Программа для программирования ардуино на русском. Языки программирования

Этот симулятор лучше всего работает в браузере Chrome
Давайте рассмотрим Arduino по внимательней.

Arduino это не большой компьютер, к которому могут подключаться внешние цепи. В Arduino Uno используется Atmega 328P
Это самый большой чип на плате. Этот чип выполняет программы, которые хранятся в его памяти. Вы можете загрузить программу через usb с помощью Arduino IDE. Usb порт также обеспечивает питание arduino.

Есть отдельный разъём питания. На плате есть два вывода обозначенные 5v и 3.3v, которые нужны для того, чтобы запитывать различные устройства. Так же вы найдете контакты, помеченные как GND, это выводы земли (земля это 0В). Платформа Arduino, так же, имеет 14 цифровых выводов (пинов), помеченных цифрами от 0 до 13, которые подключаются к внешним узлам и имеют два состояния высокое или низкое (включено или выключено). Эти контакты могут работать как выходы или как входы, т.е. они могут либо передавать какие-то данные и управлять внешними устройствами, либо получать данные с устройств. Следующие выводы на плате обозначены А0-А5. Это аналоговые входы, которые могут принимать данные с различных датчиков. Это особенно удобно, когда вам надо измерить некий диапазон, например температуру. У аналоговых входов есть дополнительные функции, которые можно задействовать отдельно.

Как использовать макетную плату.

Макетная плата нужна для того чтобы временно соединить детали, проверить, как работает устройство, до того как вы спаяете все вместе.
Все нижеследующие примеры собраны на макетной плате, чтобы можно было быстро вносить изменения в схему и повторно использовать детали не заморачиваясь с пайкой.

В макетной плате есть ряды отверстий, в которые вы можете вставлять детали и провода. Некоторые из этих отверстий электрически соединены друг с другом.

Два верхних и нижних ряда соединены по - рядно вдоль всей платы. Эти ряды используются, чтобы подавать питание на схему. Это может быть 5в или 3.3в, но в любом случае, первое, что вам надо сделать - это подключить 5в и GND на макетную плату, как показано на рисунке. Иногда эти соединения рядов могут прерываться посередине платы, тогда, если вам понадобится, вы можете их соединить, как показано на рисунке.








Остальные отверстия, расположенные в середине платы, группируются по пять отверстий. Они используется для соединения деталей схемы.


Первое, что мы подключим к нашему микроконтроллеру, это светодиод. Схема электрических соединений показана на картинке.

Для чего нужен резистор в схеме? В данном случае он ограничивает ток, который проходит через светодиод. Каждый светодиод рассчитан на определённый ток, и если этот ток будет больше, то светодиод выйдет из строя. Узнать, какого номинала должен быть резистор можно с помощью закона ома. Для тех кто не знает или забыл, закон ома говорит, что существует линейная зависимость тока от напряжения. Т.е, чем больше мы приложим напряжение к резистору, тем больше потечет через него ток.
V=I*R
Где V -напряжение на резистор
I - ток через резистор
R - сопротивление, которое надо найти.
Во-первых, мы должны узнать напряжение на резистор. Большинство светодиодов 3мм или 5мм, которые вы будете использовать, имеют рабочее напряжение 3в. Значит, на резисторе нам надо погасить 5-3=2в.

Затем мы вычислим ток, проходящий через резистор.
Большинство 3 и 5мм светодиодов светятся полной яркостью при токе 20мА. Ток больше этого может вывести их из строя, а ток меньшей силы снизит их яркость, не причинив никакого вреда.

Итак, мы хотим включить светодиод в цепь 5в,чтобы на нем был ток 20мА. Так как все детали включены в одну цепь на резистор тоже будет ток 20мА.
Мы получаем
2В = 20 мА * R
2В = 0.02A * R
R = 100 Ом

100 Ом это минимальное сопротивление, лучше использовать немного больше, потому, что светодиоды имеют некоторый разброс характеристик.
В данном примере используется резистор 220 Ом. Только потому, что у автора их очень много:wink: .

Вставьте светодиод в отверстия посередине платы таким образом, чтобы его длинный вывод был соединён с одним из выводов резистора. Второй конец резистора соедините с 5V, а второй вывод светодиода соедините с GND. Светодиод должен загореться.

Обратите внимание, что есть разница, как соединять светодиод. Ток течёт от более длинного вывода к более короткому. На схеме это можно представить, что ток течёт в ту сторону, куда направлен треугольник. Попробуйте перевернуть светодиод и вы увидите, что он не будет светиться.

А вот как вы будете соединять резистор, разницы совсем нет. Можете его перевернуть или попробовать подсоединить к другому выводу светодиода, это не повлияет на работу схемы. Он все так же будет ограничивать ток через светодиод.

Анатомия Arduino Sketch.

Программы для Arduino называют sketch. Они состоят из двух основных функций. Функция setup и функция loop
внутри этой функции вы будете задавать все основные настройки. Какие выводы будут работать на вход или выход, какие библиотеки подключать, инициализировать переменные. Функция Setup() запускается только один раз в течение скетча, когда стартует выполнение программы.
это основная функция, которая выполняется после setup() . Фактически это сама программа. Это функция будет выполняться бесконечно, пока вы не выключите питание.

Arduino мигает светодиодом



В этом примере мы соединим схему со светодиодом к одному из цифровых выводов Arduino и будем включать и выключать его с помощью программы, а так же вы узнаете несколько полезных функций.

Эта функция используется в setup () части программы и служит для инициализации выводов, которые вы будете использовать, как вход (INPUT) или выход (OUTPUT) . Вы не сможете считать или записать данные с пина, пока не установите его соответственно в pinMode . Эта функция имеет два аргумента: pinNumber - это номер пина, который вы будете использовать.

Mode -задает, как пин будет работать. На вход (INPUT) или выход (OUTPUT) . Чтобы зажечь светодиод мы должны подать сигнал ИЗ Arduino. Для этого мы настраиваем пин на выход.
- эта функция служит для того, чтобы задать состояние (state) пина (pinNumber) . Есть два основных состояния (вообще их 3), одно это HIGH , на пине будет 5в, другое это Low и на пине будет 0в. Значит, чтобы зажечь светодиод нам надо на пине, соединенном со светодиодом выставить высокий уровень HIGH .

Задержка. Служит для задержки работы программы на заданный в мсек период.
Ниже приведен код, который заставляет мигать светодиод.
//LED Blink int ledPin = 7;//пин Arduino к которому подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// установка пина как ВЫХОД } void loop() { digitalWrite(ledPin, HIGH);//зажечь светодиод delay(1000);// задержка 1000 мсек (1 сек) digitalWrite(ledPin, LOW);//Выключить светодиод delay(1000);//ждать 1 сек }

Небольшие пояснения по коду.
Строки, которые начинаются с "//" это комментарии Arduino их игнорирует.
Все команды заканчиваются точкой с запятой, если вы их забудете, то получите сообщение об ошибке.

ledPin - это переменная. Переменные используются в программах для хранения значений. В данном примере переменной ledPin присваивается значение 7, это номер пина Arduino. Когда Arduino в программе встретит строку с переменной ledPin , он будет использовать то значение, которое мы указали ранее.
Так запись pinMode(ledPin, OUTPUT) аналогична записи pinMode(7, OUTPUT) .
Но в первом случае вам достаточно поменять переменную и она поменяется в каждой строке, где используется, а во втором случае вам, чтобы поменять переменную, придётся ручками в каждой команде вносить изменения.

В первой строке указывает на тип переменной. При программировании Arduino важно всегда объявлять тип переменных. Пока вам достаточно знать, что INT объявляет отрицательные и положительные числа.
Ниже представлено моделирование скетча. Нажмите старт, чтобы посмотреть работу схемы.

Как и ожидалось, светодиод гаснет и загорается через одну секунду. Попробуйте поменять задержку, чтобы посмотреть, как она работает.

Управление несколькими светодиодами.

В этом примере вы узнаете, как управлять несколькими светодиодами. Для этого установите ещё 3 светодиода на плату и соедините их с резисторами и выводами Arduino, как показано ниже.

Для того, чтобы включать и выключать светодиоды по очереди надо написать программу подобную этой:
//Multi LED Blink int led1Pin = 4; int led2Pin = 5; int led3Pin = 6; int led4Pin = 7; void setup() { //установка пинов как ВЫХОД pinMode(led1Pin, OUTPUT); pinMode(led2Pin, OUTPUT); pinMode(led3Pin, OUTPUT); pinMode(led4Pin, OUTPUT); } void loop() { digitalWrite(led1Pin, HIGH);//зажечь светодиод delay(1000);//задержка 1 сек digitalWrite(led1Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек //do the same for the other 3 LEDs digitalWrite(led2Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led2Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led3Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led3Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led4Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led4Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек }

Эта программа будет отлично работать, но это не самое рациональное решение. Код надо изменить. Для того, чтобы программа работала раз за разом мы применим конструкцию, которая называется .
Циклы удобны, когда надо повторить одно и тоже действие несколько раз. В коде, проведенном выше мы повторяем строки

DigitalWrite (led4Pin, HIGH); delay (1000); digitalWrite (led4Pin, LOW); delay (1000);
полный код скетча во вложении (скачиваний: 1412)

Регулировка яркости светодиодов

Иногда вам надо будет менять яркость светодиодов в программе. Это можно сделать с помощью команды analogWrite() . Эта команда так быстро включает и выключает светодиод, что глаз не видит это мерцание. Если светодиод половину времени будет включён, а половину выключен, то визуально будет казаться, что он светится в половину своей яркости. Это называется широтно-импульсная модуляция (ШИМ или PWM по-английски). Шим применяется довольно часто, так как с ее помощью можно управлять "аналоговым" компонентом с помощью цифрового кода. Не все выводы Arduino подходят для этих целей. Только те выводы, около которых нарисовано такое обозначение "~ ". Вы увидите его рядом с выводами 3,5,6,9,10,11.
Соедините один из ваших светодиодов с одним из выводов ШИМ(у автора это вывод 9). Теперь запуститьскетч мигания светодиода, но прежде измените команду digitalWrite() на analogWrite() . analogWrite() имеет два аргумента: первый это номер вывода, а второй- значение ШИМ (0-255), применительно к светодиодам это будет их яркость свечения, а для электродвигателей скорость вращения. Ниже представлен код примера для разной яркости светодиода.
//Меняем яркость светодиода int ledPin = 9;//к этому выводу подсоединен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на вывод } void loop() { analogWrite(ledPin, 255);//полная яркость (255/255 = 1) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 191);//яркость на 3/4 (191/255 ~= 0.75) delay(1000);//пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 127);//половина яркости (127/255 ~= 0.5) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 63);//четверть яркости (63/255 ~= 0.25) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек }

Попробуйте поменять значение ШИМ в команде analogWrite () ,чтобы увидеть, как это влияет на яркость.
Далее вы узнаете, как регулировать яркость плавно от полной до нулевой. Можно,конечно, скопировать кусок кода 255 раз
analogWrite(ledPin, brightness); delay(5);//short delay brightness = brightness + 1;
Но, сами понимаете - это будет не практично. Для этого лучше всего использовать цикл FOR, который использовали ранее.
В следующем примере используются два цикла, один для уменьшения яркости от 255 до 0
for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); }
delay(5) используется, чтобы замедлить скорость нарастания и уменьшения яркости 5*256=1280 мсек= 1.28 сек.)
В первой строке используется "brightness- " ,для того чтобы значение яркости уменьшалось на 1, каждый раз, когда цикл повторяется. Обратите внимание, что цикл будет работать до тех пор, пока brightness >=0 .Заменив знак > на знак >= мы включили 0 в диапазон яркости. Ниже смоделирован этот скетч. //плавно меняем яркость int ledPin = 9;//к этому пину подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на выход } void loop() { //плавно увеличиваем яркость (0 to 255) for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек //плавно уменьшаем яркость (255 to 0) for (int brightness=255;brightness>=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек } }
Это видно не очень хорошо, но идея понятна.

RGB-светодиод и Arduino

RGB-светодиод на самом деле это три светодиода разного цвета в одном корпусе.

Включая разные светодиоды с различной яркостью можно комбинировать и получать разные цвета. Для Arduino, где количество градаций яркости равно 256 вы получите 256^3=16581375 возможных цветов. Реально их, конечно, будет меньше.
Светодиод, который мы будем использоваться общим катодом. Т.е. все три светодиода конструктивно соединены катодами к одному выводу. Этот вывод мы подсоединим к выводу GND. Остальные выводы, через ограничительные резисторы, надо подсоединить к выводам ШИМ. Автор использовал выводы 9-11.Таким образом можно будет управлять каждым светодиодом отдельно. В первом скетче показано, как включить каждый светодиод отдельно.



//RGB LED - test //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //включение/выключение красного светодиод digitalWrite(red, HIGH); delay(500); digitalWrite(red, LOW); delay(500); //включение/выключение зеленого светодиода digitalWrite(green, HIGH); delay(500); digitalWrite(green, LOW); delay(500); //включение/выключение синего светодиода digitalWrite(blue, HIGH); delay(500); digitalWrite(blue, LOW); delay(500); }

В следующем примере используются команды analogWrite() и , чтобы получать различные случайные значения яркости для светодиодов. Вы увидите разные цвета, меняющиеся случайным образом.
//RGB LED - random colors //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //pick a random color analogWrite(red, random(256)); analogWrite(blue, random(256)); analogWrite(green, random(256)); delay(1000);//wait one second }

Random(256) -возвращает случайное число в диапазоне от 0 до 255.
В прикрепленном файле скетч, который продемонстрирует плавные переходы цветов от красного к зеленому, затем к синему, красному, зеленому и т.д. (скачиваний: 388)
Пример скетча работает, но есть много повторяющегося кода. Можно упростить код, написав собственную вспомогательную функцию, которая будет плавно менять один цвет на другой.
Вот как она будет выглядеть: (скачиваний: 421)
Давайте рассмотрим определение функции по частям. Функция называется fader и имеет два аргумента. Каждый аргумент отделяется запятой и имеет тип объявленный в первой строке определения функции: void fader (int color1, int color2) . Вы видите, что оба аргумента объявлены как int , и им присвоены имена color1 и color2 в качестве условных переменных для определения функции. Void означает, что функция не возвращает никаких значений, она просто выполняет команды. Если надо было бы написать функцию, которая возвращала результат умножения это выглядело бы так:
int multiplier(int number1, int number2){ int product = number1*number2; return product; }
Обратите внимание, как мы объявили Тип int в качестве типа возвращаемого значения вместо
void .
Внутри функции идут команды, которые вы уже использовали в предыдущем скетче, только номера выводов заменили на color1 и color2 . Вызывается функция fader , ее аргументы вычисляются как color1 = red и color2 = green . В архиве полный скетч с использованием функций (скачиваний: 321)

Кнопка

В следующем скетче будет использоваться кнопка с нормально разомкнутыми контактами, без фиксации.


Это значит, что пока кнопка не нажата, ток через неё не идёт, а после отпускания, кнопка возвращается в исходное положение.
В схеме, помимо кнопки используется резистор. В данном случае он не ограничивает ток, а "подтягивает" кнопку к 0в (GND). Т.е. пока кнопка не нажата на выводе Arduino, к которому она подключена, будет низкий уровень. Резистор, используемый в схеме 10 кОм.


//определяем нажатие кнопки int buttonPin = 7; void setup(){ pinMode(buttonPin, INPUT);//инициализируем пин на вход Serial.begin(9600);//инициализируем последовательный порт } void loop(){ if (digitalRead(buttonPin)==HIGH){//если кнопка нажата Serial.println("pressed"); // выводим надпись "pressed" } else { Serial.println("unpressed");// иначе "unpressed" } }
В этом скетче несколько новых команд.
-эта команда принимает значение High (высокий уровень) и low (низкий уровень), того вывода, который мы проверяем. Предварительно в setup() этот вывод надо настроить на вход.
; //где buttonPin это номер вывода, куда подсоединяется кнопка.
Последовательный порт позволяет отправлять Arduino сообщения на компьютер, в то время, как сам контроллер выполняет программу. Это полезно для отладки программы, отправки сообщений на другие устройства или приложения. Чтобы включить передачу данных через последовательный порт (другое название UART или USART), надо инициализировать его в setup()

Serial.begin() имеет всего один аргумент-это скорость передачи данных между Arduino и компьютером.
скетче используется команда для вывода сообщения на экран в Arduino IDE (Tools >> Serial Monitor).
- конструкция позволяют контролировать ход выполнения программы, объеденив несколько проверок в одном месте.
If(если) digitalRead возвращает значение HIGH, то на мониторе выводится слово "нажата". Else(иначе) на мониторе выводится слово " отжата" . Теперь можно попробовать включать и выключать светодиод по нажатию кнопки.
//button press detection with LED output int buttonPin = 7; int ledPin = 8; void setup(){ pinMode(buttonPin, INPUT);//this time we will set button pin as INPUT pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){ digitalWrite(ledPin,HIGH); Serial.println("pressed"); } else { digitalWrite(ledPin,LOW); Serial.println("unpressed"); } }

Аналоговый вход.

analogRead позволяет считать данные с одного из аналоговых выводов Arduino и выводит значение в диапазоне от 0 (0В) до 1023 (5В). Если напряжение на аналоговом входе будет равно 2.5В, то будет напечатано 2.5 / 5 * 1023 = 512
analogRead имеет только один аргумент- Это номер аналогового входа (А0-А5). В следующем скетче приводится код считывания напряжения с потенциометра. Для этого подключите переменный резистор, крайними выводами на пины 5V и GND, а средний вывод на вход А0.

Запустите следующий код и посмотрите в serial monitor, как меняются значения в зависимости от поворота ручки резистора.
//analog input int potPin = A0;//к этому пину подсоединяется центральный вывод потенциометра void setup(){ //аналоговый пин по умолчанию включен на вход, поэтому инициализация не нужна Serial.begin(9600); } void loop(){ int potVal = analogRead(potPin);//potVal is a number between 0 and 1023 Serial.println(potVal); }
Следующий скетч объединяет скетч нажатия кнопки и скетч управления яркостью светодиода. Светодиод будет включаться от кнопки, и управлять яркостью свечения будет потенциометр.
//button press detection with LED output and variable intensity int buttonPin = 7; int ledPin = 9; int potPin = A0; void setup(){ pinMode(buttonPin, INPUT); pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){//if button pressed int analogVal = analogRead(potPin); int scaledVal = map(analogVal, 0, 1023, 0, 255); analogWrite(ledPin, scaledVal);//turn on led with intensity set by pot Serial.println("pressed"); } else { digitalWrite(ledPin, LOW);//turn off if button is not pressed Serial.println("unpressed"); } }

Arduino является очень популярным среди всех любителей конструировать. Следует ознакомить с ними и тех, кто ни разу про него не слышал.

Что собой представляет Arduino?

Как вкратце можно охарактеризовать Arduino? Оптимальными словами будут такие: Arduino представляет собой инструмент, с помощью которого можно создавать различные электронные устройства. По сути, это настоящая аппаратная вычислительная платформа универсального предназначения. Она может использоваться как для построения простых схем, так и для реализации довольно сложных проектов.

Базируется конструктор на своей аппаратной части, которая представляет собой плату ввода-вывода. Для программирования платы используются языки, которые основаны на C/C++. Они получили название, соответственно, Processing/Wiring. От группы С они унаследовали предельную простоту, благодаря чему осваиваются они весьма быстро любым человеком, и применять знания на практике не является довольно значительной проблемой. Чтобы вы понимали легкость работы, часто говорят, что Arduino - для начинающих волшебников-конструкторов. Разобраться с платами "Ардуино" могут даже дети.

Что на нём можно собрать?

Применение Arduino довольно разнообразно, его можно использовать, как и для простейших примеров, которые будут рекомендованы в конце статьи, так и для довольно сложных механизмов, среди которых манипуляторы, роботы или производственные станки. Некоторые умельцы умудряются на основе таких систем делать планшеты, телефоны, системы наблюдения и безопасности домов, системы «умный дом» или просто компьютеры. Arduino-проекты для начинающих, которыми может для начала заняться даже тот, кто не имеет опыта, находятся в конце статьи. Их даже можно использовать для создания примитивных систем виртуальной реальности. Всё благодаря довольной универсальной аппаратной составляющей и возможностям, которые предоставляет программирование Arduino.

Где приобрести составляющие?

Оригинальными считаются составляющие, произведённые в Италии. Но и цена таких комплектов не низкая. Поэтому целый ряд компаний или даже отдельные люди кустарным методом изготавливают Arduino-совместимые устройства и компоненты, которые в шутку прозывают производственными клонами. При покупке таких клонов нельзя с уверенностью сказать, что они будут работать, но желание сэкономить берёт свое.

Составляющие могут приобретаться или в составе комплектов, или по отдельности. Существуют даже уже заранее подготовленные наборы, чтобы собрать машинки, вертолёты с различными типами управления или корабли. Набор, как на фотографии вверху, произведённый в Китае, обойдётся в 49 долларов.

Подробнее об аппаратуре

Плата Ардуино является простым микроконтроллером AVR , который был прошит бутлоадером и имеет минимально необходимый минимум USB-UART порт. Есть ещё важные составляющие, но в пределах статьи лучше будет остановиться только на этих двух составляющих.

Сначала о микроконтроллере, механизме, построенном на одной схеме, в которой и размещается разработанная программа. На программу могут влиять нажатия кнопок, получение сигналов от составляющих творения (резисторов, транзисторов, датчиков и т. д.) и т. д. Причем датчики могут быть самые различные по своему предназначению: освещения, ускорения, температуры, расстояния, давления, препятствия и т. д. В качестве устройств индикации может вестись использование простых деталей, от светодиодов и пищалок к сложным устройствам, вроде графических дисплеев. В качестве рассматриваются моторчики, клапаны, реле, сервомашинки, электромагниты и множество других, которых перечислять очень и очень долго. С чем-то из этих списков МК работает прямо, с помощью соединительных проводов. Для некоторых механизмов нужны переходные устройства. Но если вы уж начнёте конструировать, оторваться вам будет сложно. Теперь поговорим о программировании Arduino.

Подробнее о процессе программирования платы

Уже готовую к работе на микроконтроллере программу называют прошивкой. Может быть как один проект, так и проекты Arduino, поэтому каждую прошивку желательно было бы хранить в отдельной папке, чтобы ускорить процесс нахождения нужных файлов. Она прошивается на кристалл МК посредством специализированных устройств: программаторов. И тут "Ардуино" имеет одно преимущество - ему не нужен программатор. Всё сделано так, чтобы программирование Arduino для начинающих не составляло труда. Написанный код можно загрузить в МК посредством USB-шнура. Достигается это преимущество не каким-то встроенным уже заранее программатором, а спецпрошивкой - бутлоадером. Бутлоадер является специальной программкой, которая запускается сразу после подключения и слушает, будут ли какие-то команды, прошивать ли кристалл, есть ли проекты Arduino или нет. Из использования бутлоадера выплывает несколько очень привлекательных плюсов:

  1. Использование только одного канала связи, что не требует дополнительных затрат по времени. Так, проекты Arduino не требуют, чтобы вы подключали множество различных проводов, и возникала путаница при их использовании. Для успешной работы хватает одного USB-шнура.
  2. Защита от кривых рук. Довести микроконтроллер до состояния кирпича с помощью прямой прошивки довольно легко, сильно напрягаться не надо. При работе с бутлоадером до потенциально опасных настроек вам не добраться (с помощью программы разработки, конечно, а так сломать можно всё). Поэтому Arduino для начинающих предназначен не только с той точки зрения, что понятен и удобен, он ещё позволит избежать нежелательных денежных трат, связанных с неопытностью работающего с ними человека.

Проекты для начала

Когда вы обзавелись комплектом, паяльником, канифолью и припоем, не следует сразу лепить очень сложные конструкции. Их, конечно, слепить можно, но шанс успеха в Arduino для начинающих довольно низкий при сложных проектах. Для тренировки и «набивания» руки вы можете попробовать реализовать несколько более простых задумок, которые помогут разобраться с взаимодействием и работой "Ардуино". В качестве таких первых шагов в работе с Arduino для начинающих можно посоветовать рассмотреть:

  1. Создать который будет работать благодаря "Ардуино".
  2. Подключение отдельной кнопки к "Ардуино". При этом можно сделать так, чтобы кнопка могла регулировать свечение светодиода из пункта №1.
  3. Подключение потенциометра.
  4. Управление сервоприводом.
  5. Подключение и работа с трехцветным светодиодом.
  6. Подключение пьезоэлемента.
  7. Подключение фоторезистора.
  8. Подключение датчика движения и сигналы о его работе.
  9. Подключение датчика влажности или температуры.

Проекты для будущего

Вряд ли вы интересуетесь "Ардуино" для того, чтобы подключать отдельные светодиоды. Скорее всего, вас привлекает возможность создать свою машинку, или летающую вертушку. Такие проекты сложны в своей реализации, они потребует много времени и усидчивости, но, выполнив их, вы получите то, что желали: ценный опыт конструирования с Arduino для начинающих.

Язык программирования Ардуино основывается на языке C/C++, который широко распространен в мире программирования.

Целевой аудиторией Ардуино являются непрофессиональные пользователи в сфере роботостроения и простейших систем автоматики. Основной продукцией является набор плат, комбинируя которые, возможно создавать различные устройства, способные выполнять широкий ряд задач.

В качестве примера, из набора плат, выпускаемых данной фирмой, можно собрать автоматическую кормушку для своих домашних животных. И это лишь один из наиболее простых примеров. Сфера их возможного применения ограничивается лишь фантазией пользователей.

Кроме печатных плат, выпускаемых под торговой маркой Arduino, у них имеется собственный язык программирования Ардуино, который основывается на широко известном в кругу программистов языке C/C++ . Давайте более подробно разберемся, что он из себя представляет.

Язык программирования Ардуино довольно прост в освоении, так как основной целевой аудиторией его применения являются любители. Однако считается одним из самых лучших языков для программирования микроконтроллеров.

Точка с запятой;

Точка с запятой должна следовать за каждым выражением, написанным на языке программирования Arduino. Например:

Int LEDpin = 9;

В этом выражении мы присваиваем значение переменной и обратите внимание на точку с запятой в конце. Это говорит компилятору, что вы закончили кусок кода и переходите к следующему фрагменту. Точка с запятой в коде Ардуино отделяет одно полное выражение от другого.

Двойная обратная косая черта для однострочных комментариев //

// Всё что идет после двойной косой черты будет серым и не будет считываться программой

Комментарии - это то, что вы используете для комментирования кода. Хороший код хорошо комментируется. Комментарии предназначены для того, чтобы сообщать вам и всем, кто мог бы наткнуться на ваш код, то как вы думали, когда вы его написали. Хорошим комментарием было бы что-то вроде этого:

// К этому пину Arduino подключаем светодиод int LEDpin = 9;

Теперь, даже через 3 месяца когда я просматриваю эту программу я знаю о том куда подключался светодиод.

Компилятор будет игнорировать комментарии, поэтому вы можете писать все, что вам нравится. Если вам нужно много текста для комментария вы можете использовать многострочный комментарий, показанный ниже:

/* Многострочный комментарий открывается одним обратным слэшем, за которым следует звездочка. Все последующее будет выделено серым цветом и будет игнорироваться компилятором, пока вы не закроете комментарий, используя сначала звездочку, а затем обратную косую черту */

Комментарии похожи на сноски кода, но более распространены, чем те что ставят в книгах внизу страниц.

Фигурные скобки { }

Фигурные скобки используются для того, чтобы добавить инструкции, выполняемые функцией (мы обсудим функции дальше). Всегда есть открытая фигурная скобка и закрывающая фигурная скобка. Если вы забудете закрыть фигурную скобку, компилятор выведет код ошибки.

Void loop() { //эта фигурная скобка открывается //крутая программа здесь }//эта фигурная скобка закрывается

Помните - никакая фигурная скобка не может не быть закрыта!

Функции ()

Теперь пора поговорить о функциях. Функции - это фрагменты кода, которые используются так часто, что они инкапсулированы в определенные ключевые слова, чтобы вы могли использовать их более легко. Например, функцией может быть следующий набор инструкций в случае если вам нужно помыть собаку:

  1. Получить ведро
  2. Заполнить его водой
  3. Добавить мыло
  4. Найти собаку
  5. Намылить собаку
  6. Помыть собаку
  7. Ополоснуть собаку
  8. Посушить собака
  9. Отложить ведро

Этот набор простых инструкций может быть инкапсулирован в функцию, которую мы можем назвать WashDog. Каждый раз, когда мы хотим выполнить все эти инструкции, мы просто набираем WashDog и вуаля - все инструкции выполняются.

В Ардуино есть определенные функции, которые часто используются в среде . Когда вы вводите их, имя функции будет оранжевым. Например, функция pinMode() является общей функцией, используемой для обозначения режима вывода Arduino.

А что с круглыми скобками после функции pinMode? Для многих функций требуются аргументы. Аргумент - это информация, которую функция использует при ее запуске. Для нашей функции WashDog аргументами могут быть имя собаки и тип мыла, а также температура и размер ведра.

PinMode(13, OUTPUT); //Устанавливает режим вывода Arduino

Аргумент 13 относится к выводу 13, а OUTPUT - режим, в котором вы хотите, чтобы пин работал. Когда вы вводите эти аргументы, в терминология это называется передачей данных, вы передаете необходимую информацию в функции. Не всем функциям требуются аргументы, но открытие и закрытие круглых скобок остаются, хотя и пустыми.

Millis(); //Получает время в миллисекундах за которое Arduino запускается

Обратите внимание, что слово OUTPUT обычно синего цвета. В языке программирования Ардуино есть определенные ключевые слова, которые часто используются, а синий цвет помогает их идентифицировать. Arduino IDE автоматически превращает их в синий цвет.

void setup ()

Функция setup (), как следует из названия, используется для настройки платы Arduino. Ардуино выполняет весь код, который содержится между фигурными скобками после setup() только один раз. Типичные вещи, которые происходят в setup() - это, например, установка режимом контактов:

Void setup() { //код между фигурными фигурными скобками выполняется только один раз }

Возможно, вам интересно что означает void перед функцией setup(). Void означает, что функция не возвращает информацию.

Некоторые функции возвращают значения - наша функция DogWash может вернуть количество ведер, необходимых для очистки собаки. Функция analogRead() возвращает целое значение от 0 до 1023. Если это сейчас кажется немного странным, не беспокойтесь, поскольку мы будем охватывать каждую общую функцию Arduino по мере продолжения курса.

Давайте рассмотрим пару вещей, которые вы должны знать о setup():

  1. setup() запускается только один раз;
  2. setup() должна быть первой функцией в скетче Ардуино;
  3. setup() должна иметь открывающиеся и закрывающие фигурные скобки.

void loop()

Вы должны любить разработчиков Arduino, потому они сделали так, что имена функций говорят сами за себя. Как следует из названия, весь код между фигурными скобками в loop() повторяется снова и снова, а слово loop переводится именно как "цикл". Функция loop() - это место, где будет находиться тело вашей программы.

Как и в случае с setup(), функция loop() не возвращает никаких значений, поэтому перед неё предшествует слово void.

Void loop() { //любой код, который вы здесь задаете, выполняется снова и снова }

Вам кажется странным, что код работает в одном большом цикле? Это очевидное отсутствие вариации - иллюзия. Большая часть вашего кода будет иметь определенные условия ожидания, которые вызовут новые действия.

Существуют ли еще программы, работающие с Ардуино?

Помимо официальной Arduino IDE, существуют программы сторонних разработчиков, которые предлагают свои продукты для работы с микроконтроллерами на базе ардуино.

Аналогичный набор функций нам может предоставить программа, которая называется Processing. Она очень схожа с Arduino IDE, так как обе сделаны на одном движке. Processing имеет обширный набор функций, который мало уступает оригинальной программе. С помощью загружаемой библиотеки Serial пользователь может создать связь между передачей данных, которые передают друг другу плата и Processing.При этом мы можем заставить плату выполнять программы прямо с нашего ПК.

Существует еще одна интересная версия исходной программы. Называется она B4R, и главным ее отличием является использование в качестве основы не языка си, а другой язык программирования – Basic. Данный программный продукт является бесплатным. Для работы с ним существуют хорошие самоучители, в том числе и написанные создателями данного продукта.

Есть и платные варианты Arduino IDE. Одним из таких является программа PROGROMINO. Главным ее достоинством считается возможность автодополнения кода. При составлении программы вам больше не нужно будет искать информацию в справочниках. Программа сама предложит вам возможные варианты использования той или иной процедуры. В ее набор входит еще множество интересных функций, отсутствующих в оригинальной программе и способных облегчить вам работу с платами.

Конкуренты Ардуино

Данный рынок по производству микроконтроллеров для создания различных электронных схем и робототехники имеет много поклонников по всему земному шару. Данная ситуация способствует появлению на рынке не только конкурентов, которые предлагают схожие продукты. Кроме них выпускается значительное количество подделок разного качества. Одни очень тяжело отличить от оригиналов, ведь они имеют идентичное качество, другие обладают очень плохими характеристиками и могут вовсе не работать с оригинальными продуктами.

Существуют даже платы Arduino, которые поддерживают работу микропроцессоров с интерпретаторами JavaScript. Актуальны они, в первую очередь, для тех, кто желает использовать язык Java вместо Си. Ведь он более прост, и позволяет добиваться результатов с повышенной скоростью. Однако данные платы являются более дорогими по отношению к ардуино, что является существенным минусом.

Если вы ищите себе хобби и вам интересно такое направление, как электротехника, вы смело можете выбирать для этого Arduino. Плюсов такое хобби имеет массу. Вы будете развиваться в интеллектуальном плане, так как данное занятие потребует от вас знаний в разных областях.

Помимо развлечений, ваше хобби поможет вам в создании массы полезных изделий, которые вы сможете использовать для облегчения повседневной жизни. С каждым разом вы будете находить все новые и новые способы использования вашего увлечения.

Освоить данное занятие будет не так сложно, благодаря наличию большого количества учебников и самоучителей. В дальнейшем вы найдете множество единомышленников по всему миру, которые поделятся с вами своими знаниями и дадут вам стимул для совершения новых экспериментов!

Данная статья поможет вам начать работу с Arduino и включает в себя описание различных типов Arduino, как загрузить среду разработки программного обеспечения Arduino, и описывает различные платы и принадлежности, доступные для Arduino, и которые понадобятся вам для разработки проектов на Arduino.

Arduino - это одноплатный контроллер с открытыми исходными кодами, который можно использовать в множестве различных приложений. Это возможно самый простой и самый дешевый вариант из микроконтроллеров для любителей, студентов и профессионалов для разработки проектов на основе микроконтроллеров. Платы Arduino используют либо микроконтроллер Atmel AVR, либо микроконтроллер Atmel ARM, и в некоторых версия имеет интерфейс USB. Они также имеют шесть или более выводов аналоговых входов и четырнадцать или более выводов цифровых входов/выходов (I/O), которые используются для подключения к микроконтроллеру датчиков, приводов и других периферийных схем. Цена на платы Arduino в зависимости от набора функций составляет от шести до сорока долларов.

Типы плат Arduino

Существует множество различных типов плат Arduino, как показано в списке ниже, каждая из которых обладает собственным набором функций. Они отличаются по скорости обработки, памяти, портам ввода/вывода и подключению, но основная составляющая их функционала остается неизменной.

  • Arduino Robot
  • Arduino Ethernet

На разнообразие плат Arduino и их технические описания можно посмотреть в подразделе « » раздела «Купить » данного сайта.

Программное обеспечение (IDE)

Программное обеспечение, используемое для программирования Arduino, представляет собой интегрированную среду разработки Arduino IDE. IDE представляет собой Java приложение, которое работает на множестве различных платформ, включая системы PC, Mac и Linux. Она разработана для начинающих, которые не знакомы с программированием. Она включает в себя редактор, компилятор и загрузчик. Также в IDE включены библиотеки кода для использования периферии, например, последовательных портов и различных типов дисплеев. Программы для Arduino называются «скетчами», и они написаны на языке, очень похожем на C или C++.

Большинство плат Arduino подключаются к компьютеру с помощью USB кабеля. Это соединение позволяет загружать скетчи на вашу плату Arduino, а также обеспечивает плату питанием.

USB кабель для Arduino

Программирование

Программирование Arduino легко: сначала вы используете редактор кода IDE для написания программы, а затем компилируете и загружаете её одним кликом.

Программа для Arduino включает в себя две основные функции:

  • setup()
  • loop()

Вы можете использовать функцию setup() для инициализации настроек платы. Эта функция выполняется только один раз, при включении платы.

Функция loop() выполняется после завершения функции setup() , и в отличие от функции setup() она работает постоянно.

Функции программ

Ниже приведен список наиболее часто используемых функции при программировании Arduino:

  • pinMode - устанавливает вывод в режим входа или выхода;
  • analogRead - считывает аналоговое напряжение на аналоговом входном выводе;
  • analogWrite - записывает аналоговое напряжение в аналоговый выходной вывод;
  • digitalRead - считывает значение цифрового входного вывода;
  • digitalWrite - задает значение цифрового выходного вывода в высокий или низкий уровень;
  • Serial.print - пишет данные в последовательный порт в виде удобочитаемого текста ASCII.

Библиотеки Arduino

Библиотеки Arduino представляют собой коллекции функций, которые позволят вам управлять устройствами. Вот некоторые из наиболее широко используемых библиотек:

  • EEPROM - чтение и запись в «постоянно» хранилище;
  • Ethernet - для подключения к интернету, используя плату Arduino Ethernet Shield;
  • Firmata - для связи с приложениями на компьютере, используя стандартный последовательный протокол;
  • GSM - для подключения к сети GSM/GRPS с помощью платы GSM;
  • LiquidCrystal - для управления жидкокристаллическими дисплеями (LCD);
  • SD - для чтения и записи SD карт;
  • Servo - для управления сервоприводами;
  • SPI - для связи с устройствами, используя шину SPI;
  • SoftwareSerial - для последовательной связи через любые цифровые выводы;
  • Stepper - для управления шаговыми двигателями;
  • TFT - для отрисовки текста, изображений и фигур Arduino TFT экранах;
  • WiFi - для подключения к интернету, используя плату Arduino WiFi shield;
  • Wire - двухпроводный интерфейс (TWI/I2C) для передачи и приема данных через сеть устройств или датчиков.

Этапы настройки Arduino


Внимание: возможно, вам понадобится установить драйвера, если ваша система не обнаружит Arduino.

В Arduino IDE все написанные скетчи компилируются в программу на языке C/C++ с минимальными изменениями. Компилятор Arduino IDE значительно упрощает написание программ для этой платформы и создание устройств на Ардуино становится намного доступней людям, не имеющих больших познаний в языке C/C++. Дадим далее небольшую справку с описанием основных функций языка Arduino с примерами.

Подробный справочник языка Ардуино

Язык можно разделить на четыре раздела: операторы, данные, функции и библиотеки.

Язык Arduino Пример Описание

Операторы

setup() void setup ()
{
pinMode (3, INPUT );
}
Функция используется для инициализации переменных, определения режимов работы выводов на плате и т.д. Функция запускается только один раз, после каждой подачи питания на микроконтроллер.
Пример использования
loop() void loop ()
{
digitalWrite (3, HIGH );
delay(1000);
digitalWrite (3, LOW );
delay(1000);
}
Функция loop крутится в цикле, позволяя программе совершать вычисления и реагировать на них. Функции setup() и loop() должны присутствовать в каждом скетче, даже если эти операторы в программе не используются.
Пример использования

Управляющие операторы

if
if (x >
if (x < 100) digitalWrite (3, LOW );
Оператор if используется в сочетании с операторами сравнения (==, !=, <, >) и проверяет, достигнута ли истинность условия. Например, если значение переменной x больше 100, то включается светодиод на выходе 13, если меньше — светодиод выключается.
Пример использования
if..else
if (x > 100) digitalWrite (3, HIGH );
else digitalWrite (3, LOW );
Оператор else позволяет cделать проверку отличную от указанной в if, чтобы осуществлять несколько взаимо исключающих проверок. Если ни одна из проверок не получила результат ИСТИНА, то выполняется блок операторов в else.
Пример использования
switch…case
switch (x)
{


case 3: break ;

}
Подобно if, оператор switch управляет программой, позволяя задавать действия, которые будут выполняться при разных условиях. Break является командой выхода из оператора, default выполняется, если не выбрана ни одна альтернатива.
for void setup ()
{
pinMode (3, OUTPUT );
}
void loop ()
{
for (int i=0; i <= 255; i++){
analogWrite (3, i);
delay(10);
}
}
Конструкция for используется для повторения операторов, заключенных в фигурные скобки. Например, плавное затемнение светодиода. Заголовок цикла for состоит из трех частей: for (initialization; condition; increment) — initialization выполняется один раз, далее проверяется условие condition, если условие верно, то выполняется приращение increment. Цикл повторяется пока не станет ложным condition.
Пример использования
while void loop ()
{
while (x < 10)
{
x = x + 1;
Serial.println (x);
delay (200);
}
}
Оператор while используется, как цикл, который будет выполняться, пока условие в круглых скобках является истиной. В примере оператор цикла while будет повторять код в скобках бесконечно до тех пор, пока x будет меньше 10.
Пример использования
do…while void loop ()
{
do
{
x = x + 1;
delay (100);
Serial.println (x);
}
while (x < 10);
delay (900);
}
Оператор цикла do…while работает так же, как и цикл while. Однако, при истинности выражения в круглых скобках происходит продолжение работы цикла, а не выход из цикла. В приведенном примере, при x больше 10 операция сложения будет продолжаться, но с паузой 1000 мс.
Пример использования
break
continue
switch (x)
{
case 1: digitalWrite (3, HIGH );
case 2: digitalWrite (3, LOW );
case 3: break ;
case 4: continue ;
default : digitalWrite (4, HIGH );
}
Break используется для принудительного выхода из циклов switch, do, for и while, не дожидаясь завершения цикла.
Оператор continue пропускает оставшиеся операторы в текущем шаге цикла.
Пример использования

Синтаксис

;
(точка с запятой)

digitalWrite (3, HIGH );
Точка с запятой используется для обозначения конца оператора. Забытая в конце строки точка с запятой приводит к ошибке при компиляции.
{}
(фигурные скобки)
void setup ()
{
pinMode (3, INPUT );
}
Открывающая скобка “{” должна сопровождаться закрывающей скобкой “}”. Непарные скобки могут приводить к скрытым и непонятным ошибкам при компиляции скетча.
//
(комментарий)
x = 5; // комментарий Комментарии используются для напоминания, как работает программа. Они игнорируются компилятором и не экспортируются в процессор, не занимая место в памяти микроконтроллера.
#define #define ledPin 3 Директива #define позволяет дать имя константе. Директива служит исключительно для удобства и улучшения читаемости программы.
Пример использования
#include // библиотека для серво
#include
Директива #include используется для включения сторонних библиотек в скетч. Помните, что директивы #include и #define, не требуют точки запятой.
Пример использования

Типы данных

boolean boolean val = false ; Переменная boolean может принимать значение — true или false. Каждая переменная типа boolean занимает один байт в памяти микроконтроллера.
Пример использования
char // оба значения эквивалентны
char val = ‘A’;
char val = ’65’;
Тип данных char хранит символьное значение и занимает в памяти 1 байт. Символы пишутся в одинарных кавычках, например: ‘A’, но в памяти символы хранятся в виде чисел.
Пример использования
byte byte val = 255; byte — без знаковый тип данных для хранения чисел в диапазоне от 0 до 255. Переменная занимает в памяти 1 байт.
Пример использования
int int val = 32767; Тип данных для хранения целых чисел. Переменная типа int хранит целочисленные 16-битные значения в диапазоне от -32768 до 32767.
Пример использования
unsigned int unsigned int val = 65535; Переменная типа unsigned int также может хранить двухбайтовые значения. Но вместо отрицательных чисел хранит только положительные значения в большом диапазоне от 0 до 65535.
Пример использования
float float val = 25.1547; Переменная типа float служит для хранения чисел с десятичным разделителем. Числа с плавающей точкой позволяют более точно описать аналоговые величины, чем целые числа. Точность дробных чисел составляет 6-7 знаков — это общее количество цифр, а не количество цифр после запятой.
Пример использования

Подробно Arduino язык программирования для начинающих представлен в таблице. Микроконтроллер Arduino программируется на языке, основанном на C/C ++. Язык программирования Arduino является разновидностью C++, другими словами, не существует отдельного языка программирования Arduino. Скачать книгу PDF можно ниже. Отметим, что программирование Arduino намного проще, чем язык C++.

Например . На языке программирования Arduino включить в скетче последовательный порт на скорости 9600 бит в секунду можно всего лишь одной строчкой:

Serial.begin(9600);

При использовании C/C++ нам бы пришлось долго разбираться с документацией на микроконтроллер и написать в скетче нечто подобное:

UBRR0H = ((F_CPU / 16 + 9600 / 2) / 9600 - 1) >> 8;
UBRR0L = ((F_CPU / 16 + 9600 / 2) / 9600 - 1);
sbi(UCSR0B, RXEN0);
sbi(UCSR0B, TXEN0);
sbi(UCSR0B, RXCIE0);



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: