, задача оптимального линейного раскроя имеет точное математическое решение, геометрическая интерпретация которого показана на рис. 1 для случая, когда мощность исходного множества заготовок равна двум. Оси системы координат размечаются с шагом, кратным типоразмерам заготовок (N и K ), до значения, не превышающего линейного размера области размещения (L ). Таким образом, на плоскости генерируется сетка, каждый узел которой соответствует некоторому варианту раскроя. Отрезок, соединяющий точки на осях координат, значения которых равны размеру области размещения, является границей подмножества узлов, соответствующих реальным вариантам раскроя (расположенных ниже границы). Тот из них, который находится ближе других к границе, и будет определять вариант раскроя, оптимальный по количеству отходов материала. Для ускорения поиска рассматриваются только те ячейки сетки, которые пересекает построенный отрезок (на рис. 1 они заштрихованы).

Единственным критерием оптимизации при линейном раскрое является минимизация отходов, поэтому получаемые варианты раскроя априорно являются технологичными.

При увеличении количества типоразмеров заготовок плоскость заменяется N -мерным пространством, а отрезок - N -мерной плоскостью. Для быстрого нахождения оптимального варианта раскроя в данном случае заменим задачу поиска точки, ближайшей к заданной плоскости, в N -мерном пространстве на две более простые задачи:

  • нахождение оптимального варианта раскроя в двумерной постановке, каждая из которых соответствует проекции многомерной сетки на одну из координатных плоскостей (количество таких задач равно C 2 N , где N - количество типоразмеров заготовок);
  • нахождение минимального элемента в полученном векторе решений.

Эксперименты, проведенные с данными, которые соответствуют реальным мебельным изделиям, выпускаемым на ряде предприятий, показали, что эта замена обеспечивает приемлемые временны е показатели, причем зависимость времени счета от количества типоразмеров заготовок носит экспоненциальный характер (рис. 2).

Исходя из этого сделан вывод о возможности перехода от площадного раскроя к суперпозиции линейных раскроев. Соответствующий алгоритм является рекурсивным и реализуется за три шага.

На первом шаге из исходного множества M формируется подмножество M k (δ) , объединяющее заготовки, главный линейный размер которых находится в диапазоне

L max (1- δ),

где L max - максимальный размер заготовки, 0 ≤ δ < 1 - допустимый разброс размеров. Под главным линейным размером понимается тот размер заготовки, который соответствует текущему направлению текстуры. При отсутствии или игнорировании направления текстуры он определяется как максимальное значение, выбранное из длины и ширины заготовки.

Величина получаемого при раскрое КИМ зависит от выбранного значения коэффициента δ:K ИМ = F (δ) . Теоретически это означает необходимость перебора вариантов формирования подмножества M k (δ) для всего возможного диапазона значений δ. Это неизбежно приведет к недопустимому увеличению времени раскроя. Экспериментальные исследования, проведенные на ряде мебельных предприятий, позволили сделать три вывода (рис. 3):

  • наибольшие изменения значений F (δ) приходятся на диапазон 0,05 ≤ d ≤ 0,2;
  • в указанном диапазоне изменение функции F (δ) носит плавный характер;
  • при значении δ > 0,2 величина КИМ практически не зависит от дальнейшего его увеличения.

На основании этих выводов при формировании M k (δ) берется фиксированное количество значений δ, что позволяет добиться приемлемого времени перебора вариантов раскроя. Практика показала, что без существенной потери качества раскроя можно варьировать значение δ в указанном диапазоне с шагом от 0,01 до 0,2.

На втором шаге заготовки из подмножества M k (δ) раскраиваются по алгоритму линейного раскроя. Это означает, что, во-первых, получается локально оптимальная по значению КИМ карта раскроя полосы для выбранного значения δ, а во-вторых, она является технологичной. Процедура формирования подмножества M k (δ) и линейный раскрой полосы выполняются для всех значений δ, после чего выбирается оптимальная карта раскроя, которой соответствует оптимальное подмножество M opt k .

Остаток материала в полосе для оптимальной карты раскроя, так же как и его остатки при размещении любого элемента подмножества M opt k , соответствующего значению δ ≠ 0, образует множество псевдополноформатных листов. Для каждого элемента этого множества рекурсивно повторяются рассмотренные выше операции. Это означает, что при выполнении каждой пары шагов мощность исходного множества заготовок уменьшается не только со стороны более «крупных» его элементов, но и со стороны более «мелких».

После раскроя всех псевдополноформатных листов проверяется мощность множества

M \ M opt k \ M i k ,

где M i k - подмножество заготовок, размещенных на остатках материала, полученного при формировании k -й полосы. Если она имеет ненулевое значение, то по отношению к указанному множеству вновь выполняются вышеописанные шаги, то есть формируется подмножество M k-1 (δ), из которого выбирается M k+1 opt .

Таким образом, в результате выполнения указанных операций получается множество полос S , на которых оптимальным образом размещены все исходные заготовки: .

На третьем шаге элементы множества S рассматриваются в качестве исходных заготовок для линейного раскроя полноформатных листов.

Вышеописанный алгоритм сводит задачу площадного раскроя к последовательному решению задач линейного раскроя. Физическая реализация полученных карт оптимальна для автоматизированного производства, поскольку раскрой и полноформатных листов на полосы, и заготовок в полосах является технологичным.

Для сравнительной оценки значений КИМ, получаемых при использовании традиционного алгоритма площадного раскроя и предлагаемого алгоритма, была произведена случайная выборка из 50 мебельных ансамблей, выпускаемых различными предприятиями. Для каждого ансамбля были выполнены два варианта раскроя. Результаты эксперимента представлены на рис. 4. Из него видно, что в большинстве случаев предлагаемый алгоритм (график красного цвета) дает большее значение КИМ. Таким образом, раскрой площадных материалов по рассмотренному алгоритму подходит не только для пильных центров, но и для обычных форматно-раскройных станков.

Для дополнительного повышения технологичности карт раскроя для каждой полосы может быть выполнена операция сортировки. Например, сортировка заготовок по увеличению линейных размеров от края полноформатного листа позволяет исключить люфты при установке упоров станка на новый размер, что существенно повышает точность раскроя. Тот же алгоритм сортировки, но выполненный от центра листа, позволяет в максимальной степени сохранить форму заготовок за счет минимизации влияния внутренних напряжений, максимальный перепад которых приходится на края листа.

Экономическая эффективность лесопильного производства во многом зависит от степени использования сырья. Оборудование, применяемое на производстве, рациональный раскрой бревен по оптимальным поставам, грамотное планирование раскроя обуславливают эффективное использование ресурсов и, соответственно, высокое качество продукции.

Основные схемы раскроя пиловочного сырья

Способы и схемы раскроя бревен напрямую зависят от требований к качеству и размерам производимой продукции, характеристиками сырья и типом применяемого оборудования.

Основные способы распиловки бревен
а — вразвал; б — с брусовкой; б’ — с получением двух брусьев; б» — вразвал брусьев; в — секторный; в’ — распиловка сектора на радиальные доски; в» — на тангентальные доски; г — сегментный; г’ — развально-сегментный; г» — брусово-сегментный; d — круговой; 1 — необрезные доски; 2 — обрезные доски; 3 — рейка; 4- брусья; 5 — части бревен в виде секторов; 6 — части бревен в виде сегментов; 7 — односторонне- обрезные доски

Раскрой бревна вразвал заключается в его делении по параллельным плоскостям одним или несколькими режущими инструментами. Данная схема позволяет получить необрезные доски с разным расположением пластей относительно годичных слоев. Метод рационален при раскрое бревен до 18 см в диаметре и для пиловочников, имеющих искривление стволов (наиболее часто применяется в случаях раскроя березового сырья, имеющего в 70% случаев простую или сложную кривизну).

Необрезные доски, полученные после раскроя вразвал, перерабатываются в обрезные или передаются для раскроя на заготовки в необрезном виде.

В случае, если преобладающее количество готовой продукции должно иметь установленные размеры поперечного сечения, применяется метод раскроя с брусовкой . Данная схема также применяется для раскроя бревен крупных диаметров при производстве пиломатериалов общего назначения.

Распиловка с брусовкой осуществляется на многопильном оборудовании за два прохода. При этом, на первом этапе из круглого леса получают брусья толщиной, равной ширине необходимой доски. Затем эти брусья делятся на доски требуемых размеров в толщину.

Для раскроя крупномерных кряжей применяют сегментный и секторный методы. Стоит отметить, что данные схемы специфичны и используются в специальных видах производств для получения тангентальных и радиальных пиломатериалов.

Индивидуальный раскрой крупных бревен и бревен, имеющих внутреннюю гниль, осуществляют круговым способом .

Переработка круглого леса методом фрезерования

Формирование сечения пиловочного сырья фрезерованием производят с совмещением этого метода с пилением. При этом применяют три основных схемы раскроя:

  • получение на первом узле двухкантного бруса;
  • получение необрезных досок и двухкантного бруса на головном станке;
  • получение профильного бруса с размерами, соответствующими размерам сечения обрезных пиломатериалов с выработкой досок на одном оборудовании.

Двухкантный брус — это полуфабрикат для дальнейшего производства обрезных пиломатериалов делением бруса на доски.

Основные методы раскроя бревен фрезерованием
а — получение двухкантного бруса на головном станке; б — получение двухкантного бруса и необрезных досок; в — получение профильного бруса; г — получение длинных обрезных пиломатериалов; д — получение обрезных пиломатериалов различной длины; е — получение обрезных пиломатериалов различной длины и ширины; 1 — зона пиломатериалов; 2 — обрезные пиломатериалы; 3 — фигурный брус; 4 — двухкантный брус; 5- необрезные пиломатериалы

Понятие постава на распиловку круглого леса

Постав – это набор пил, зажимных и межпильных прокладок, установленных в пильную рамку, для получения пиломатриалов с заданными параметрами толщины.

Другими словами, постав – это план-схема распиловки однородного по качеству и размерам пиловочного сырья (бревен) на продукцию заданных пераметров и качества.

При распиловке вразвал постав реализуется цифровым рядом, показывающим толщину выпиливаемых досок в миллиметрах:

19-19-32-32-19-19.

Данный ряд цифр означает, что из центральной части бревна выпиливаются две доски толщиной 32 мм, а из боковых частей – четыре доски толщиной 19 мм.

При развале с брусовкой, например, постав записывают двумя рядами из цифр, для распиловки бревна (первый проход) и бруса (второй проход):

19-19-150-19-19 (первый проход);

19-32-40-40-32-19 (второй проход).

Как и в предыдущем примере, данные цифры означают, что на головном станке первого ряда, на котором распиливается бревно, получают один брус толщиной 150 мм и, соответственно, четыре необрезные доски по 19 мм (по две с каждой стороны), а на станке второго ряда распиливают полученный брус на доски толщиной 40, 32 и 19 мм.

При распиловке бревна на однопильных станках постав определяет порядрк раскроя.

Составление поставов

Составление постава по сути означает определение оптимальных размеров и пропорций досок по толщине, обеспечивающее рациональное использование поперечного сечения диаметра бревна.

Основные правила составления постава :

  • поставы должны быть симметричными;
  • в одном поставе не должно быть досок, различных по толщине менее чем на 5 мм;
  • составление постава начинайте с наиболее крупных по сечению пиломатериалов;
  • размеры толщин досок должны уменьшаться от оси бревна к периферии;
  • не предусматривайте на краю постава выпиловку более двух тонких (16, 19 мм) досок при раскрое сырья на лесопильных рамах;
  • высоту бруса на первом проходе выбирайте по ширине ведущих в спецификации по размерам толщин досок;
  • пласть бруса, пропиленная на втором проходе, распиливайте на доски равной толщины;
  • при составлении поставов на пиломатериалы без задания по спецификации применяйте табличный или графический способы;
  • при распиловке с использованием метода с брусовкой толщину бруса определяйте из соотношения (0,06-0,08) вершинного диаметра бревна – d;
  • постав не должен превышать величину максимального охвата диаметра бревна;
  • наименьшие толщины центральных досок определяйте по данной таблице :

Графический метод составления поставов

Составить рациональный постав в соответствии с ГОСТами можно и без указания конкретных размеров по сечению (без заданий в виде спецификаций) – с помощью специальных графиков.

Пример использования графика предельных толщин пиломатериалов по П.П. Аксенову

Для того чтобы определить предельные толщины на оси абсцисс откладывается расстояние от оси постава до внутренней части пласти постава искомой доски. Затем проводится вертикаль до пересечения с наклонной линией, которая соответствует данному диаметру, и полученная точка пересечения сносится на ось координат.

График оптимальных толщин пиломатериалов по Г.Г. Титкову



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: